Sparse Spectral Gaussian Process Regression. More...
Public Member Functions | |
def | __init__ |
def | set_state |
def | get_state |
def | init_log_likelihood |
def | set_spectral_samples |
def | get_params |
def | loss_ss |
def | train |
def | predict_symbolic |
![]() | |
def | __init__ |
def | set_dataset |
def | append_dataset |
def | init_loghyp |
def | set_loghyp |
def | get_params |
def | set_params |
def | init_log_likelihood |
def | init_predict |
def | predict_symbolic |
def | predict |
def | loss |
def | train |
def | load |
def | save |
def | set_state |
def | get_state |
Public Attributes | |
w | |
w_ | |
sr | |
A | |
Lmm | |
beta_ss | |
nlml_ss | |
dnlml_ss | |
n_basis | |
should_recompile | |
iA | |
![]() | |
profile | |
compile_mode | |
min_method | |
state_changed | |
should_recompile | |
uncertain_inputs | |
hyperparameter_gradients | |
snr_penalty | |
D | |
E | |
X_ | |
Y_ | |
loghyp_ | |
loghyp | |
X | |
Y | |
K | |
L | |
beta | |
nlml | |
predict_ | |
predict_d_ | |
name | |
filename | |
ready | |
N | |
kernel_func | |
dnlml | |
Sparse Spectral Gaussian Process Regression.
def kusanagi.ghost.regression.GPRegressor.SSGP.__init__ | ( | self, | |
X_dataset = None , |
|||
Y_dataset = None , |
|||
name = 'SSGP' , |
|||
idims = None , |
|||
odims = None , |
|||
profile = False , |
|||
n_basis = 100 , |
|||
uncertain_inputs = False , |
|||
hyperparameter_gradients = False |
|||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.get_params | ( | self, | |
symbolic = True |
|||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.get_state | ( | self | ) |
def kusanagi.ghost.regression.GPRegressor.SSGP.init_log_likelihood | ( | self | ) |
def kusanagi.ghost.regression.GPRegressor.SSGP.loss_ss | ( | self, | |
params, | |||
parameter_shapes | |||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.predict_symbolic | ( | self, | |
mx, | |||
Sx | |||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.set_spectral_samples | ( | self, | |
w = None |
|||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.set_state | ( | self, | |
state | |||
) |
def kusanagi.ghost.regression.GPRegressor.SSGP.train | ( | self, | |
pretrain_full = True |
|||
) |
kusanagi.ghost.regression.GPRegressor.SSGP.A |
kusanagi.ghost.regression.GPRegressor.SSGP.beta_ss |
kusanagi.ghost.regression.GPRegressor.SSGP.dnlml_ss |
kusanagi.ghost.regression.GPRegressor.SSGP.iA |
kusanagi.ghost.regression.GPRegressor.SSGP.Lmm |
kusanagi.ghost.regression.GPRegressor.SSGP.n_basis |
kusanagi.ghost.regression.GPRegressor.SSGP.nlml_ss |
kusanagi.ghost.regression.GPRegressor.SSGP.should_recompile |
kusanagi.ghost.regression.GPRegressor.SSGP.sr |
kusanagi.ghost.regression.GPRegressor.SSGP.w |
kusanagi.ghost.regression.GPRegressor.SSGP.w_ |