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Vehicle Tracking  

• Suppose you want to track the exact position 
of your car, while you are driving it.



Available sensors

• May be intermittent
• Has error of ~5m
• Relatively slow update rate, 1Hz

• Runs continuously
• Relatively fast update rate



Representing belief (or lack thereof)

• What do you want to track? 

• Position and velocity of the car
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Simplifying belief
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The belief function is a “recursive Bayesian filter”



Kalman Filter Belief

• Kalman filters are just a special case of recursive Bayesian 
filters, where the belief is a Gaussian:

• And the measurement and transition models are linear:

• That’s why we estimate  
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We digressed…

• Back to the car example
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Propagated covariance
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Kalman Filter Update

• Suppose we get measurements from the GPS and the speedometer, 
both of which are noisy:

• Measurement  residual :

• Captures the difference between what we actually observed 
through the sensors and what we expected to observe. 

• If big then our estimate is bad, so we need to correct it significantly.
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Correcting our estimates

• We can’t blindly correct the state as much as the residual tells us. Why?

• Because the residual itself is noisy.

• That’s why we use the “Kalman gain”                                                        

to weight the residual accordingly.

• And, finally, do the correction:

• Uncertainty shrinks after updates.
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