
Ioannis Rekleitis

Motion Planning

Outline

• Path Planning

– Visibility Graph

– Bug Algorithms

– Potential Fields

– Skeletons/Voronoi Graphs

– C-Space

2 CS-417 Introduction to Robotics and Intelligent Systems

Motion Planning

• The ability to go from A to B

– Known map – Off-line planning

– Unknown Environment –Online planning

– Static/Dynamic Environment

CS-417 Introduction to Robotics and Intelligent Systems 3

qgoal qinit

qgoal

qgoal
qinit

qinit

Path Planning

Robot Map

World

4 CS-417 Introduction to Robotics and Intelligent Systems

Path Planning

Robot Map

World

•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)

5 CS-417 Introduction to Robotics and Intelligent Systems

Path Planning

Robot Map

World

•Mobile
Indoor/Outdoor
Walking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract
 6 CS-417 Introduction to Robotics and Intelligent Systems

Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

7 CS-417 Introduction to Robotics and Intelligent Systems

Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

•Mobile
Indoor/Outdoor
Walking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract

•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)

8 CS-417 Introduction to Robotics and Intelligent Systems

Path Planning: Assumptions
• Known Map

• Roadmaps (Graph representations)

• Polygonal Representation

qgoal

qinit

9 CS-417 Introduction to Robotics and Intelligent Systems

Visibility Graph
• Connect Initial and goal locations with all the visible vertices

qgoal

qinit

10 CS-417 Introduction to Robotics and Intelligent Systems

Visibility Graph

• Connect initial and goal locations with all the visible vertices

• Connect each obstacle vertex to every visible obstacle vertex

qgoal

qinit

11 CS-417 Introduction to Robotics and Intelligent Systems

Visibility Graph

• Connect initial and goal locations with all the visible vertices

• Connect each obstacle vertex to every visible obstacle vertex

• Remove edges that intersect the interior of an obstacle

qgoal

qinit

12 CS-417 Introduction to Robotics and Intelligent Systems

Visibility Graph
• Connect initial and goal locations with all the visible vertices

• Connect each obstacle vertex to every visible obstacle vertex

• Remove edges that intersect the interior of an obstacle

• Plan on the resulting graph

qgoal

qinit

13 CS-417 Introduction to Robotics and Intelligent Systems

Visibility Graph
• An alternative path

• Alternative name: “Rubber band algorithm”

qgoal

qinit

14 CS-417 Introduction to Robotics and Intelligent Systems

Major Fault
• Point robot

• Path planning like that guarantees to hit the obstacles

15 CS-417 Introduction to Robotics and Intelligent Systems

Limited-knowledge path planning

• known direction to goal

• otherwise local sensing

 walls/obstacles encoders

•“reasonable” world

1. finitely many obstacles in any finite
disc

2. a line will intersect an obstacle
finitely many times

Goal

Start

• Path planning with limited knowledge

– Insect-inspired “bug” algorithms

16 CS-417 Introduction to Robotics and Intelligent Systems

Not truly modeling bugs...

Insects do use several cues for navigation:

neither are the current
bug-sized robots

visual landmarks

polarized light

chemical sensing

Other animals use information from

magnetic fields

electric currents

temperature

they’re not ears...

migrating bobolink bacteria 17 CS-417 Introduction to Robotics and Intelligent Systems

Bug Strategy

“Bug 0” algorithm

• known direction to goal

• otherwise only local sensing

 walls/obstacles encoders

1) head toward goal

2) follow obstacles until you can

head toward the goal again

3) continue

Insect-inspired “bug” algorithms

CS-417 Introduction to Robotics and Intelligent Systems 18

assume a

left-turn robot

Does It Work?

19 CS-417 Introduction to Robotics and Intelligent Systems

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing

 walls/obstacles encoders

1) head toward goal

Insect-inspired “bug” algorithms

Bug 1

CS-417 Introduction to Robotics and Intelligent Systems 20

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing

 walls/obstacles encoders

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

Insect-inspired “bug” algorithms

Bug 1

CS-417 Introduction to Robotics and Intelligent Systems 21

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing

 walls/obstacles encoders

1) head toward goal

2) if an obstacle is encountered,

circumnavigate it and remember

how close you get to the goal

3) return to that closest point (by

wall-following) and continue

Insect-inspired “bug” algorithms

Vladimir Lumelsky & Alexander Stepanov Algorithmica 1987

Bug 1

CS-417 Introduction to Robotics and Intelligent Systems 22

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 1 analysis

CS-417 Introduction to Robotics and Intelligent Systems 23

D

P1

P2

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound:

Bug 1 analysis

CS-417 Introduction to Robotics and Intelligent Systems 24

D

P1

P2

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 1.5  Pi i

How good a bound?

How good an algorithm?

Bug 1 analysis

CS-417 Introduction to Robotics and Intelligent Systems 25

D

P1

P2

Bug Mapping

26 CS-417 Introduction to Robotics and Intelligent Systems

“Bug 2” algorithm
Call the line from the starting

point to the goal the s-line

A better bug?

CS-417 Introduction to Robotics and Intelligent Systems 27

“Bug 2” algorithm
Call the line from the starting

point to the goal the s-line

1) head toward goal on the s-line

A better bug?

CS-417 Introduction to Robotics and Intelligent Systems 28

“Bug 2” algorithm
Call the line from the starting

point to the goal the s-line

1) head toward goal on the s-line

2) if an obstacle is in the way,

follow it until encountering the s-

line again.

A better bug?

CS-417 Introduction to Robotics and Intelligent Systems 29

“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way,

follow it until encountering the s-

line again.

3) Leave the obstacle and continue

toward the goal

OK ?

s-line

A better bug?

CS-417 Introduction to Robotics and Intelligent Systems 30

“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way,

follow it until encountering the s-

line again closer to the goal.

3) Leave the obstacle and continue

toward the goal

OK ?

A better bug?

CS-417 Introduction to Robotics and Intelligent Systems 31

Goal

Start

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 2 analysis

CS-417 Introduction to Robotics and Intelligent Systems 32

Goal

Start

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Ni = number of s-line intersections

 with the i th obstacle

Bug 2 analysis

CS-417 Introduction to Robotics and Intelligent Systems 33

Goal

Start

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound:

Ni = number of s-line intersections

 with the i th obstacle

Bug 2 analysis

CS-417 Introduction to Robotics and Intelligent Systems 34

Goal

Start

Distance Traveled What are bounds on the path

length that the robot takes?

Lower and upper bounds?

Available Information:

D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 0.5  Ni Pi

Ni = number of s-line intersections

 with the i th obstacle

i

Bug 2 analysis

CS-417 Introduction to Robotics and Intelligent Systems 35

Goal

Start

head-to-head comparison

What are worlds in which Bug 2 does

better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2

CS-417 Introduction to Robotics and Intelligent Systems 36

head-to-head comparison

What are worlds in which Bug 2 does

better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2

CS-417 Introduction to Robotics and Intelligent Systems 37

“zipper world”

Other bug-like algorithms

The Pledge maze-solving algorithm 1. Go to a wall

2. Keep the wall on your right

3. Continue until out of the maze

38 CS-417 Introduction to Robotics and Intelligent Systems

Other bug-like algorithms

The Pledge maze-solving algorithm 1) Go to a wall

2) Keep the wall on your right

3) Continue until out of the maze

mazes of unusual origin

int a[1817];main(z,p,q,r){for(p=80;q+p-80;p=2*a[p])

for(z=9;z--;)q=3&(r=time(0)+r*57)/7,q=q?q-1?q-2?1-p%79?-

1:0:p%79-77?1:0:p<1659?79:0:p>158?-

79:0,q?!a[p+q*2]?a[p+=a[p+=q]=q]=q:0:0;for(;q++-

1817;)printf(q%79?"%c":"%c\n"," #"[!a[q-1]]);}

######### ##### # # # ########### ### ########### ### ##### ##### # # # ### # #

IOCCC random maze generator

discretized RRT
39 CS-417 Introduction to Robotics and Intelligent Systems

Tangent Bug

• Limited Range Sensor

• Tangent Bug relies on finding endpoints of
finite, continues segments of the obstacles

40 CS-417 Introduction to Robotics and Intelligent Systems

Tangent Bug

41 CS-417 Introduction to Robotics and Intelligent Systems

Contact Sensor Tangent Bug

1. Robot moves toward goal until it hits obstacle 1 at H1
2. Pretend there is an infinitely small sensor range and the direction which

minimizes the heuristic is to the right
3. Keep following obstacle until robot can go toward obstacle again
4. Same situation with second obstacle
5. At third obstacle, the robot turned left until it could not increase heuristic
6. D_followed is distance between M3 and goal, d_reach is distance between

robot and goal because sensing distance is zero

42 CS-417 Introduction to Robotics and Intelligent Systems

Limited Sensor Range Tangent-Bug

43 CS-417 Introduction to Robotics and Intelligent Systems

Infinite Sensor Range Tangent Bug

44 CS-417 Introduction to Robotics and Intelligent Systems

