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Definition 

A robot configuration is a specification 
of the positions of all robot points 
relative to a fixed coordinate system 
 

Usually a configuration is expressed as 
a “vector” of position/orientation 
parameters 
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What is a Path? 



Tool: Configuration Space 
(C-Space C) 
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Tool: Configuration Space 
(C-Space C) 



Articulated Robot Example 
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q = (q1,q2,…,q10) 



Configuration Space of a Robot 

Space of all its possible configurations 

But the topology of this space is usually 
not that of a Cartesian space 

C = S1 x S1 
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Structure of Configuration Space 

It is a manifold 
For each point q, there is a 1-to-1 map 
between a neighborhood of q and a 
Cartesian space Rn, where n is the 
dimension of C 

This map is a local coordinate system 
called a chart.  
C can always be covered by a finite number 
of charts. Such a set is called an atlas 



Example 



reference point 

Case of a Planar Rigid Robot 

• 3-parameter representation: q = (x,y,q) 
with q  [0,2p). Two charts are needed 

• Other representation: q = (x,y,cosq,sinq) 
c-space is a 3-D cylinder R2 x S1   
   embedded in a 4-D space 
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Rigid Robot in 3-D Workspace 

• q = (x,y,z,a,b,g) 
 
 
 

• Other representation: q = (x,y,z,r11,r12,…,r33) where r11, 
r12, …, r33 are the elements of rotation matrix R: 
             r11  r12  r13 
             r21  r22  r23 
             r31  r32  r33 
with:  
– ri1

2+ri2
2+ri3

2 = 1 
– ri1rj1 + ri2r2j + ri3rj3 = 0 
– det(R) = +1 

The c-space is a 6-D space (manifold) embedded  
in a 12-D Cartesian space. It is denoted by R3xSO(3) 



Parameterization of SO(3) 

• Euler angles: (f,q,y) 

 

 

 

 

 

 

• Unit quaternion:  
  (cos q/2, n1 sin q/2, n2 sin q/2, n3 sin q/2) 
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1  2  3  4 



A welding robot 



A Stuart Platform 



Barrett WAM arm 



Barrett WAM arm on a mobile platform 



Configuration Space Obstacle 



Two link path 



2D Rigid Object 



The Configuration Space 



Moving a piano 



Parameterization of Torus 



Metric in Configuration Space 

   A metric or distance function d in C is a map  
  d:  (q1,q2)  C2   d(q1,q2) > 0 
such that: 

– d(q1,q2) = 0 if and only if q1 = q2  

– d(q1,q2) = d (q2,q1) 

– d(q1,q2) < d(q1,q3) + d(q3,q2) 



Metric in Configuration Space 
Example: 
• Robot A and point x of A 

• x(q): location of x in the workspace when A is 
at configuration q 

• A distance d in C is defined by: 
 d(q,q’) = maxxA ||x(q)-x(q’)||  
 

where ||a - b|| denotes the Euclidean distance 
between points a and b in the workspace 

 



Obstacles in C-Space 
A configuration q is collision-free, or free, if 

the robot placed at q has null intersection with 
the obstacles in the workspace 

The free space F is the set of free 
configurations 

A C-obstacle is the set of configurations where 
the robot collides with a given workspace 
obstacle 

A configuration is semi-free if the robot at this 
configuration touches obstacles without overlap  



Disc Robot in 2-D Workspace 



Rigid Robot Translating in 2-D 

CB = B  A = {b-a | aA, bB} 
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Linear-Time Computation of  
C-Obstacle in 2-D 

(convex polygons) 



Rigid Robot Translating and 
Rotating in 2-D 



Free and Semi-Free Paths 

 A free path lies entirely in the free 
space F 

 A semi-free path lies entirely in the 
semi-free space 



Remarks on Free-Space Topology 

• The robot and the obstacles are modeled as closed 
subsets, meaning that they contain their boundaries 

• One can show that the C-obstacles are closed subsets of 
the configuration space C as well 

• Consequently, the free space F is an open subset of C. 
Hence, each free configuration is the center of a ball of 
non-zero radius entirely contained in F  

• The semi-free space is a closed subset of C. Its 
boundary is a superset of the boundary of F  







Notion of Homotopic Paths 
Two paths with the same endpoints are 
homotopic if one can be continuously deformed 
into the other 

R x S1 example: 

 

 

t1 and t2 are homotopic 

t1 and t3 are not homotopic 

In this example, infinity of homotopy classes 
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Connectedness of C-Space 
C is connected if every two configurations can 
be connected by a path 

C is simply-connected if any two paths 
connecting the same endpoints are homotopic 
Examples: R2 or R3 

Otherwise C is multiply-connected 
Examples: S1 and SO(3) are multiply- connected: 
- In S1, infinity of homotopy classes 
- In SO(3), only two homotopy classes 



Classes of Homotopic Free Paths 



Probabilistic Roadmaps PRMs 

 



Rapidly-exploring Random Trees 

• A point P in C is randomly chosen. 

• The nearest vertex in the RRT is selected. 

• A new edge is added from this vertex in the 

direction of P, at distance . 

• The further the algorithm goes, the more 

space is covered. 

 



Rapidly-expanding Random Trees 

Starting vertex 



Rapidly-expanding Random Trees 

Vertex randomly drawn 



Rapidly-expanding Random Trees 

Nearest vertex 



Rapidly-expanding Random Trees 

New vertex  

The vertex is in Cfree 
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Rapidly-expanding Random Trees 

Nearest point 



Rapidly-expanding Random Trees 
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The vertex is in Cfree 



Rapidly-expanding Random Trees 



Rapidly-expanding Random Trees 

Vertex randomly drawn 



Rapidly-expanding Random Trees 

Nearest vertex 



Rapidly-expanding Random Trees 

New vertex 



Rapidly-expanding Random Trees 

And it continues… 



RRT-Connect 

 

• We grow two trees, one from the beginning 

vertex and another from the end vertex 

 

• Each time we create a new vertex, we try to 

greedily connect the two trees 



RRT-Connect: example 
Start 

Goal 



RRT-Connect: example 

Random vertex 



RRT-Connect: example 



RRT-Connect: example 

We greedily connect the 

bottom tree to our new 

vertex 



RRT-Connect: example 
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RRT-Connect: example 



RRT-Connect: example 

Obstacle found ! 



RRT-Connect: example 

Now we swap roles ! 
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RRT-Connect: example 

We grow the bottom tree 



RRT-Connect: example 

Now we greedily try to connect 

And we continue… 
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RRT-Connect: example 



RRT-Connect: example 



RRT-Connect: example 

Connection made ! 



RRT-Connect: example 

Now we have a solution ! 



RRT-Connect: example 

Last step: path smoothing 



RRT-Connect: example 

Last step: path smoothing 



An RRT in 2D 

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html 



A Puzzle solved using RRTs 
The goal is the separate the two 

bars from each other. You might 

have seen a puzzle like this 

before. The example was 

constructed by Boris Yamrom, 

GE Corporate Research & 

Development Center, and posted 

as a research benchmark by 

Nancy Amato at Texas A&M 

University. It has been cited in 

many places as a one of the most 

challenging motion planning 

examples. In 2001, it was solved 

by using a balanced bidirectional 

RRT, developed by James 

Kuffner and Steve LaValle. There 

are no special heuristics or 

parameters that were tuned 

specifically for this problem. On 

a current PC (circa 2003), it 

consistently takes a few minutes 

to solve.  



Lunar Landing 

The following is an open loop trajectory that was planned in a 12-dimensional state space. The 

video shows an X-Wing fighter that must fly through structures on a lunar base before entering 

the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on 

the Algorithmic Foundations of Robotics, 2000.  


