def kusanagi.ghost.regression.GPRegressor.SPGP.__init__ |
( |
|
self, |
|
|
|
X_dataset, |
|
|
|
Y_dataset, |
|
|
|
name = 'SPGP' , |
|
|
|
profile = False , |
|
|
|
n_basis = 100 , |
|
|
|
uncertain_inputs = False , |
|
|
|
hyperparameter_gradients = False |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.get_params |
( |
|
self, |
|
|
|
symbolic = True |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.get_state |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.SPGP.init_log_likelihood |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.SPGP.init_pseudo_inputs |
( |
|
self | ) |
|
def kusanagi.ghost.regression.GPRegressor.SPGP.loss_sp |
( |
|
self, |
|
|
|
X_sp |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.predict_symbolic |
( |
|
self, |
|
|
|
mx, |
|
|
|
Sx |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.set_dataset |
( |
|
self, |
|
|
|
X_dataset, |
|
|
|
Y_dataset |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.set_state |
( |
|
self, |
|
|
|
state |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.set_X_sp |
( |
|
self, |
|
|
|
X_sp |
|
) |
| |
def kusanagi.ghost.regression.GPRegressor.SPGP.train |
( |
|
self | ) |
|
kusanagi.ghost.regression.GPRegressor.SPGP.Amm |
kusanagi.ghost.regression.GPRegressor.SPGP.beta_sp |
kusanagi.ghost.regression.GPRegressor.SPGP.dnlml_sp |
kusanagi.ghost.regression.GPRegressor.SPGP.Lmm |
kusanagi.ghost.regression.GPRegressor.SPGP.n_basis |
kusanagi.ghost.regression.GPRegressor.SPGP.nlml_sp |
kusanagi.ghost.regression.GPRegressor.SPGP.should_recompile |
kusanagi.ghost.regression.GPRegressor.SPGP.X_sp |
kusanagi.ghost.regression.GPRegressor.SPGP.X_sp_ |
The documentation for this class was generated from the following file: