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Introduction to Mapping

• What the world looks like?

• Knowledge representation

– Robotics, AI, Vision

• Who is the end-user?

– Human or Machine

• Ease of Path Planning

• Uncertainty!

2CS-417 Introduction to Robotics and Intelligent Systems 



Simultaneous Localization And Mapping

SLAM is the process of building a map of an environment 
while, at the same time, using that map to maintain the 
location of the robot.  

• Problems for SLAM in large scale environments:

– Controlling growth of uncertainty and complexity

– Achieving autonomous exploration
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Consider this Environment:
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Three Basic Map Types

Topological:
Collection of nodes and 
their interconnections

Grid-Based:
Collection of discretized 
obstacle/free-space pixels

Feature-Based:
Collection of landmark 
locations and correlated 
uncertainty
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Three Basic Map Types

Grid-Based Feature-Based Topological

Construction Occupancy grids Kalman Filter Navigation control 

laws

Complexity Grid size and

resolution

Landmark covariance 

(N3)

Minimal 

complexity

Obstacles Discretized 

obstacles

Only structured 

obstacles

GVG defined by 

the safest path

Localization Discrete localization Arbitrary localization Localize to nodes

Exploration Frontier-based 

exploration

No inherent 

exploration

Graph exploration
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Other Maps

Appearance

Based

Geometry

Based

Mesh

Based

Construction Images Lines, planes, etc Mesh

Path Planning N/A Geometry based Graph based

Localization Arbitrary 

localization

Arbitrary 

localization

Arbitrary 

localization
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Mapping

Robot Map

World
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Mapping

Robot Map

World

•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)
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Mapping

Robot Map

World

•Mobile
Indoor/Outdoor
Walking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract
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Mapping

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D
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Mapping

Robot Map

World

•Topological
•Metric
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Sonar sensing
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Why is sonar sensing limited to 

between ~12 in. and ~25 feet ?

“The sponge”

Polaroid sonar 
emitter/receivers 

sonar 
timeline

0
a “chirp” is emitted 
into the environment

75ms
typically when 
reverberations 
from the initial 
chirp have stopped

.5sthe transducer goes 
into “receiving” mode 
and awaits a signal...

after a short time, the 
signal will be too weak 
to be detected 



Sonar effects
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resolution: time / space

(d)   Specular reflections 
cause walls to disappear

(e)   Open corners produce a 
weak spherical wavefront

(f)   Closed corners measure to the 
corner itself because of multiple 
reflections --> sonar ray tracing 

(a)   Sonar providing an 
accurate range measurement  

(b-c)   Lateral resolution is not very 
precise; the closest object in the 
beam’s cone provides the response  



Sonar modeling
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initial time response

spatial response

blanking time

accumulated 

responses

cone width



Sonar Modeling
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response model  (Kuc)

sonar 
reading

obstacle

c  = speed of sound

a  = diameter of sonar element

t   = time

z   = orthogonal distance

a = angle of environment surface

• Models the response, hR, 
with:

a

• Then, add noise to the 
model to obtain a 
probability: p( S | o )

chance that the sonar reading is S, 

given an obstacle at location o

z =

S



Using sonar to create maps

CS-417 Introduction to Robotics and Intelligent Systems 17

What should we conclude if this sonar reads 10 feet? 

10 feet



Using sonar to create maps
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What should we conclude if this sonar 
reads 10 feet? 

10 feet

there is 

something 

somewhere 

around here 

there isn’t 

something here 

Local Map
unoccupied

occupied



Using sonar to create maps
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What should we conclude if this sonar 
reads 10 feet? 

10 feet

there is 

something 

somewhere 

around here 

there isn’t 

something here 

Local Map
unoccupied

occupied

or ...
no information



Using sonar to create maps
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What should we conclude if this sonar reads 10 feet... 

10 feet

and how do we add the information that the next sonar 
reading (as the robot moves) reads 10 feet, too?

10 feet



Combining sensor readings
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• The key to making accurate maps is combining lots of data.

• But combining these numbers means we have to know what they are !

What should our map contain ?

• small cells

• each represents a bit of the 
robot’s environment

• larger values => obstacle

• smaller values => free

what is in each cell of this sonar model / map ?



What is it a map of?

CS-417 Introduction to Robotics and Intelligent Systems 22

Several answers to this question have been tried:
It’s a map of occupied cells.

oxy oxy
cell (x,y) is 
occupied

cell (x,y) is 
unoccupied

Each cell is either occupied or 
unoccupied -- this was the approach 
taken by the Stanford Cart.

pre  ‘83

What information should this map contain, 
given that it is created with sonar ?



What is it a map of ?
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Several answers to this question have been tried:

It’s a map of occupied cells.

It’s a map of probabilities:    p( o | S1..i )

p( o | S1..i )

The certainty that a cell is occupied, 
given the sensor readings S1, S2, …, Si

The certainty that a cell is unoccupied, 
given the sensor readings S1, S2, …, Si

oxy oxy
cell (x,y) is 
occupied

cell (x,y) is 
unoccupied

• maintaining related values separately?

• initialize all certainty values to zero 

• contradictory information will lead to both values near  1

• combining them takes some work...  

‘83 - ‘88

pre  ‘83



Sonars from P/S
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Sonar Locations Pioneer 3DX Robot
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Sonar Data Calculation
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Combining probabilities
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How to combine two sets of probabilities into a single map ? 



What is it a map of ?
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Several answers to this question have been tried:

It’s a map of occupied cells.

It’s a map of probabilities:

It’s a map of odds.

The certainty that a cell is occupied, 
given the sensor readings S1, S2, …, Si

The certainty that a cell is unoccupied, 
given the sensor readings S1, S2, …, Si

The odds of an event are expressed relative 
to the complement of that event.

The odds that a cell is occupied, given the 
sensor readings S1, S2, …, Si

oxy oxy
cell (x,y) is 
occupied

cell (x,y) is 
unoccupied

‘83 - ‘88

pre  ‘83

probabilities
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An example map
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units: feet

Evidence grid of a tree-lined outdoor path

lighter areas:   lower odds of obstacles being present

darker areas:   higher odds of obstacles being present

how to combine them?



Conditional probability
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Some intuition...

p( o | S )  =    

The probability of event o, given event S .

The probability that a certain cell o is  occupied, 
given that the robot sees the sensor reading  S .

p( S | o )  =    
The probability of event S, given event o .

The probability that the robot sees the sensor 
reading  S , given that a certain cell o is occupied.

•What is really meant by conditional probability ?

•How are these two probabilities related?



Bayes Rule
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- Conditional probabilities

)()|()( SpSopSop 



Bayes Rule
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- Conditional probabilities

- Bayes rule relates conditional probabilities

Bayes rule

)()|()( SpSopSop 

)(

)()|(
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Sp

opoSp
Sop 



Bayes Rule
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- Conditional probabilities

- Bayes rule relates conditional probabilities

Bayes rule

)()|()( SpSopSop 

)(

)()|(
)|(

Sp

opoSp
Sop 

- So, what does this say about odds( o | S2  S1 )  ?    

Can we update easily ?



Combining evidence
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So, how do we combine evidence to create a map?

What we want --

odds( o | S2  S1)   
the new value of a cell in the map 

after the sonar reading S2

What we know --

odds( o | S1)   
the old value of a cell in the map 

(before sonar reading S2)

the probabilities that a certain obstacle 

causes the sonar reading Si

p( Si | o )  &  p( Si | o ) 



Combining evidence
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Combining evidence
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definition of odds



Combining evidence
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definition of odds

Bayes’ rule  (+)



Combining evidence
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 definition of odds

Bayes’ rule  (+)

conditional 
independence of 

S1 and  S2

Bayes’ rule  (+)



Combining evidence
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 definition of odds

Bayes’ rule  (+)

conditional 
independence of 

S1 and  S2

Bayes’ rule  (+)

Update step = multiplying the previous odds by a precomputed weight. 

previous oddsprecomputed values

the sensor model



Evidence grids
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hallway with some open doors                   lab space

known map and estimated evidence grid

CMU -- Hans Moravec



Learning the Sensor Model
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The sonar model depends dramatically on the environment
-- we’d like to learn an appropriate sensor model

rather than hire Roman Kuc
to develop another one...



Learning the Sensor Model
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The sonar model depends dramatically on the environment
-- we’d like to learn an appropriate sensor model

rather than hire Roman Kuc
to develop another one...



Learning the Sensor Model
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part of the learned model

the mapping results of a model that had an even 
better match score (against the ideal map)

the idealized model



Sensor fusion
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Incorporating data from 
other sensors  -- e.g., IR 
rangefinders and stereo 
vision...

(1) create another sensor model

(2)  update along with the sonar



Centerline

• Only consider region of significant response

• Approximate response with an arc of uniform probability
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Choosing the center point
of the arc limits error



Centerline

• Advantages

– Minimal computation 
required per sonar 
reading

– Low latency

• Disadvantages

– Inaccurate

– Open areas may appear 
occluded

only centerline points displayed
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Fusing Multiple Readings

• Regions of Constant Depth (RCDs)
– Leonard et al. 1995

• Arc Tangents
– McKerrow 1993

• Arc Transversal Median (ATM)
– Choset and Nagatani 1999

• Line Fitting
– MacKenzie and Dudek 1994
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Arc Carving Sonar Model

• Represents a sonar return as a 
cone with an arc base

– The arc approximates the sonar 
response

– The interior of the cone represents a 
region of likely freespace
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Occupancy Grid Sonar Model

• The arc carving model may 
be viewed as a binary 
approximation of the 
model used by Moravec 
and Elfes
– An Arc with nonzero 

probability of occupancy

– A cone with nonzero 
probability of freespace
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Arc Carving

• Each new sonar reading is checked 
against a history of previous 
readings

• If an arc is overlapped by the 
interior of a newer cone, the arc is 
“carved” to reflect this new 
information

• The updated arc is smaller,  and 
therefore has a smaller bound on 
the error

CS-417 Introduction to Robotics and Intelligent Systems 50



Arc Carving

• Multiple passes of Arc Carving 
may completely remove an  
arc

– Spurious sonar readings are 
removed

– Response to dynamic 
environments is increased
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Example – Ordinary Centerline
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Example – Arc Carving
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Arc Carving Video

• Latency issues are avoided

• The readings are more accurate 
than centerline

• Multiple reading approaches can 
be run off of the carved data

only carved points displayed
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Experimental Results:
Centerline Map
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Experimental Results:
Arc Carving Map
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