kusanagi
 All Classes Namespaces Files Functions Variables
Public Member Functions | Public Attributes | List of all members
kusanagi.ghost.regression.GPRegressor.SSGP Class Reference

Sparse Spectral Gaussian Process Regression. More...

Inheritance diagram for kusanagi.ghost.regression.GPRegressor.SSGP:
Inheritance graph
[legend]
Collaboration diagram for kusanagi.ghost.regression.GPRegressor.SSGP:
Collaboration graph
[legend]

Public Member Functions

def __init__
 
def set_state
 
def get_state
 
def init_log_likelihood
 
def set_spectral_samples
 
def get_params
 
def loss_ss
 
def train
 
def predict_symbolic
 
- Public Member Functions inherited from kusanagi.ghost.regression.GPRegressor.GP
def __init__
 
def set_dataset
 
def append_dataset
 
def init_loghyp
 
def set_loghyp
 
def get_params
 
def set_params
 
def init_log_likelihood
 
def init_predict
 
def predict_symbolic
 
def predict
 
def loss
 
def train
 
def load
 
def save
 
def set_state
 
def get_state
 

Public Attributes

 w
 
 w_
 
 sr
 
 A
 
 Lmm
 
 beta_ss
 
 nlml_ss
 
 dnlml_ss
 
 n_basis
 
 should_recompile
 
 iA
 
- Public Attributes inherited from kusanagi.ghost.regression.GPRegressor.GP
 profile
 
 compile_mode
 
 min_method
 
 state_changed
 
 should_recompile
 
 uncertain_inputs
 
 hyperparameter_gradients
 
 snr_penalty
 
 D
 
 E
 
 X_
 
 Y_
 
 loghyp_
 
 loghyp
 
 X
 
 Y
 
 K
 
 L
 
 beta
 
 nlml
 
 predict_
 
 predict_d_
 
 name
 
 filename
 
 ready
 
 N
 
 kernel_func
 
 dnlml
 

Detailed Description

Sparse Spectral Gaussian Process Regression.

Constructor & Destructor Documentation

def kusanagi.ghost.regression.GPRegressor.SSGP.__init__ (   self,
  X_dataset = None,
  Y_dataset = None,
  name = 'SSGP',
  idims = None,
  odims = None,
  profile = False,
  n_basis = 100,
  uncertain_inputs = False,
  hyperparameter_gradients = False 
)

Member Function Documentation

def kusanagi.ghost.regression.GPRegressor.SSGP.get_params (   self,
  symbolic = True 
)
def kusanagi.ghost.regression.GPRegressor.SSGP.get_state (   self)
def kusanagi.ghost.regression.GPRegressor.SSGP.init_log_likelihood (   self)
def kusanagi.ghost.regression.GPRegressor.SSGP.loss_ss (   self,
  params,
  parameter_shapes 
)
def kusanagi.ghost.regression.GPRegressor.SSGP.predict_symbolic (   self,
  mx,
  Sx 
)
def kusanagi.ghost.regression.GPRegressor.SSGP.set_spectral_samples (   self,
  w = None 
)
def kusanagi.ghost.regression.GPRegressor.SSGP.set_state (   self,
  state 
)
def kusanagi.ghost.regression.GPRegressor.SSGP.train (   self,
  pretrain_full = True 
)

Member Data Documentation

kusanagi.ghost.regression.GPRegressor.SSGP.A
kusanagi.ghost.regression.GPRegressor.SSGP.beta_ss
kusanagi.ghost.regression.GPRegressor.SSGP.dnlml_ss
kusanagi.ghost.regression.GPRegressor.SSGP.iA
kusanagi.ghost.regression.GPRegressor.SSGP.Lmm
kusanagi.ghost.regression.GPRegressor.SSGP.n_basis
kusanagi.ghost.regression.GPRegressor.SSGP.nlml_ss
kusanagi.ghost.regression.GPRegressor.SSGP.should_recompile
kusanagi.ghost.regression.GPRegressor.SSGP.sr
kusanagi.ghost.regression.GPRegressor.SSGP.w
kusanagi.ghost.regression.GPRegressor.SSGP.w_

The documentation for this class was generated from the following file: