
Ioannis Rekleitis

Software Architectures for

Robot Control

Low Level Control

• Robot H/W control Software (drivers):
– ROS

– RHeXLib
– Player
– Ndirect, seriald (Nomadics)

• Simulation
– StageROS, Gazebo

– RHeX SimSect?
– Stage
– Nclient, server
– RD11

CS-417 Introduction to Robotics and Intelligent Systems 2

High Level Control

CS-417 Introduction to Robotics and Intelligent Systems 3

• Important when multi-tasking

• Especially in Multi-Robot settings

• Brief Historical note:

–Subsumption Architecture (Rodney Brooks)

–Behaviour based Architecture

–Three Layer Architectures

• Combining the above two plus some more 

Several Options
• Player/Stage (USC)
• Microsoft Robotics Developers Studio
• ROS (willow garage)
• ALLIANCE (L. Parker)
• RoboDevel/RHeXlib (U. Saranli)
• Robodaemon [RD11] (MRL product)
• CLARAty (JPL)
• CAMPOUT (JPL)
• SAPHIRA (Konolige)
• CARMEN (Thrun, Roy)
• EPICS (Junaed, J. Smith suggestion)
• Subsumption (Rodney Brooks)
• Three layer Architectures
• DCA (Christensen)
• Reid Simmons projects
• TeamBots (Balch),Mission Lab (Arkin), Ayllu (Werger), ARIA (ActivMedia)

CS-417 Introduction to Robotics and Intelligent Systems 4

Sense Plan Act

CS-417 Introduction to Robotics and Intelligent Systems 5

Sense

Plan Act

Subsumption

• The Subsumption architecture is built in layers.

• Each layer gives the system a set of pre-wired behaviours.

• The higher levels build upon the lower levels to create more
complex behaviours.

• The behaviour of the system as a whole is the result of many
interacting simple behaviours.

• The layers operate asynchronously.

See: http://ai.eecs.umich.edu/cogarch0/subsump/index.html

CS-417 Introduction to Robotics and Intelligent Systems 6

Subsumption

CS-417 Introduction to Robotics and Intelligent Systems 7

See: http://people.csail.mit.edu/brooks/papers/AIM-864.pdf

Three-Layer Architectures

• The Controller (low level, tight coupling)

• The Sequencer (selecting low level behaviours)

• The Deliberator (time-consuming computations)

See: http://www.flownet.com/gat/papers/tla.pdf

CS-417 Introduction to Robotics and Intelligent Systems 8

Player and Stage

• Following the bazaar/open_source model

• Player is the low level control interface

• Stage is a simulation engine (2D)

• Gazebo is a 3D simulation engine

9 CS-417 Introduction to Robotics and Intelligent Systems

Player

• TCP socket server

• Clients connect to the server and send/receive
commands/data

• Sensor and actuator abstraction

10 CS-417 Introduction to Robotics and Intelligent Systems

Player

11 CS-417 Introduction to Robotics and Intelligent Systems

Player Architecture

12 CS-417 Introduction to Robotics and Intelligent Systems

CARMEN

• Welcome to CARMEN, the Carnegie Mellon Robot
Navigation Toolkit.

• CARMEN is an open-source collection of software for
mobile robot control.

• CARMEN is modular software designed to provide basic
navigation primitives including:
– base and sensor control
– logging
– obstacle avoidance
– localization
– path planning
– mapping

See: http://carmen.sourceforge.net/

CS-417 Introduction to Robotics and Intelligent Systems 13

Microsoft Robotics Developer Studio

• Concurrency and Coordination Runtime

• Decentralized Software Services

• Visual Programming Language (VPL)

• Physics based Simulation Engine

• Web-based Technology

• Not-Open Source

See: http://msdn.microsoft.com/en-us/robotics/default.aspx

CS-417 Introduction to Robotics and Intelligent Systems 14

Concurrency and Coordination Runtime (CCR)

• Concurrency and Coordination Runtime (CCR) is a
managed code library, a Dynamically Linked
Library (DLL), accessible from any language targeting the
.NET Common Language Runtime (CLR).
– Service-oriented applications
– manage asynchronous operations
– deal with concurrency
– exploit parallel hardware and deal with partial failure.
– The software modules or components can be loosely coupled
– They can be developed independently and make minimal

assumptions about their runtime environment and other
components.

CS-417 Introduction to Robotics and Intelligent Systems 15

Decentralized Software Services (DSS)

• Decentralized Software Services (DSS) is a lightweight .NET-
based runtime environment that sits on top of the
Concurrency and Coordination Runtime (CCR):
– Lightweight

– state-oriented service model
• Combines the notion of representational state transfer (REST) with a

system-level approach for building high-performance, scalable applications.

– DSS services are exposed as resources which are accessible both
programmatically and for UI manipulation.

– Integrating service isolation, structured state manipulation, event
notification, and formal service composition

– Robustness

– Composability

– Observability
CS-417 Introduction to Robotics and Intelligent Systems 16

Graphical Programming

CS-417 Introduction to Robotics and Intelligent Systems 17

Physics based Simulation Engine

CS-417 Introduction to Robotics and Intelligent Systems 18

Web based Interface

CS-417 Introduction to Robotics and Intelligent Systems 19

MRDS

Internet

Presentation at St. Georges
high school, Montreal

Custom
Scripts

pull

Web-Server

802.11n

push 802.11n

Client
s

Aqua in Barbados

Client
s Client

s

ROS
• ROS is an open-source, meta-operating system for robots.

• It provides the services expected from an operating system, including
hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

• ROS is similar in some respects to 'robot frameworks,' such as Player, YARP,
Orocos, CARMEN, Orca, MOOS, and Microsoft Robotics Studio.

• The ROS runtime "graph" is a peer-to-peer network of processes that are
loosely coupled using the ROS communication infrastructure.

• ROS implements several different styles of communication, including
synchronous RPC-style communication over Services, asynchronous
streaming of data over Topics, and storage of data on a Parameter Server.

See: http://www.ros.org/wiki/ROS

CS-417 Introduction to Robotics and Intelligent Systems 20

http://playerstage.sf.net/
http://eris.liralab.it/yarp/
http://www.orocos.org/
http://carmen.sourceforge.net/
http://orca-robotics.sourceforge.net/
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/index.html
http://msdn.microsoft.com/en-us/robotics/default.aspx

ROS

CS-417 Introduction to Robotics and Intelligent Systems 21

CLARAty

• A two layer architecture

• Developed at NASA/JPL

• Supporting different h/w
De

See: http://claraty.jpl.nasa.gov/man/overview/index.php

CS-417 Introduction to Robotics and Intelligent Systems 22

Different Mobility platforms

CS-417 Introduction to Robotics and Intelligent Systems 23

Approach

• Develop
– Common data structures
– Physical & Functional Abstractions

• E.g. motor, camera, locomotor. Stereo processor, visual tracker

– Unified models for the mechanism

• Putting it together
– Start with top level goals
– Elaborate to fine sub-goals
– Choose the appropriate level to stop elaboration
– Interface with abstractions
– Abstractions translate goals to action
– Specialize abstractions to talk to hardware
– Hardware controls the systems and provide feedback

From: http://claraty.jpl.nasa.gov/main/overview/presentations/FY05/FY05_claraty_jtars.pdf

CS-417 Introduction to Robotics and Intelligent Systems 24

Two Layer Architecture

CS-417 Introduction to Robotics and Intelligent Systems 25

Planning Layer

Inter/Intra Robot
Communication

Hardware

Behavior Layer

Knowledge Base

Graph Class

Logging
Mechanism

Auction
Mechanism

26 CS-417 Introduction to Robotics and Intelligent Systems

Behaviour Layer Base Loop

Check For Messages

Sense (update sensor data)

Reason (set velocities)

Act

27 CS-417 Introduction to Robotics and Intelligent Systems

