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Vehicle Tracking

e Suppose you want to track the exact position
of your car, while you are driving it.




Available sensors

* May be intermittent
* Has error of “~5m
* Relatively slow update rate, 1Hz

* Runs continuously
* Relatively fast update rate



Representing belief (or lack thereof)

* What do you want to track? x(t)
* Position and velocity of the car x, = ig;
y(t)_
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Simplifying belief
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The belief function is a “recursive Bayesian filter”



Kalman Filter Belief

e Kalman filters are just a special case of recursive Bayesian
filters, where the belief is a Gaussian:

bel(x,) = Pz, 1%,) [ P(X, | X 5,U, )bel(x )dx, , /7

* And the measurement and transition models are linear:

z, =Hx,+Vv therefoe p(z,|x,)=p(v)~N(@OR)
X, =FX,,+Bu,_,+w therefae p(x,|X,,,U, ;)= pw)~N(0,Q)

e That’s why we estimate X, and P, =cov(x, —X,)



We digressed...

* Back to the car example
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Propagated covariance

Pt|t—1 — FPt—]Jt—lFT +Q

Uncertainty grows without sensor measurements



Kalman Filter Update

Suppose we get measurements from the GPS and the speedometer,
both of which are noisy:

Zz, =X, +Vv where v~N(O,R)

Measurement residual :

/N

=2, -4, =2Z; — Xy

Captures the difference between what we actually observed
through the sensors and what we expected to observe.

If big then our estimate is bad, so we need to correct it significantly.



Correcting our estimates

We can’t blindly correct the state as much as the residual tells us. Why?
Because the residual itself is noisy.

That’s why we use the “Kalman gain” K, = I:)t|t_1(|:)t|t_1 + R)_1
to weight the residual accordingly.

And, finally, do the correction:
Xir = Ky T+ Ktrt
Pt|t — M1 — KtPt|t—l

Uncertainty shrinks after updates.



