kusanagi
 All Classes Namespaces Files Functions Variables
Public Member Functions | Public Attributes | List of all members
kusanagi.ghost.regression.GPRegressor.GP Class Reference
Inheritance diagram for kusanagi.ghost.regression.GPRegressor.GP:
Inheritance graph
[legend]
Collaboration diagram for kusanagi.ghost.regression.GPRegressor.GP:
Collaboration graph
[legend]

Public Member Functions

def __init__
 
def set_dataset
 
def append_dataset
 
def init_loghyp
 
def set_loghyp
 
def get_params
 
def set_params
 
def init_log_likelihood
 
def init_predict
 
def predict_symbolic
 
def predict
 
def loss
 
def train
 
def load
 
def save
 
def set_state
 
def get_state
 

Public Attributes

 profile
 
 compile_mode
 
 min_method
 
 state_changed
 
 should_recompile
 
 uncertain_inputs
 
 hyperparameter_gradients
 
 snr_penalty
 
 D
 
 E
 
 X_
 
 Y_
 
 loghyp_
 
 loghyp
 
 X
 
 Y
 
 K
 
 L
 
 beta
 
 nlml
 
 predict_
 
 predict_d_
 
 name
 
 filename
 
 ready
 
 N
 
 kernel_func
 
 dnlml
 

Constructor & Destructor Documentation

def kusanagi.ghost.regression.GPRegressor.GP.__init__ (   self,
  X_dataset = None,
  Y_dataset = None,
  name = 'GP',
  idims = None,
  odims = None,
  profile = theano.config.profile,
  uncertain_inputs = False,
  hyperparameter_gradients = False,
  snr_penalty = SNRpenalty.SEard 
)

Member Function Documentation

def kusanagi.ghost.regression.GPRegressor.GP.append_dataset (   self,
  X_dataset,
  Y_dataset 
)
def kusanagi.ghost.regression.GPRegressor.GP.get_params (   self,
  symbolic = True 
)
def kusanagi.ghost.regression.GPRegressor.GP.get_state (   self)
def kusanagi.ghost.regression.GPRegressor.GP.init_log_likelihood (   self)
def kusanagi.ghost.regression.GPRegressor.GP.init_loghyp (   self,
  reinit = False 
)
def kusanagi.ghost.regression.GPRegressor.GP.init_predict (   self,
  derivs = False 
)
def kusanagi.ghost.regression.GPRegressor.GP.load (   self)
def kusanagi.ghost.regression.GPRegressor.GP.loss (   self,
  loghyp 
)
def kusanagi.ghost.regression.GPRegressor.GP.predict (   self,
  mx,
  Sx = None,
  derivs = False 
)
def kusanagi.ghost.regression.GPRegressor.GP.predict_symbolic (   self,
  mx,
  Sx 
)
def kusanagi.ghost.regression.GPRegressor.GP.save (   self)
def kusanagi.ghost.regression.GPRegressor.GP.set_dataset (   self,
  X_dataset,
  Y_dataset 
)
def kusanagi.ghost.regression.GPRegressor.GP.set_loghyp (   self,
  loghyp 
)
def kusanagi.ghost.regression.GPRegressor.GP.set_params (   self,
  params 
)
def kusanagi.ghost.regression.GPRegressor.GP.set_state (   self,
  state 
)
def kusanagi.ghost.regression.GPRegressor.GP.train (   self)

Member Data Documentation

kusanagi.ghost.regression.GPRegressor.GP.beta
kusanagi.ghost.regression.GPRegressor.GP.compile_mode
kusanagi.ghost.regression.GPRegressor.GP.D
kusanagi.ghost.regression.GPRegressor.GP.dnlml
kusanagi.ghost.regression.GPRegressor.GP.E
kusanagi.ghost.regression.GPRegressor.GP.filename
kusanagi.ghost.regression.GPRegressor.GP.hyperparameter_gradients
kusanagi.ghost.regression.GPRegressor.GP.K
kusanagi.ghost.regression.GPRegressor.GP.kernel_func
kusanagi.ghost.regression.GPRegressor.GP.L
kusanagi.ghost.regression.GPRegressor.GP.loghyp
kusanagi.ghost.regression.GPRegressor.GP.loghyp_
kusanagi.ghost.regression.GPRegressor.GP.min_method
kusanagi.ghost.regression.GPRegressor.GP.N
kusanagi.ghost.regression.GPRegressor.GP.name
kusanagi.ghost.regression.GPRegressor.GP.nlml
kusanagi.ghost.regression.GPRegressor.GP.predict_
kusanagi.ghost.regression.GPRegressor.GP.predict_d_
kusanagi.ghost.regression.GPRegressor.GP.profile
kusanagi.ghost.regression.GPRegressor.GP.ready
kusanagi.ghost.regression.GPRegressor.GP.should_recompile
kusanagi.ghost.regression.GPRegressor.GP.snr_penalty
kusanagi.ghost.regression.GPRegressor.GP.state_changed
kusanagi.ghost.regression.GPRegressor.GP.uncertain_inputs
kusanagi.ghost.regression.GPRegressor.GP.X
kusanagi.ghost.regression.GPRegressor.GP.X_
kusanagi.ghost.regression.GPRegressor.GP.Y
kusanagi.ghost.regression.GPRegressor.GP.Y_

The documentation for this class was generated from the following file: