Functions | |
def | signal_handler |
Variables | |
float | dt = 0.1 |
dictionary | model_parameters = {} |
list | x0 = [0,0,0,0] |
tuple | S0 = np.eye(4) |
list | maxU = [10] |
tuple | measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
tuple | plant = Cartpole(model_parameters,x0,S0,dt,measurement_noise) |
tuple | draw_cp = CartpoleDraw(plant,0.033) |
list | angle_dims = [3] |
tuple | policy = RBFPolicy(x0,S0,maxU,10, angle_dims) |
dictionary | cost_parameters = {} |
tuple | cost = partial(cartpole_loss, params=cost_parameters) |
float | T = 4.0 |
int | J = 2 |
int | N = 100 |
tuple | learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
def kusanagi.examples.cartpole.cartpole_learn.signal_handler | ( | signal, | |
frame | |||
) |
list kusanagi.examples.cartpole.cartpole_learn.angle_dims = [3] |
tuple kusanagi.examples.cartpole.cartpole_learn.cost = partial(cartpole_loss, params=cost_parameters) |
dictionary kusanagi.examples.cartpole.cartpole_learn.cost_parameters = {} |
tuple kusanagi.examples.cartpole.cartpole_learn.draw_cp = CartpoleDraw(plant,0.033) |
float kusanagi.examples.cartpole.cartpole_learn.dt = 0.1 |
int kusanagi.examples.cartpole.cartpole_learn.J = 2 |
tuple kusanagi.examples.cartpole.cartpole_learn.learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
list kusanagi.examples.cartpole.cartpole_learn.maxU = [10] |
tuple kusanagi.examples.cartpole.cartpole_learn.measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
dictionary kusanagi.examples.cartpole.cartpole_learn.model_parameters = {} |
int kusanagi.examples.cartpole.cartpole_learn.N = 100 |
tuple kusanagi.examples.cartpole.cartpole_learn.plant = Cartpole(model_parameters,x0,S0,dt,measurement_noise) |
tuple kusanagi.examples.cartpole.cartpole_learn.policy = RBFPolicy(x0,S0,maxU,10, angle_dims) |
tuple kusanagi.examples.cartpole.cartpole_learn.S0 = np.eye(4) |
float kusanagi.examples.cartpole.cartpole_learn.T = 4.0 |
list kusanagi.examples.cartpole.cartpole_learn.x0 = [0,0,0,0] |