Robot Vision Part 2: Visual Odometry

Guest Lecture by David Meger McGill CS 417 November 6, 2013

Last Time: Object Recognition

137 tentative matches

35 final matches

Estimated Object

Today: Visual Odometry

• Videos...

Visual odometry problem

- Input:
 - Images from a moving camera: Robot's-eye-video, cell phone video feed, automobile safety system feed, GoPro, tourist photos
- Output:
 - The location of the camera when each image was taken
 - (optional) information about the geometry of the world

How?

Solving for E from images

- E holds the geometric information that we require for our visual odometry solution
- m'Em=0 for all corresponding points
- Each pair of points constrains possible values for E
- Constructing a linear system from 5 or more matches allows solving for E
- How can we find good matches?

Several ways to find candidate matches

- Interest point matching in every image
- Use temporal consistency between frames in video:
 - Find longer feature tracks
 - Simpler processing to find the "flow"

inalChes 137 tentative matches point matching in

RANSAC

- Repeat:
 - pick K matches
 - solve for E
 - •find # inliers
 - •If #inliers > threshold, break

• Output E as odometry estimate

RANSAC

0

RANSAC

Optical Flow

Optical Flow

Optical Flow

Putting it together: Visual Odometry Solution

• Running libviso2 example code...

Visual Odometry on real robots

- Camera is usually not the only sensor:
 - Combine visual odometry with compass, accelerometer, gyroscope to get initial guesses at motion
- Maps help things stay consistent over long periods:
 - Can save key-frame images, perhaps tagged with GPS coordinates and match to those sporadically

Related Problem: Bundle Adjustment

Questions

