kusanagi
 All Classes Namespaces Files Functions Variables
Functions
kusanagi.ghost.regression.cov Namespace Reference

Functions

def SEard
 Squared exponential kernel with diagonal scaling matrix (one lengthscale per dimension) More...
 
def Noise
 Noise kernel. More...
 
def Sum
 Returns the sum of multiple covariance functions. More...
 

Function Documentation

def kusanagi.ghost.regression.cov.Noise (   loghyp,
  X1,
  X2 = None,
  all_pairs = True 
)

Noise kernel.

Takes as an input a distance matrix D and creates a new matrix as Kij = sn2 if Dij == 0 else 0

def kusanagi.ghost.regression.cov.SEard (   loghyp,
  X1,
  X2 = None,
  all_pairs = True 
)

Squared exponential kernel with diagonal scaling matrix (one lengthscale per dimension)

def kusanagi.ghost.regression.cov.Sum (   loghyp_l,
  cov_l,
  X1,
  X2 = None,
  all_pairs = True 
)

Returns the sum of multiple covariance functions.