Roadmaps

Vertex Visibility Graph

Full visibility graph

Reduced visibility graph, i.e., not including segments that extend into obstacles on either side.

(but keeping endpoints' roads)

An alternative roadmap

These line segments make up the **Voronoi diagram** for the four points shown here.

Solves the "Post Office Problem"

These line segments make up the **Voronoi diagram** for the four points shown here.

Solves the "Post Office Problem"

or, perhaps, more important problems...

"true" Voronoi diagram (isolates a set of points)

<u>generalized</u> Voronoi diagram What is it?

Let B = the boundary of C_{free} . Let q be a point in C_{free} . (•)

Define *clearance*(q) = min $\{ |q - p| \}$, for all $p \in B$

Define *clearance*(q) = min $\{ |q - p| \}$, for all $p \in B$ Define *near*(q) = $\{ p \in B \text{ such that } |q - p| = clearance(q) \}$

Evaluation

- + maximizes distance from obstacles
- + reduces to graph search
- + can be used in higher-dimensions
- nonoptimal
- real diagrams tend to be noisy

Let B = the boundary of C_{free} . Let q be a point in C_{free} .

Define *clearance*(q) = min { | q - p | }, for all $p \in B$ Define *near*(q) = { $p \in B$ such that | q - p | = *clearance*(q) } q is in the *Voronoi diagram* of C_{free} if | *near*(q) | > 1 number of set elements

•Access GVG

•Access GVG •Follow Edge

Access GVG •Home to the MeetPointFollow Edge

Access GVGHome to the MeetPointFollow EdgeSelect Edge

GVG construction using sonar

- Nomadic Scout
- Sonar (GVG navigation)
- Camera with omni-directional mirror (feature detection)
- Onboard 1.2 GHz processor

GVG construction using sonar

GVG construction using sonar

Slammer in Action

Voronoi applications

what?

A retraction of a 3d object == "medial surface"

in 2d, it's called a *medial axis*

Skeletonizations resulting from constant-speed curve evolution

skeleton \rightarrow shape

curve evolution

where wavefronts collide

centers of maximal disks

again reduces a 2d (or higher) problem to a question about graphs...

skeleton \rightarrow shape

curve evolution

where wavefronts collide

centers of maximal disks

again reduces a 2d (or higher) problem to a question about graphs...

graph matching

Problems

The skeleton is sensitive to small changes in the object's boundary.

- graph isomorphism (and lots of other graph questions) : NP-complete

Roadmap problems

If an obstacle decides to roll away... (or wasn't there to begin with)

recomputing in less than $O(N^2)$ time?

Path Planning

Potential Field methods

• compute a repulsive force away from obstacles

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal
- \rightarrow let the sum of the forces control the robot

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal
- \rightarrow let the sum of the forces control the robot

To a large extent, this is computable from sensor readings

Sensor Based Calculations

Major Problem?

Local Minima!

Simulated Annealing

• Every so often add some random force

Known Map

Brushfire Transform

SA 100 to 100	205444444		200000000000000000000000000000000000000		2104	reprinting the Party of the Par	10 (0) color 10 (0)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2014 44 400		2 3 4 9 9 7 7 7	234200000	20000000000	202444444	
to to to t	444	12 12 12	1212124	1000				8 0 0	è		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	000	200	444	333
	444	2	223	1000		0200		6	100	7 1 6 (1 (1000	6	000	444	3033
	1		33	492		493	12	3 2	432	4 4 3 3 2 2	$\frac{4}{2}$	4 3 2	432	2	391.7

The Wavefront Planner: Setup

7	0	Ο	O	0	Ο	Ο	0	0	0	0	0	0	0	Ο	Ο	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
З	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with "0" to the current cell + 1
 - 4-Point Connectivity or 8-Point Connectivity?
 - Your Choice. We'll use 8-Point Connectivity in our example

7	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
З	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	З
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
	0	1	2	З	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values ≥ 2
- 0's will only remain when regions are unreachable

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
З	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	3
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

• Repeat

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
З	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

• Repeat

7	0	0	0	O	O	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6
З	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	6	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	З
0	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

• Until Done

- 0's would only remain in the unreachable areas

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9	
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8	
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7	
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6	
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5	
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4	
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	З	З	
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	0	1	2	3	4	5	6	7 8	3 9) 1	0 1	.1 1	12 :	13	14	15	

The Wavefront in Action

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two possible shortest paths shown