
6DOF Vision-Aided Inertial
Localization

Florian Shkurti

florian@cim.mcgill.ca

Mobile Robotics Lab

Overview

• Desired localization accuracy

• Available sensor inputs (inertial measurement unit, camera)

• Types of environments

• State propagation

• State augmentation

• Feature extraction and matching

• State update

• Some results

• Concluding remarks

Our goals

• Estimate the 3D position and 3D orientation (3D
pose) of a moving robot in real-time.

• Ideally, we’d like position error of the
distance traveled.

• Unfortunately, this is hard to guarantee.

%10

Visual input in the lab

Good

Not so good

Visual input in the pool

Good

Not so good

Visual input in the ocean

Good

Not so good

Typical SLAM approaches

• Try to estimate the robot’s 3D pose and the 3D positions of
the observed landmarks

• Correlations between landmarks are also estimated.

• The size of the state becomes significantly big, very quickly.
Each update step of EKF-SLAM takes .

• Need to remove landmarks from the state.

] ... [

1


NLLR

zyxzyxzyxx

)(2NO

Proposed approach

• Heavily based on work by A. Mourikis and S. Roumeliotis [1]

• Uses input from a single camera and an inertial
measurement unit (IMU).

• Combines these inputs through an Extended Kalman Filter.

• Each update step takes where N is the number of
landmarks.

• [1] “A multi-state constrained Kalman filter for vision-aided inertial
navigation,” ICRA 2007

)(NO

Inertial Measurement Units

• Think of an IMU as a gyroscope and an

accelerometer.

• If is the robot’s pose then

the IMU gives us noisy measurements of

• Let be the true linear acceleration and

be the true angular velocity. IMU measurements are typically

modeled as:

] [zyx

] [ zyx

] [zyx a] [ω

),0(~ and),0(~

),0(~ and),0(~

gbggngggm

abaanaaam

NN

NNc

σbσnnbωω

σbσnnbaa





IMU noise modeling

• The IMU measurement noise
is typically assumed to be fixed. It is estimated offline while keeping
the robot still.

• The accelerometer bias is initialized as the average offset from
[0 0 -g] when the robot is left still with zero pitch and roll. The noise
parameters of are estimated offline. is
estimated online.

• Similarly for the gyroscope bias.

• Note: In the proposed algorithm we do not estimate the
accelerometer scaling factor. We fix it to .

),0(~ and),0(~ gngana NN σnσn

),0(~ aa N σb
ab

1c

IMU integration drift

• “Why don’t we just integrate the IMU measurements to get a
pose estimate?”

• Because errors will also be integrated.

Back to the algorithm

• Main idea: assuming feature-rich scenes we can use visual
motion estimation to correct IMU drift.

Match features

Propagate 3D pose
by integration

Update the entire state
vector and the covariance

Augment the state vector
and the covariance

The state vector

] ... [
1

1

N

N

C

GC

GC

GC

GI

G

aI

G

g

I

G pqpqpbvbqx

IMU state 1st camera
frame

Nth camera
frame

G

I

CN

The state vector

• is a quaternion that represents the
rotation from the global frame G to the current IMU frame.

• is the origin of the IMU frame in global coordinates.

• is the velocity of the IMU frame in global coordinates.

• is the rotation from the global frame to the ith camera
frame.

• is the origin of the ith camera frame in global coordinates.

]/2)cos()2/sin([uq
I

G

I

G
p

I

G
v

qiC

G

iC

G
p

The covariance matrix

• At t=0 because no images
have been recorded yet.

CC

T

IC

ICII

PP

PP
xxxP)ˆcov()~cov(

IMUII xxPP ˆˆ and 0

EKF Propagation

• Is done every time we receive an IMU measurement.

Propagate 3D pose
by integration

Propagation (state)

)(ˆ)(ˆ
00 tt gm

I

am

I
bωωbaa

I

C

t0

t1

)(

)
2

ˆ
cos(

)
2

ˆ
sin(

ˆ

ˆ

)(01 t

dt

dt

t I

G
I

I

I

I

I

G q
ω

ω

ω

ω

q

dtttt I

G

I

G

I

G)()()(001 vpp

dtttt GIG

II

G

I

G)ˆ)(()()(001 gaRvv

 tt

tt

aa

gg

)()(

)()(

01

01

bb

bb

I

C

Note: the camera frames of the state are not propagated

Propagation (covariance)

• How do we propagate ?

• Since we didn’t modify the camera frames:

• We can show that IMU propagation errors increase according to:

where depends on and depends on .

• We can get the propagated covariance by integration.

CC

T

IC

ICII

PP

PP
xxxP)ˆcov()~cov(

F qaω ˆ ,ˆ ,ˆ I

G G q̂
I

G

CC

T

IC

ICII

PP

PP

T

aaggIMUIMU tt
dt

d
] [)(~)(~ bnbnGxFx 

State augmentation

• Is done every time an image is recorded

Augment the state vector
and the covariance

State augmentation

• The covariance is also augmented.

I

C

t0

t1

I

C

] [
1

1

C

GC

GI

G

aI

G

g

I

G pqpbvbqx

] [I

G

aI

G

g

I

G pbvbqx

Transformation from
camera to global

coordinates

Feature matching

• Is done between every pair of consecutive images.

• SURF-64 features are matched using the Fast Library for Approximate Nearest
Neighbors, by Muja & Lowe at UBC.

• Approximately 1000 features per frame.
• Average feature tracking length is 4 frames.

Match features

Feature matching (in the lab)

Feature matching (in the pool)

Feature matching (in the ocean)

Feature matching

• Not very reliable, so outlier detection is necessary.

• If done carefully, it allows us to estimate the 3D position of a feature:

Match features

11
1

1

1

1
nz

f

C

f

C

f

C Y

X

Z 55
5

5

5

1
nz

f

C

f

C

f

C Y

X

Z

...

Structure Estimation

• We are searching for the 3D position of the fish in global coordinates,

• If we work in global coordinates we have 3 unknowns and 5
measurements. We can solve the nonlinear problem using iterative
minimization methods (e.g. Levenberg-Marquardt).

11
1

1

1

1
nz

f

C

f

C

f

C Y

X

Z 55
5

5

5

1
nz

f

C

f

C

f

C Y

X

Z

...

f

G
p̂

f

G

f

G

f

G ZYX , ,

EKF Update

• Is done every time a feature stops being tracked.

Update the entire state
vector and the covariance

EKF Update (the residual)

• The only source of correction we have is the camera.

11
1

1

1

1
nz

f

C

f

C

f

C Y

X

Z 55
5

5

5

1
nz

f

C

f

C

f

C Y

X

Z

...

What we
measured

f

C

f

C

f

C Y

X

Z ˆ

ˆ

ˆ

1
ˆ

1

1

1
1z ...

f

C

f

C

f

C Y

X

Z ˆ

ˆ

ˆ

1
ˆ

5

5

5
5z

What we expected to measure after we
estimated the 3D position of the fish

EKF Update (the residual)

• Each residual is a nonlinear function of

111 ẑzr 555 ẑzr...

)ˆˆ(ˆ

ˆ

ˆ

ˆ

 where
ˆ

ˆ

ˆ

1
i

i

i

i

i

i

i

i
C

G

f

GC

G

f

C

f

C

f

C

f

C

f

C

f

Cii

Z

Y

X

Y

X

Z
ppRzr

), ,(f

G

C

GC

G i

i ppR

EKF Update

• We linearize the residual for each frame.

• We stack the residuals for all camera frames and for all features into one
vector

• We apply the usual update equations of the Extended Kalman Filter:

iii nxHr ~

nxHr ~

tttt

tttt

TT

|11|1

|11|1

1

)(

))cov((

PKHIP

xxx

Krx

nHPHPHK

Lab experiment

Estimated trajectory

Initial pose

Estimated final pose

Orientation estimates

0

0

0

0~

r

r
0

0

0

2~

p

p
0

0

70

5~

y

y

Velocity and position estimates

mx

mx

2.2

3.0~

my

my

2

1~

mz

mz

0

3.0~

Concluding remarks

• The algorithm is very sensitive to the visual motion estimation.

• Current work:
• Figure out how to better estimate 3D locations of features to improve the position

and velocity estimates.
• Implement the algorithm so that it runs in real time.

• Future work:
• Integrate it with the robot controller to enable the robot to perform requested

trajectories
• Examine if bundle adjustment methods will make the estimate more robust .

Thank you

• Questions, feedback, and criticisms would be
appreciated!

Optional: Propagation (covariance)

• From we get

• We can numerically integrate in the propagation
interval to obtain .

• And then compute the IMU-camera covariance:

T

aaggIMUIMU tt
dt

d
] [)(~)(~ bnbnGxFx 

T

aagg

T

IIIIII ttt
dt

d
GbnbnGFPFPP]) cov([)()()(

)(t
dt

d
IIP

IIP

)|(

))(~),(~cov(

))(~),1(~cov()|1(

tte

tte

tttt

IC

dt

CAMIMU

dt

CAMIMUIC

P

xx

xxP

F

F

