Functions | |
def | SEard |
Squared exponential kernel with diagonal scaling matrix (one lengthscale per dimension) More... | |
def | Noise |
Noise kernel. More... | |
def | Sum |
Returns the sum of multiple covariance functions. More... | |
def kusanagi.ghost.regression.cov.Noise | ( | loghyp, | |
X1, | |||
X2 = None , |
|||
all_pairs = True |
|||
) |
Noise kernel.
Takes as an input a distance matrix D and creates a new matrix as Kij = sn2 if Dij == 0 else 0
def kusanagi.ghost.regression.cov.SEard | ( | loghyp, | |
X1, | |||
X2 = None , |
|||
all_pairs = True |
|||
) |
Squared exponential kernel with diagonal scaling matrix (one lengthscale per dimension)
def kusanagi.ghost.regression.cov.Sum | ( | loghyp_l, | |
cov_l, | |||
X1, | |||
X2 = None , |
|||
all_pairs = True |
|||
) |
Returns the sum of multiple covariance functions.