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Overview

• Desired localization accuracy

• Available sensor inputs (inertial measurement unit, camera)

• Types of environments

• State propagation

• State augmentation

• Feature extraction and matching

• State update

• Some results

• Concluding remarks



Our goals

• Estimate the 3D position and 3D orientation (3D 
pose) of a moving robot in real-time.

• Ideally, we’d like position error               of the 
distance traveled.

• Unfortunately, this is hard to guarantee.
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Visual input in the lab

Good

Not so good



Visual input in the pool

Good 

Not so good



Visual input in the ocean

Good 

Not so good



Typical SLAM approaches

• Try to estimate the robot’s 3D pose and the 3D positions of 
the observed landmarks

• Correlations between landmarks are also estimated. 

• The size of the state becomes significantly big, very quickly.          
Each update step of EKF-SLAM takes              .

• Need to remove landmarks from the state. 
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Proposed approach

• Heavily based on work by A. Mourikis and S. Roumeliotis [1]

• Uses input from a single camera and an inertial 
measurement unit (IMU).

• Combines these inputs through an Extended Kalman Filter.

• Each update step takes            where N is the number of 
landmarks. 

• [1] “A multi-state constrained Kalman filter for vision-aided inertial 
navigation,” ICRA 2007 
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Inertial Measurement Units

• Think of an IMU as a gyroscope and an 

accelerometer. 

• If                              is the robot’s pose then 

the IMU gives us noisy measurements of

• Let                          be the true linear acceleration and

be the true angular velocity. IMU measurements are typically   

modeled as:   
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IMU noise modeling

• The IMU measurement noise 
is typically assumed to be fixed. It is estimated offline while keeping 
the robot still. 

• The accelerometer bias is initialized as the average offset from         
[0 0 -g] when the robot is left still with zero pitch and roll. The noise
parameters of                             are estimated offline.          is 
estimated online.

• Similarly for the gyroscope bias.

• Note: In the proposed algorithm we do not estimate the 
accelerometer scaling factor. We fix it to          .     
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IMU integration drift

• “Why don’t we just integrate the IMU measurements to get a 
pose estimate?” 

• Because errors will also be integrated. 



Back to the algorithm

• Main idea: assuming feature-rich scenes we can use visual 
motion estimation to correct IMU drift.

Match features

Propagate 3D pose 
by integration

Update the entire state 
vector and the covariance

Augment the state vector 
and the covariance



The state vector
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The state vector

• is a quaternion that represents the 
rotation from the global frame G to the current IMU frame.  

• is the origin of the IMU frame in global coordinates.

• is the velocity of the IMU frame in global coordinates.

• is the rotation from the global frame to the ith camera 
frame.

• is the origin of the ith camera frame in global coordinates.   
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The covariance matrix

• At t=0                                               because no images 
have been recorded yet.       
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EKF Propagation 

• Is done every time we receive an IMU measurement.

Propagate 3D pose 
by integration



Propagation (state)
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Propagation (covariance)

• How do we propagate                                                                             ? 

• Since we didn’t modify the camera frames:

• We can show that IMU propagation errors increase according to: 

where       depends on                    and       depends on        . 

• We can get the propagated covariance by integration. 
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State augmentation

• Is done every time an image is recorded 

Augment the state vector 
and the covariance



State augmentation

• The covariance is also augmented.
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Feature matching

• Is done between every pair of consecutive images.

• SURF-64 features are matched using the Fast Library for Approximate Nearest 
Neighbors, by Muja & Lowe at UBC.

• Approximately 1000 features per frame.
• Average feature tracking length is 4 frames.

Match features



Feature matching (in the lab)



Feature matching (in the pool)



Feature matching (in the ocean)



Feature matching

• Not very reliable, so outlier detection is necessary.

• If done carefully, it allows us to estimate the 3D position of a feature:

Match features
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Structure Estimation

• We are searching for the 3D position of the fish in global coordinates,         

• If we work in global coordinates we have 3 unknowns                           and 5 
measurements. We can solve the nonlinear problem using iterative 
minimization methods (e.g. Levenberg-Marquardt).    
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EKF Update 

• Is done every time a feature stops being tracked.

Update the entire state 
vector and the covariance



EKF Update (the residual)

• The only source of correction we have is the camera.
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EKF Update (the residual)

• Each residual is a nonlinear function of                               
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EKF Update

• We linearize the residual                              for each frame.

• We stack the residuals for all camera frames and for all features into one 
vector                      

• We apply the usual update equations of the Extended Kalman Filter:

iii nxHr ~

nxHr ~

tttt

tttt

TT

|11|1

|11|1

1

)(

))cov((

PKHIP

xxx

Krx

nHPHPHK



Lab experiment



Estimated trajectory



Initial pose



Estimated final pose



Orientation estimates
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Velocity and position estimates
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Concluding remarks

• The algorithm is very sensitive to the visual motion estimation.

• Current work: 
• Figure out how to better estimate 3D locations of features to improve the position 

and velocity estimates.
• Implement the algorithm so that it runs in real time.

• Future work:
• Integrate it with the robot controller to enable the robot to perform requested 

trajectories
• Examine if bundle adjustment methods will make the estimate more robust .



Thank you

• Questions, feedback, and criticisms would be 
appreciated!



Optional: Propagation (covariance)

• From                                                                                  we get

• We can numerically integrate                 in the propagation 
interval to obtain        .

• And then compute the IMU-camera covariance:
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