|
float | kusanagi.examples.cartpole.cartpole_learn.dt = 0.1 |
|
dictionary | kusanagi.examples.cartpole.cartpole_learn.model_parameters = {} |
|
list | kusanagi.examples.cartpole.cartpole_learn.x0 = [0,0,0,0] |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.S0 = np.eye(4) |
|
list | kusanagi.examples.cartpole.cartpole_learn.maxU = [10] |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.plant = Cartpole(model_parameters,x0,S0,dt,measurement_noise) |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.draw_cp = CartpoleDraw(plant,0.033) |
|
list | kusanagi.examples.cartpole.cartpole_learn.angle_dims = [3] |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.policy = RBFPolicy(x0,S0,maxU,10, angle_dims) |
|
dictionary | kusanagi.examples.cartpole.cartpole_learn.cost_parameters = {} |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.cost = partial(cartpole_loss, params=cost_parameters) |
|
float | kusanagi.examples.cartpole.cartpole_learn.T = 4.0 |
|
int | kusanagi.examples.cartpole.cartpole_learn.J = 2 |
|
int | kusanagi.examples.cartpole.cartpole_learn.N = 100 |
|
tuple | kusanagi.examples.cartpole.cartpole_learn.learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
|