Functions | |
def | signal_handler |
Variables | |
float | dt = 0.05 |
dictionary | model_parameters = {} |
list | x0 = [0,0,0,0,np.pi,np.pi] |
tuple | S0 = np.eye(6) |
tuple | measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
tuple | plant = DoubleCartpole(model_parameters,x0,S0,dt,measurement_noise) |
tuple | draw_dcp = DoubleCartpoleDraw(plant,0.033) |
list | angle_dims = [4,5] |
tuple | policy = RBFPolicy(x0,S0,[20],100, angle_dims) |
dictionary | cost_parameters = {} |
tuple | cost = partial(double_cartpole_loss, params=cost_parameters) |
float | T = 5.0 |
int | J = 500 |
int | N = 15 |
tuple | learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
def double_cartpole_run.signal_handler | ( | signal, | |
frame | |||
) |
list double_cartpole_run.angle_dims = [4,5] |
tuple double_cartpole_run.cost = partial(double_cartpole_loss, params=cost_parameters) |
dictionary double_cartpole_run.cost_parameters = {} |
tuple double_cartpole_run.draw_dcp = DoubleCartpoleDraw(plant,0.033) |
float double_cartpole_run.dt = 0.05 |
int double_cartpole_run.J = 500 |
tuple double_cartpole_run.learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
tuple double_cartpole_run.measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
dictionary double_cartpole_run.model_parameters = {} |
int double_cartpole_run.N = 15 |
tuple double_cartpole_run.plant = DoubleCartpole(model_parameters,x0,S0,dt,measurement_noise) |
tuple double_cartpole_run.policy = RBFPolicy(x0,S0,[20],100, angle_dims) |
tuple double_cartpole_run.S0 = np.eye(6) |
float double_cartpole_run.T = 5.0 |
list double_cartpole_run.x0 = [0,0,0,0,np.pi,np.pi] |