

CS-417 INTRODUCTION TO ROBOTICS AND INTELLIGENT SYSTEMS

Space Robotics

Ioannis Rekleitis

Work done at the Canadian Space Agency

AUTONOMOUS CAPTURE OF A TUMBLING SATELLITE

Guy Rouleau, <u>Ioannis Rekleitis</u>, Régent L'Archevêque, Eric Martin, Kourosh Parsa, and Erick Dupuis

Space Technologies Canadian Space Agency Montréal, Canada

Presented at the 2006 International Conference on Robotics and Automation

Ioannis Rekleitis

Motivation

- More than 10K objects bigger than 10cm in orbit
- More than 280 satellites currently in GEO orbit
- The life span of a satellite is around 10 years
- The cost of sending even a small satellite is \$10M
 SOLUTION
- Use a servicing satellite to extend the life of a satellite or to de-orbit an object

On-Orbit Servicing Opportunities

OOS missions with Canadian involvement

Orbital Express

Hubble servicing study

TECSAS

MBS, Canadarm2, Dextre

OOS Related Missions (examples)

Russian Progress Vehicle

Japan ETS-7 **Mission**

NASA DART **Mission**

ESA ATV Mission

CX-OLEV Mission

DARPA NRL SUMO Mission

Autonomous Control

Executor started

Toolbox for Reactive Autonomy Hierarchical Finite State Machines

🚔 Cortex	
File Edit View Project Window Help	
Basic	
	🛟 FSM_Root (154%)
FSM	<->, □(5) ► Init
State	<initdone>, [](5)</initdone>
•	Execute
	<success>, [](5) <tictac>, [](5)</tictac></success>
- Cortay Blaver	СleanUp

High-Level Scenario

Laboratory Setup

The SARAH hand from Laval University

Laser Camera System (LCS), **Cape S/W** from Neptec

Autonomous Capture

Trajectory Generation of the Target Satellite

Tracking

- A standard implementation of an extended Kalman Filter is used to track the pose of the target satellite
- Signal at 2Hz
- Delay of 1 step
- EKF prediction of 1 step

Tracking

Capture

Main Accomplishments

- Autonomous capture of a tumbling satellite
- Transatlantic monitoring and operation of the capture procedure
- Emulate the motion of a tumbling satellite using a 7-DOF manipulator

Conclusions

- Cortex greatly facilitated the creation of autonomy scenarios
- The LCS from Neptec provided robust pose estimation (varying illumination conditions, obstructions)
- First step of autonomous capture in a laboratory setting

Planetary Exploration:

Autonomous Over-the-Horizon Navigation

Outline

- Mars Exploration
- Background
- Main Blocks are: Terrain Modeling, Path Planning, Motion
- Control Tests from 2006 and 2007

Exploring Mars

Sojourner

Phoenix

Spirit

Beagle II

View from Sojourner

Missions - Pathfinder 1997

Missions – Spirit: Day 155

More Current Data

- As of Sol 2055 (Oct. 14, 2009), Spirit's total odometry remains at 7,729.93 meters (4.80 miles).
- As of Sol 2049 (Oct. 29, 2009), Opportunity's total odometry is 18,622.44 meters (11.57 miles).
- 2,022nd sol, (Oct. 1, 2009) Opportunity found another meteorite.
- Spirit is trapped in a sand pit.

A Panorama from Spirit

Phoenix in action

For more information visit:

- <u>http://mars.jpl.nasa.gov/MPF/</u>
- <u>http://marsrovers.jpl.nasa.gov/home/</u>
- <u>http://phoenix.lpl.arizona.edu/index.php</u>
- <u>http://www.google.com/mars/</u>

Long-Term Goal: Autonomous Robotic Exploration

Current Research Objectives

- Over-the-horizon Navigation in a Single Command Cycle
- Assumptions:
 - Rough A Priori Knowledge:
 - Localization
 - Terrain
 - Terrain Sensing Using LIDAR

Kitware ParaView File Edit View Select Source Filte	r Window Help	
20×07		. & & C &
F I Selection Window	3D View 😭	
Parameters Display Image: Parameters Display Information View View View Scalar bar Cube Axes Label Point Ids Color by: Map Scalars Interpolate Colors Interpolate Colors Interpolation: Point size: Interpolation: Point size:<		
	4 ₽ ×	
Paraview	to Robotics and Intelligent Systems	

Experimental Testbed 2006

- CSA Mars Terrain
 - 60m x 30m
- Pioneer P2-AT Robot
- ILRIS-3D LIDAR
 - 3D point cloud
 - 1.5km-range (trimmed down to ~30m)
 - 40 degree FOV

Mars Emulation Terrain

Terrain Modeling

- Raw Data: 3D Point Cloud
 - Variable resolution
 - Long shadows
- Terrain Model based on

Irregular Triangular Mesh (ITM)

- Variable Resolution (Dense where required)

– Memory-Efficient

- Preserves Topography and Useful for Navigation

Terrain Modeling: Irregular Triangular Mesh (ITM)

Terrain Modeling: Irregular Triangular Mesh (ITM)

Voronoi Diagrams

For each point in the input set group all the points that are closer to it than any other input point.

Adjacent cells are connected with an edge.

Raw data:

Voronoi Diagram

Delaunay Triangulation (Cartesian Coordinates)

Delaunay Triangulation (Spherical Coordinates)

Delaunay Triangulation (Spherical Coordinates) -Remove triangles from shadows (use 3D information)

Delaunay Triangulation (Spherical Coordinates) -Remove triangles from shadows (use 3D information)

2006, Scans Collected: 96

2006, Over-the-Horizon Navigation

2006, Over-the-Horizon Traverses Semi-Autonomous

- Successful Traverses
- A Sequence of Local Traverses
- Operator Intervention Necessary at Every Step (Semi-Autonomous)

• Achieved Traverse on the order of 150m

2006, Over-The-Horizon Traverses

CS-417 Introduction to Robotics and Intelligent Systems

Lessons Learned from 2006 Testing Period

- Extensive Field Testing EXTREMELY useful!
- Validate Navigation Software
- Active Vision Great under Poor Lighting
- Identify Issues Requiring further Development

Lessons Learned

- Top level issues:
 - Environment Sensor Unwieldy
 - FOV Too Narrow
 - Logistics a Nightmare

Lessons Learned

- Top level issues:
 - Environment Sensor
 Unwieldy
 - FOV Too Narrow
 - Logistics a Nightmare
 - Horizon Sometimes Much Closer than Expected
 - Environment Scans Need to be Interpreted (Shadows)

2007 Test Campaign

Updates in the Testbed 2007

A 360° LIDAR scannerA SICK LRFMounted on a pan-unit

Scan Processing

2007, Scans Collected: 93

Comparison between the two LIDARs

SICK on Pan Unit

- 360° coverage
- Portable
- Easy Interface
- Limited Range
- Lower resolution
- Lower accuracy
- Low cost ~12K

ILRIS 3D

- Highly accurate
- Long range
- High resolution
- Limited field of View
- Restrictive Interface
- Unwieldy
- Not Portable
- High cost ~250K

Irregular Triangular Mesh Decimation

			Target Decimation Ratio						
				80%		90%		95%	
2 0	Points (mean)	31200	6530	79.00%	3440	88.86%	2090	93.09%	
0 6	Triangles (mean)	61700	12300	80.00%	6190	89.91%	3590	94.01%	
<mark>2</mark> 0	Points (mean)	111000	23400	78.91%	12500	88.72%	6700	93.69%	
0 7	Triangles (mean)	216000	43300	80.00%	21600	90.00%	10900	94.98%	
	Acceptable error 1.5cm								

2007, Over-the-Horizon Navigation

S-417 Introduction to Robotics and Intelligent Systems

Global Path Plan and Segmentation

- Produce a rough global path using the lowresolution model
- Find the portion of the global path that is inside the local scan
- Select the largest acceptable triangle closest to the furthest accessible point

Path Planning

• Convert ITM into Connected Graph

Path Planning

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:

– Dijkstra, A*

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:
 Dijkstra, A* search algorithms
- Different Cost Functions Q
 - Number of triangles Q = 1

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:
 Dijkstra, A*
- Different Cost Functions Q
 - Number of triangles
 - Euclidian distance $Q = \|\vec{x}_i \vec{x}_j\|$

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:
 Dijkstra, A*
- Different Cost Functions Q
 - Number of triangles
 - Euclidian distance
 - Slope of each triangle $v_j = \frac{p_j^1 \times p_i^2}{\|p_j^1\|\|p_j^2\|}$

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:
 Dijkstra, A*
- Different Cost Functions Q
 - Number of triangles
 - Euclidian distance
 - Slope of each triangle
 - Cross triangle slope

Path Planning

- Convert ITM into Connected Graph
- Path Planning using Graph Search Algorithms:
 - Dijkstra, A*
- Cost function:
 - Distance travelled
 - Penalty for uphill slope
 - Infinite cost for moving into too-steep triangles
 - Roughness of the area under the footprint of the robot
 - A* is biasing the cost towards the destination

Path Simplification

 Path Simplification Point-Robot

 Path Simplification Safety Corridor

Local Path Plan

Motion Control

- Sensor Suite: Wheel Odometry, IMU, Heading sensor, No Visual Odometry
- 3D Pose Estimation: Filter combines IMU+Odometry No uncertainty estimation (currently)
- Path approximated with Catmull-Rom spline for smoothness
- Astolfi controller follows the spline trajectory

CS-417 Introduction to Robotics and Intelligent Systems

Closed Loop Tests

Closed Loop Tests

CS-417 Introduction to Robotics and Intelligent Systems
Closed Loop Tests

The Mars Terrain and Trajectories

Lessons Learned

- There is a need for Localization
- Limitations in the rover capabilities
- Several components require domain specific parameters
- Extensive testing extremely useful

Future Work

- Terrain analysis
 - What does the robot sees?
 - Open area, cluttered environment, the side of a hill?
- Different mobility platforms
- State estimation:
 - Implement 6DOF KF or RBPF
- Localization
- SLAM

Conclusions

- Active vision is accurate and robust
- ITM representation is compact and accurate
- ITM useful for environmental modeling and also for path planning
- Successful Over-the-Horizon navigation an important step towards autonomy capabilities in planetary exploration

Mars Exploration Rover (NASA)

