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Localization 



Fundamental Problems In Robotics  

• How to Go From A to B ? (Path Planning) 
• What does the world looks like? (mapping) 

– sense from various positions 
– integrate measurements to produce map 
– assumes perfect knowledge of position 

• Where am I in the world? (localization) 
– Sense 
– relate sensor readings to a world model 
– compute location relative to model 
– assumes a perfect world model 

• Together, the above two are called SLAM  
  (Simultaneous Localization and Mapping) 
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Localization 

• Tracking: Known initial position 

• Global Localization: Unknown initial position 

• Re-Localization: Incorrect known position 

– (kidnapped robot problem) 
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Uncertainty  

• Central to any real system! 
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Localization 

Initial state 
detects nothing: 

Moves and  
detects landmark: 

Moves and  
detects nothing: 

Moves and  
detects landmark: 
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Sensors 
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• Proprioceptive Sensors 
    (monitor state of vehicle-

propagate) 
– IMU (accels & gyros) 
– Wheel encoders 
– Doppler radar … 

•  Noise 

• Exteroceptive Sensors 
    (monitor environment-update) 

– Cameras (single, stereo, 
omni, FLIR …) 

– Laser scanner 
– MW radar 
– Sonar  
– Tactile… 

•  Uncertainty 



Bayesian Filter 

• "Filtering" is a name for combining data. 

• Nearly all algorithms that exist for spatial reasoning 
make use of this approach 
– If you’re working in robotics, you’ll see it over and over! 

• Efficient state estimators 
– Recursively compute the robot’s current state based on the 

previous state of the robot 

CS-417 Introduction to Robotics and Intelligent Systems  7 



State Estimation 
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• What is the robot’s state?  
• Depends on the robot 

– Indoor mobile robot 
• x=[x, y, θ] 

– 6DOF mobile vehicle 
• x=[x, y, z, φ, ψ, θ] 

– Manipulators 
• x=[θ1, θ2, … , θn] or 
• x=[x, y, z, φ, ψ, θ] pose of end-

effector 
 



Bayesian Filter 

• Estimate state x from data Z 
– What is the probability of the robot being at x? 

• x could be robot location, map information, locations of 
targets, etc… 

• Z could be sensor readings such as range, actions, 
odometry from encoders, etc…) 

• This is a general formalism that does not depend on 
the particular probability representation 

• Bayes filter recursively computes the posterior 
distribution: 
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Derivation of the Bayesian Filter 
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Estimation of the robot’s state given the data: 

The robot’s data, Z, is expanded into two types: 

observations oi and actions ai 
 

Invoking the Bayesian theorem 



Derivation of the Bayesian Filter 
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Denominator is constant relative to xt 

First-order Markov assumption shortens first term: 

Expanding the last term (theorem of total probability): 



Reminder: Bayes Rule 

- Bayes rule relates conditional probabilities 

p( o | S )  =     
p( S | o ) p( o )  

 - So, what does this say about  

p( S ) 
Bayes rule 

odds( o | S2  S1 )  ?     

p( o  S )  =  p( o | S ) p( S ) 

- Conditional probabilities 

Can we update easily ? 
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Graphical Models, Bayes’ Rule and the Markov Assumption 

States x1 x2 

T(xj|ai, xi) 

Z2 

b1 Beliefs 

Z1 
Observations 

a1 Actions 

O(zj|xi) 

b2 

Z2 

Hidden 

Observable 

)(

)()|(
)|(

yp

xpxyp
yxp  :rule Bayes

),|(),,,,,,,|( 1111001 ttttttt axxpzzazaaxxp  :Markov
13 CS-417 Introduction to Robotics and Intelligent Systems  



Derivation of the Bayesian Filter 
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First-order Markov assumption shortens middle term: 

Finally, substituting the definition of Bel(xt-1): 

The above is the probability distribution that must be 
estimated from the robot’s data 



Iterating the Bayesian Filter 

• Propagate the motion model: 

 

 

 

• Update the sensor model: 
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Compute the current state estimate before taking a sensor reading by 
integrating over all possible previous state estimates and applying the 
motion model 

Compute the current state estimate by taking a sensor reading and 
multiplying by the current estimate based on the most recent motion 
history 



Bayes Filter 
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Posterior belief 

after an action 

An action 

 is taken 

Posterior belief 

after sensing 

State Space 

Initial belief 



Representation of the Belief Function 
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Parametric 
representations 

Sample-based 
representations 

e.g. Particle filters 



Different Approaches 
Discrete approaches (’95) 
• Topological representation (’95) 
• Uncertainty handling (POMDPs) 
• occas. global localization, recovery 
• Grid-based, metric representation (’96) 
• global localization, recovery 

Particle filters (’98) 
• Condensation (Isard and Blake ’98) 
• Sample-based representation 
• Global localization, recovery 
• Rao-Blackwellized Particle Filter 

Kalman filters (Early-60s?) 
• Gaussians 
• approximately linear models 
• position tracking 
Extended Kalman Filter 
Information Filter 
Unscented Kalman Filter 

Multi-hypothesis (’00) 
• Mixture of Gaussians 
• Multiple Kalman filters 
• Global localization, recovery 
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Bayesian Filter : Requirements for 
Implementation 

• Representation for the belief function 

• Update equations  

• Motion model 

• Sensor model 

• Initial belief state 
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