
Fundamental Problems In Robotics  

 

• What does the world looks like? (mapping) 
– sense from various positions 

– integrate measurements to produce map 

– assumes perfect knowledge of position 

• Where am I in the world? (localization) 
– Sense 

– relate sensor readings to a world model 

– compute location relative to model 

– assumes a perfect world model 

• Together, these are SLAM (Simultaneous Localization and 
Mapping) 



Sensors 
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• Proprioceptive Sensors 
    (monitor state of robot) 

– IMU (accels & gyros) 

– Wheel encoders 

– Doppler radar … 

• Exteroceptive Sensors 
    (monitor environment) 

– Cameras (single, stereo, 
omni, FLIR …) 

– Laser scanner 

– MW radar 

– Sonar  

– Tactile… 



Types of sensor 

Specific examples 
– tactile 

– close-range proximity 

– angular position 

– infrared 

– Sonar 

– laser (various types) 

– radar 

– compasses, gyroscopes 

– Force 

– GPS 

– vision 
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Path Planning 

• Visibility Graph 

• Bug Algorithms 

• Potential Fields 

• Skeletons/Voronoi Graphs 

• C-Space 

• PRM’s 

• RRT’s 
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Generalized Voronoi Graph (GVG) 

Free Space with Topological Map (GVG) 

•Access GVG 

•Follow Edge 

•Home to the MeetPoint 

•Select Edge 



Local techniques  

Potential Field methods 

• compute a repulsive force away from obstacles 

• compute an attractive force toward the goal 

   let the sum of the forces control the robot 

 To a large extent, this is computable from sensor readings 



SONAR modeling using Occupancy Grids  

• The key to making accurate maps is combining lots of data. 

• But combining these numbers means we have to know what they are ! 

What should our map contain ? 

• small cells 

• each represents a bit of 

the robot’s environment 

• larger values => obstacle 

• smaller values => free 

what is in each cell of this sonar model / map ? 



Configuration Space 



Tool: Configuration Space 
(C-Space C) 

q1 

q1 

q2 

q2 



Tool: Configuration Space 
(C-Space C) 

q1 

q1 

q2 

q2 



Tool: Configuration Space 
(C-Space C) 



Road Maps 

• PRMs 

• RRTs 



RRT-Connect: example 

Connection made ! 



Basic Controller Functions 
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Effect of Controller Functions 

• Proportional Action 
– Simplest Controller Function 

• Integral Action 
– Eliminates steady-state error 

– Can cause oscillations 

• Derivative Action (“rate control”) 
– Effective in transient periods 

– Provides faster response (higher sensitivity) 

– Never used alone 
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Coverage 

• First Distinction 

– Deterministic 

– Random 

• Second Distinction 

– Complete 

– No Guarantee 

• Third Distinction 

– Known Environment 

– Unknown Environment 

Demining 

Vacuum Cleaning 



Cellular Decomposition 

Direction of Coverage 

Cell 0 

Critical Point (CP) 



Single Cell Coverage 

Direction of Coverage 



Cellular Decomposition 

Direction of Coverage 

Cell 0 
Cell N 

Cell 1 

Cell 2 

CP0 

CP1 

CP2 

CPm-1 

CP3 

CPm 

 

Reeb Graph 



Multi-Robot Coverage 

• Team based 

• Distributed 

– Auctions 



Localization 

• Tracking: Known initial position 

• Global Localization: Unknown initial position 

• Re-Localization: Incorrect known position 

– (kidnapped robot problem) 



Graphical Models, Bayes’ Rule and the 

Markov Assumption 

States x1 x2 

T(xj|ai, xi) 

Z2 

b1 Beliefs 

Z1 
Observations 

a1 Actions 

O(zj|xi) 

b2 

Z2 
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Observable 
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Derivation of the Bayesian Filter 

101111 ),...,|(),|()|()(  ttttttttt dxoaxpaxxpxopxBel 

1111 )(),|()|()(  tttttttt dxxBelaxxpxopxBel 

First-order Markov assumption shortens middle term: 

Finally, substituting the definition of Bel(xt-1): 

The above is the probability distribution that must 
be estimated from the robot’s data 



Iterating the Bayesian Filter 

• Propagate the motion model: 

 

 

 

• Update the sensor model: 

   1111 )(),|()( tttttt dxxBelxaxPxBel

)()|()( tttt xBelxoPxBel 

Compute the current state estimate before taking a sensor reading 
by integrating over all possible previous state estimates and 
applying the motion model 

Compute the current state estimate by taking a sensor reading 
and multiplying by the current estimate based on the most recent 
motion history 



Different Approaches 

Discrete approaches (’95) 

• Topological representation (’95) 

• uncertainty handling (POMDPs) 

• occas. global localization, recovery 

• Grid-based, metric representation (’96) 

• global localization, recovery 

Particle filters (’98) 

• Condensation (Isard and Blake ’98) 

• Sample-based representation 

• Global localization, recovery 

• Rao-Blackwellized Particle Filter 

Kalman filters (late-60s?) 

• Gaussians 

• approximately linear models 

• position tracking 

Extended Kalman Filter 

Information Filter 

Unscented Kalman Filter 

Multi-hypothesis (’00) 

• Mixture of Gaussians 

• Multiple Kalman filters 

• Global localization, recovery 



The Kalman Filter 
• Motion model is Gaussian…  

• Sensor model is Gaussian… 

• Each belief function is uniquely characterized by 

its mean m and covariance matrix  

• Computing the posterior means computing a new 

mean m and covariance  from old data using 

actions and sensor readings 

• What are the key limitations? 

1) Unimodal distribution 

2) Linear assumptions 



What we know… 

What we don’t know… 
• We know what the control inputs of our process are 

– We know what we’ve told the system to do and have a model for what the 
expected output should be if everything works right 

• We don’t know what the noise in the system truly is 
– We can only estimate what the noise might be and try to put some sort of 

upper bound on it 

• When estimating the state of a system, we try to find a set 
of values that comes as close to the truth as possible 
– There will always be some mismatch between our estimate of the system 

and the true state of the system itself.  We just try to figure out how much 
mismatch there is and try to get the best estimate possible 



Kalman Filter Components 
(also known as: Way Too Many Variables…) 

Linear discrete time dynamic system (motion model) 

ttttttt wGuBxFx 1

Measurement equation (sensor model) 

1111   tttt nxHz

State transition 
function 

Control input 
function 

Noise input 
function with covariance Q 

State Control input Process noise 

State Sensor reading Sensor noise with covariance R 

Sensor function Note:Write these down!!! 



Computing the MMSE Estimate of the 

State and Covariance 

What is the minimum mean square error estimate 
of the system state and covariance? 

ttttttt uBxFx  ||1
ˆˆ Estimate of the state variables 
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The Kalman Filter… 

Propagation (motion model): 
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…but what does that mean in 

English?!? 
Propagation (motion model): 

Update (sensor model): 

- State estimate is updated from system dynamics 

- Uncertainty estimate GROWS 

- Compute expected value of sensor reading 

- Compute the difference between expected and “true”  

- Compute covariance of sensor reading 

- Compute the Kalman Gain (how much to correct est.) 

- Multiply residual times gain to correct state estimate 

- Uncertainty estimate SHRINKS 
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Kalman Filter Block Diagram 
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Calculation of 
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Covariance Estimation 
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Some observations 

 The larger the error, the smaller the effect on the 
final state estimate 
 If process uncertainty is larger, sensor updates will dominate 

state estimate 

 If sensor uncertainty is larger, process propagation will 
dominate state estimate 

 Improper estimates of the state and/or sensor 
covariance may result in a rapidly diverging estimator 
 As a rule of thumb, the residuals must always be bounded 

within a ±3 region of uncertainty 

 This measures the “health” of the filter 

 Many propagation cycles can happen between 
updates 



Heuristic Search Planning Method 

• Solution to exploration planning for camera 
sensor networks 

– Composed of two alternated steps: exploration 
and re-localization 

– Combined distance and uncertainty cost 
function 

– Heuristic search for good paths 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs exploitation) 

• Target Node 

• Path Planning through the known graph 

• Exploration Strategies 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs. exploitation) 

– Epsilon-Greedy 

– Epsilon-First  

– Adaptive 

– Bounded Uncertainty 

• Target Node 

• Path Planning through the known graph 

• Exploration Strategies 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs. exploitation) 

• Target Node (Exploration) 

– Random 

– Shortest distance 

– Maximum Uncertainty 

– Minimum Uncertainty 

• Path Planning through the known graph 

• Exploration Strategies 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs. exploitation) 

• Target Node (Relocalization) 

– Maximum Uncertainty 

• Path Planning through the known graph 

• Exploration Strategies 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs. exploitation) 

• Target Node 

• Path Planning through the known graph 
– Work with D. Meger and G. Dudek [IROS 2008] 

– A* based strategy 

– Cost:  

– Distance-based “cost-to-go” heuristic function h 
used to compute estimated cost 

 

 

• Exploration Strategies 
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Exploration and Uncertainty 
Reduction  

• Decision (exploration vs. exploitation) 

• Target Node 

• Path Planning through the known graph 

• Exploration Strategies 

– One Step Exploration 

– Ear based exploration (submitted to IROS 2012) 
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Computer Vision 

• Projection 3D->2D 

• Correspondence Problem 

• Stereo 

• Optical Flow 

• Features 

 


