def kusanagi.ghost.regression.GPRegressor.GP.__init__ |
( |
|
self, |
|
|
|
X_dataset = None , |
|
|
|
Y_dataset = None , |
|
|
|
name = 'GP' , |
|
|
|
idims = None , |
|
|
|
odims = None , |
|
|
|
profile = theano.config.profile , |
|
|
|
uncertain_inputs = False , |
|
|
|
hyperparameter_gradients = False , |
|
|
|
snr_penalty = SNRpenalty.SEard |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.append_dataset |
( |
|
self, |
|
|
|
X_dataset, |
|
|
|
Y_dataset |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.get_params |
( |
|
self, |
|
|
|
symbolic = True |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.get_state |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.GP.init_log_likelihood |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.GP.init_loghyp |
( |
|
self, |
|
|
|
reinit = False |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.init_predict |
( |
|
self, |
|
|
|
derivs = False |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.load |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.GP.loss |
( |
|
self, |
|
|
|
loghyp |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.predict |
( |
|
self, |
|
|
|
mx, |
|
|
|
Sx = None , |
|
|
|
derivs = False |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.predict_symbolic |
( |
|
self, |
|
|
|
mx, |
|
|
|
Sx |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.save |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.GP.set_dataset |
( |
|
self, |
|
|
|
X_dataset, |
|
|
|
Y_dataset |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.set_loghyp |
( |
|
self, |
|
|
|
loghyp |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.set_params |
( |
|
self, |
|
|
|
params |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.set_state |
( |
|
self, |
|
|
|
state |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.GP.train |
( |
|
self | ) |
|
kusanagi.ghost.regression.GPRegressor.GP.beta |
kusanagi.ghost.regression.GPRegressor.GP.compile_mode |
kusanagi.ghost.regression.GPRegressor.GP.D |
kusanagi.ghost.regression.GPRegressor.GP.dnlml |
kusanagi.ghost.regression.GPRegressor.GP.E |
kusanagi.ghost.regression.GPRegressor.GP.filename |
kusanagi.ghost.regression.GPRegressor.GP.hyperparameter_gradients |
kusanagi.ghost.regression.GPRegressor.GP.K |
kusanagi.ghost.regression.GPRegressor.GP.kernel_func |
kusanagi.ghost.regression.GPRegressor.GP.L |
kusanagi.ghost.regression.GPRegressor.GP.loghyp |
kusanagi.ghost.regression.GPRegressor.GP.loghyp_ |
kusanagi.ghost.regression.GPRegressor.GP.min_method |
kusanagi.ghost.regression.GPRegressor.GP.N |
kusanagi.ghost.regression.GPRegressor.GP.name |
kusanagi.ghost.regression.GPRegressor.GP.nlml |
kusanagi.ghost.regression.GPRegressor.GP.predict_ |
kusanagi.ghost.regression.GPRegressor.GP.predict_d_ |
kusanagi.ghost.regression.GPRegressor.GP.profile |
kusanagi.ghost.regression.GPRegressor.GP.ready |
kusanagi.ghost.regression.GPRegressor.GP.should_recompile |
kusanagi.ghost.regression.GPRegressor.GP.snr_penalty |
kusanagi.ghost.regression.GPRegressor.GP.state_changed |
kusanagi.ghost.regression.GPRegressor.GP.uncertain_inputs |
kusanagi.ghost.regression.GPRegressor.GP.X |
kusanagi.ghost.regression.GPRegressor.GP.X_ |
kusanagi.ghost.regression.GPRegressor.GP.Y |
kusanagi.ghost.regression.GPRegressor.GP.Y_ |
The documentation for this class was generated from the following file: