

CS-417 INTRODUCTION TO ROBOTICS AND INTELLIGENT SYSTEMS

Particle Filters

Bayesian Filter

- Estimate state **x** from data **Z**
 - What is the probability of the robot being at x?
- x could be robot location, map information, locations of targets, etc...
- Z could be sensor readings such as range, actions, odometry from encoders, etc...)
- This is a general formalism that does not depend on the particular probability representation
- Bayes filter **recursively** computes the posterior distribution:

$$Bel(x_T) = P(x_T \mid Z_T)$$

Iterating the Bayesian Filter

Propagate the motion model:

$$Bel_{-}(x_{t}) = \int P(x_{t} \mid a_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Compute the current state estimate before taking a sensor reading by integrating over all possible previous state estimates and applying the motion model

Update the sensor model:

$$Bel(x_t) = \eta P(o_t \mid x_t) Bel_{-}(x_t)$$

Compute the current state estimate by taking a sensor reading and multiplying by the current estimate based on the most recent motion history

Mobile Robot Localization (Where Am I?)

- A mobile robot moves while collecting sensor measurements from the environment.
- Two steps, action and sensing: (X,Y,θ)
 - Prediction/Propagation: what is the robots pose x after action A?
 - Update: Given measurement z, correct the pose x'
- What is the probability density function (pdf) that describes the uncertainty \mathbf{P} of the poses \mathbf{x} and \mathbf{x}' ?

State Estimation

Propagation

$$P(x_{t+1}^- \mid x_t, \alpha)$$

Update

$$P(x_{t+1}^+ \mid x_{t+1}^-, z_{t+1})$$

Traditional Approach Kalman Filter

- Optimal for linear systems with Gaussian noise
- Extended Kalman filter:
 - Linearization
 - Gaussian noise models
- Fast!

Monte-Carlo State Estimation (Particle Filtering)

- Employing a Bayesian Monte-Carlo simulation technique for pose estimation.
- A particle filter uses N samples as a discrete representation of the probability distribution function (pdf) of the variable of interest:

$$S = [\vec{\mathbf{x}}_i, w_i : i = 1 \cdots N]$$

where x_i is a copy of the variable of interest and w_i is a weight signifying the quality of that sample.

In our case, each particle can be regarded as an alternative hypothesis for the robot pose.

Particle Filter (cont.)

The particle filter operates in two stages:

• Prediction: After a motion (α) the set of particles S is modified according to the action model

$$S' = f(S, \alpha, \nu)$$

where (v) is the added noise.

The resulting *pdf* is the <u>prior</u> estimate before collecting any additional sensory information.

Particle Filter (cont.)

• **Update:** When a sensor measurement (z) becomes available, the <u>weights</u> of the particles are updated based on the likelihood of (z) given the particle x_i

$$w_i' = P(z \mid \vec{\mathbf{x}}_i) w_i$$

The <u>updated particles</u> represent the posterior distribution of the moving robot.

Remarks:

- **In theory**, for an infinite number of particles, this method models the true *pdf*.
- **In practice**, there are always a finite number of particles.

Resampling

For finite particle populations, we must focus population mass where the *PDF* is substantive.

- Failure to do this correctly can lead to divergence.
- Resampling needlessly also has disadvantages.

One way is to estimate the need for resampling based on the variance of the particle weight distribution, in particular the coefficient of variance:

$$cv_t^2 = \frac{\text{var}(w_t(i))}{E^2(w_t(i))} = \frac{1}{M} \sum_{i=1}^{M} (Mw_t(i) - 1)^2$$

$$ESS_{t} = \frac{M}{1 + cv_{t}^{2}}$$

Prediction: Odometry Error Modeling

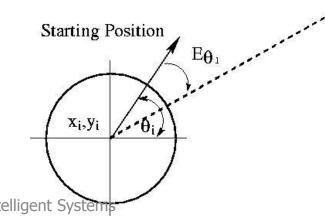
- Piecewise linear motion: a simple example.
- **Rotation**: Corrupted by Gaussian Noise.
- **Translation**: Simulated by multiple steps. Each step models

translational and rotational error.

Single step:

Small *rotational* error (drift) before and after the translation.

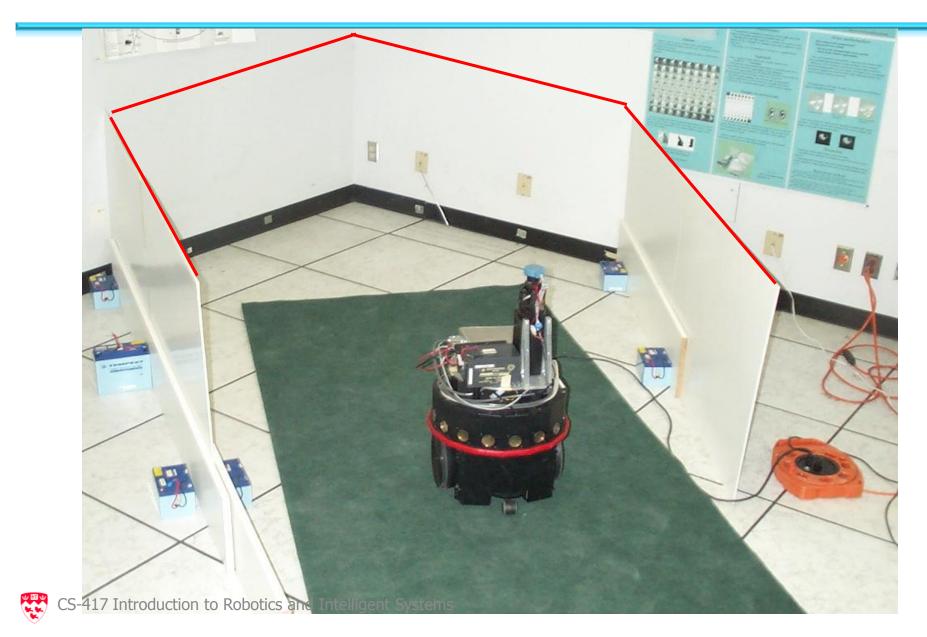
Translational error proportional to the distance traveled.

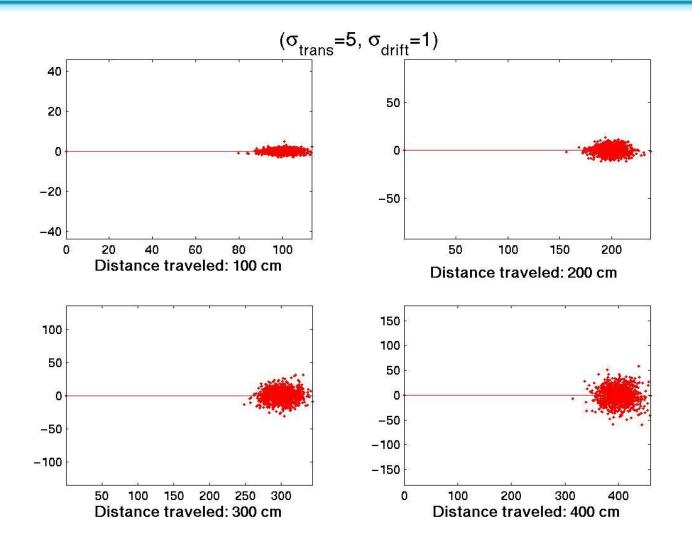


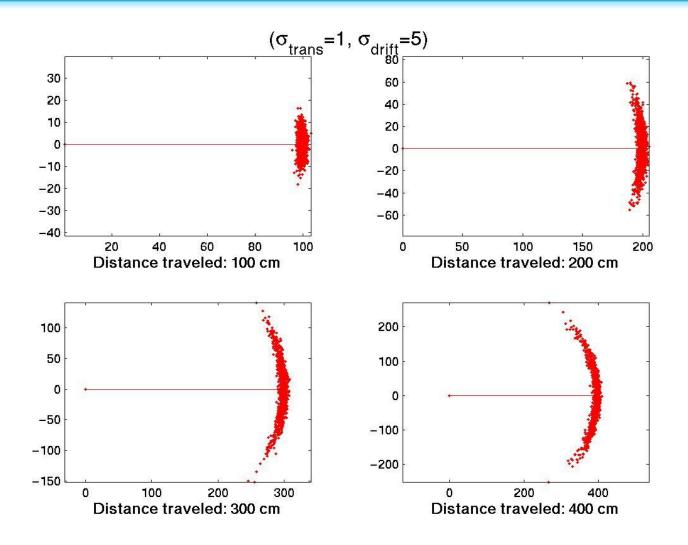
All errors drawn from a Normal Distribution.

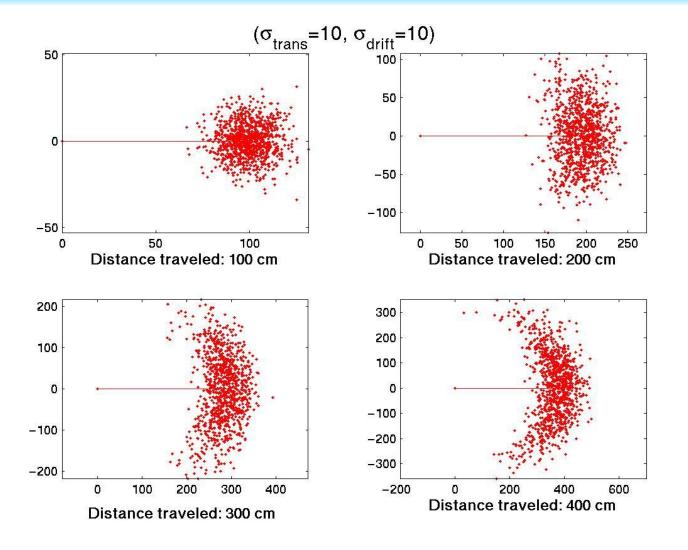
 $x_{i+1}y_{i+1}$

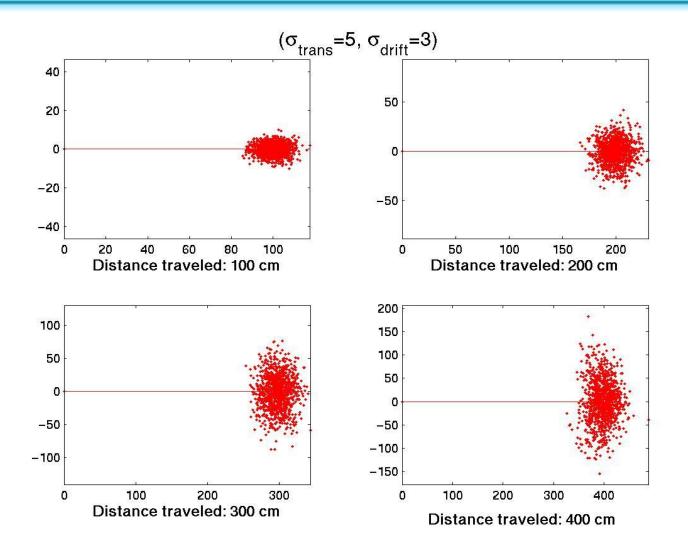
Finishing Position



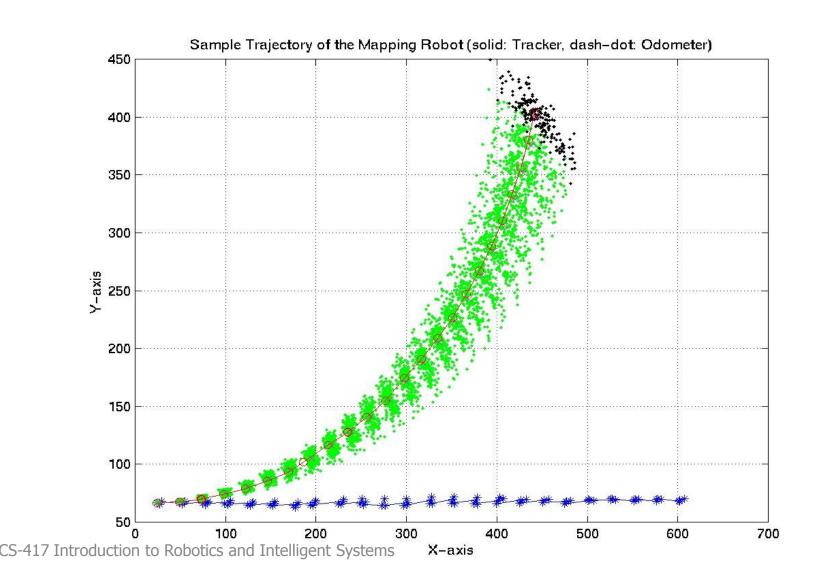








Prediction-Only Particle Distribution



Propagation of a discrete time system

 $(\delta t=1 sec)$

$$x_i^{t+1} = x_i^t + (v_t + w_{v_t}) \delta t \cos \phi_i^t$$

$$y_i^{t+1} = y_i^t + (v_t + w_{v_t}) \delta t \sin \phi_i^t$$

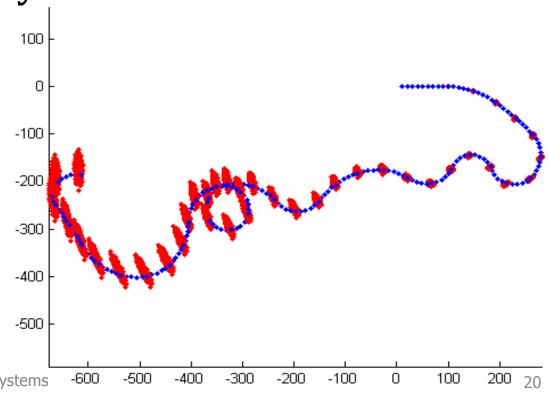
$$\phi_i^{t+1} = \phi_i^t + (\omega_t + w_{\omega_t}) \delta t$$

Where w_{v_t} is the additive noise for the linear velocity, and

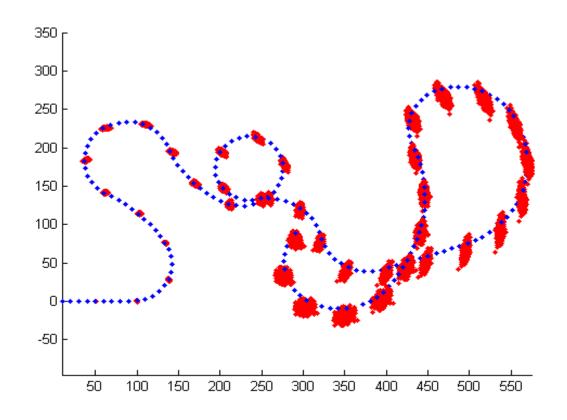
 W_{ω_r} is the additive noise for the angular velocity

Continuous motion example

- Dt=1sec
- Plotting 1 sample/sec all the particles every 5 sec
- Constant linear velocity
- Angular velocity changes randomly every 10 sec



Continuous motion example



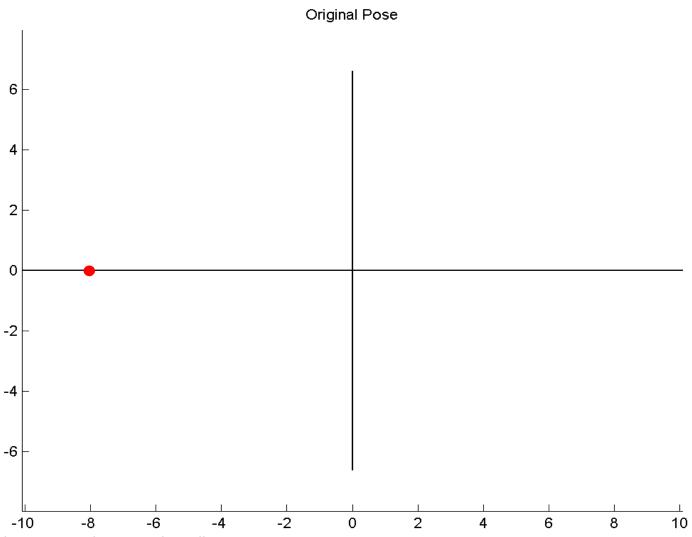
Prediction Examples Using a PF

Piecewise linear motion

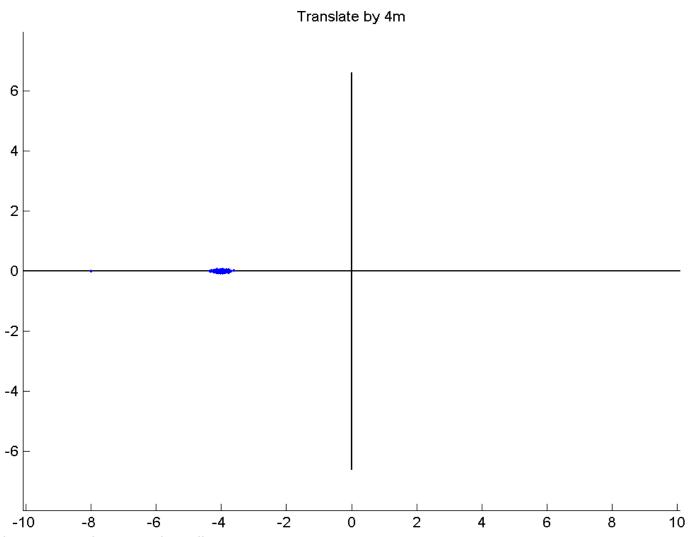
(Translation and Rotation)

- Command success 70%
- Start at [-8,0,0]
- Translate by 4m
- Rotate by 30°
- Translate by 6m

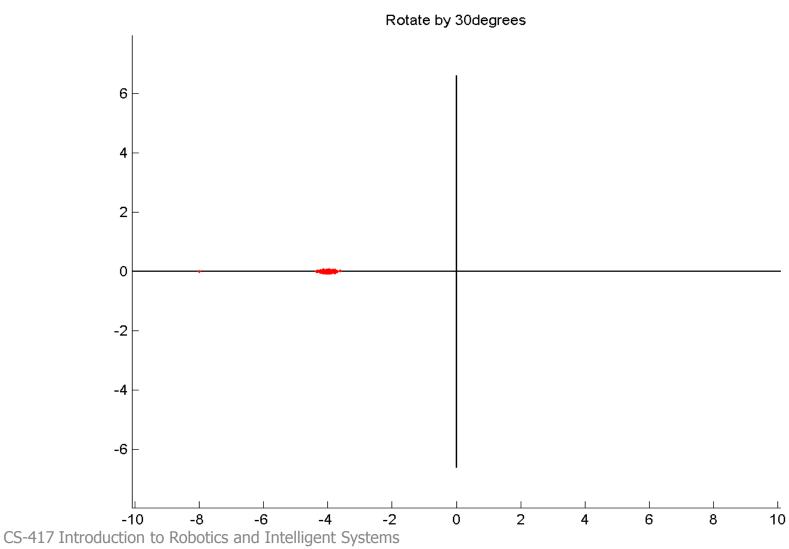
Start [-8,0,0°]



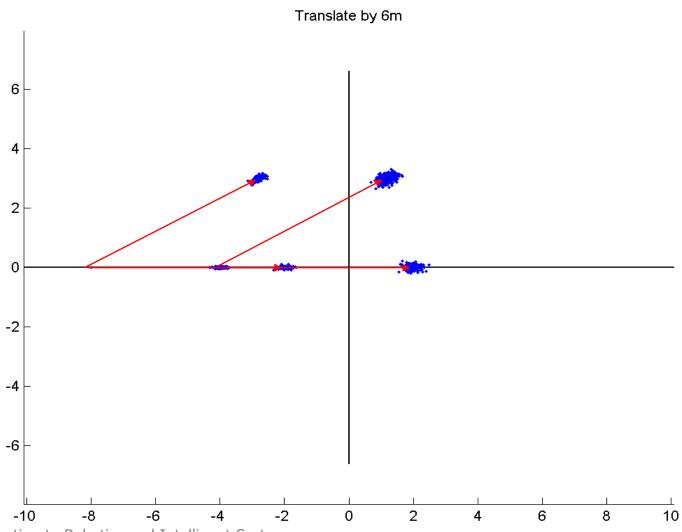
Translate by 4m



Rotate by 30°



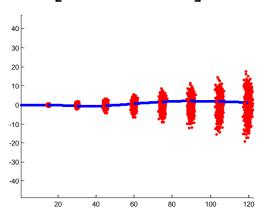
Translate by 6m



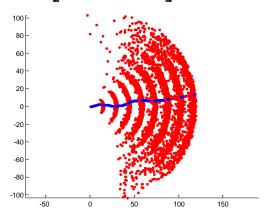
- Known position, known orientation
- Bounded linear velocity [0.5 0.7] m/sec
- Bounded angular velocity
- Run 200 sec.
- Plotting every twenty fifth sec.

Bounded Velocities

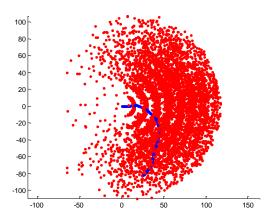
$$\omega \in [-0.01 \quad 0.01] rad / sec$$



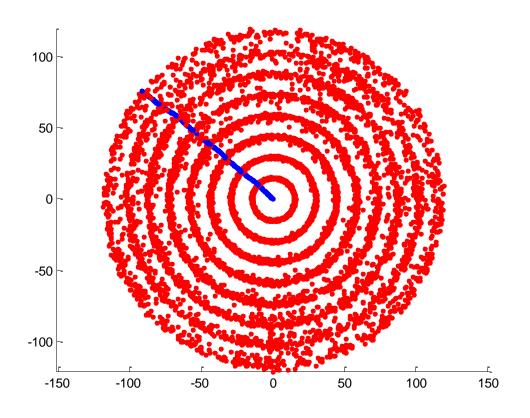
$$\omega \in \begin{bmatrix} -0.1 & 0.1 \end{bmatrix} rad / sec$$



$$\omega \in \begin{bmatrix} -0.2 & 0.2 \end{bmatrix} rad / sec$$



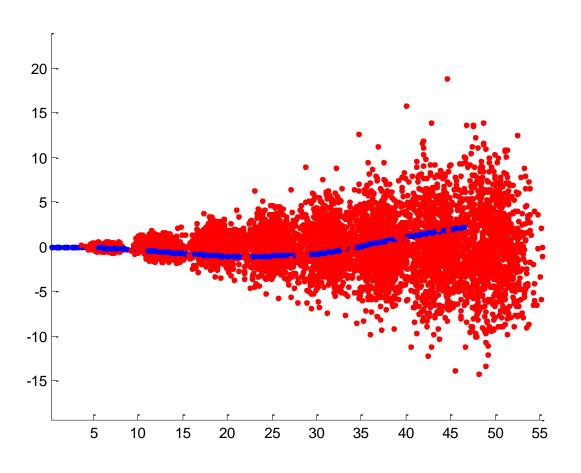
- Known position, unknown orientation
- Bounded linear velocity [0.5 0.7] m/sec
- Bounded angular velocity [-0.1 0.1] rad/sec
- Run 200 sec.
- Plotting every twenty fifth sec.



- Known position, known orientation
- Bounded linear velocity [0.0 0.5] m/sec
- Bounded angular velocity [-0.01 0.01] rad/sec
- Run 200 sec.
- Plotting every twenty fifth sec.

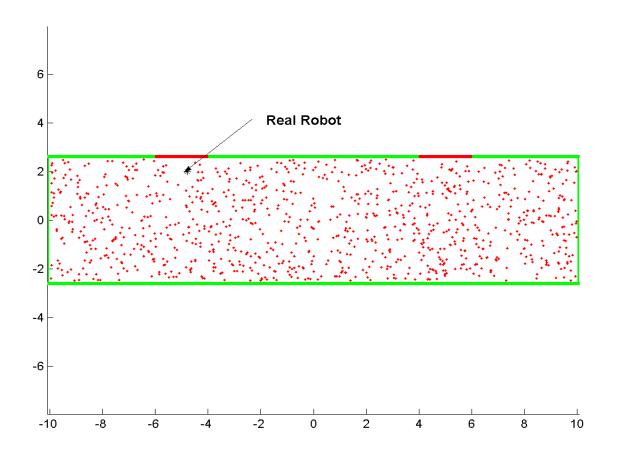
• For a particle to stay at the origin, it has to draw zero velocity 25 times in the row.

Bounded velocities

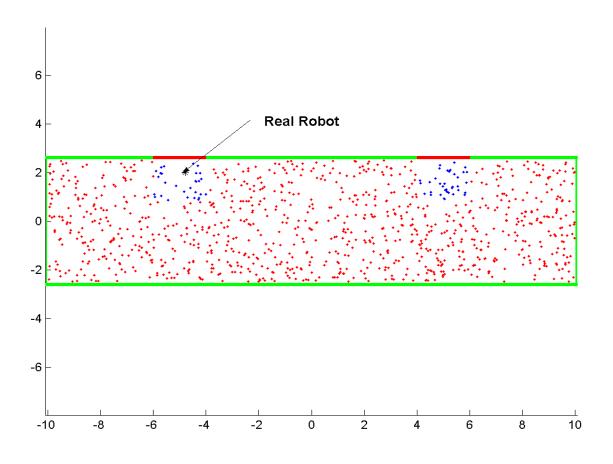


Update Examples Using a PF

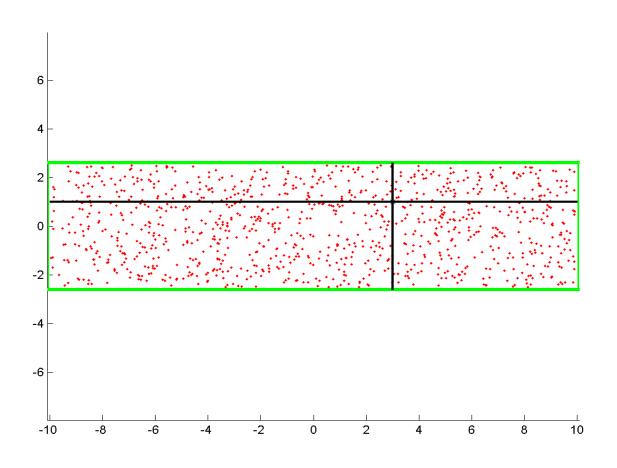
Environment with two red doors (uniform distribution)



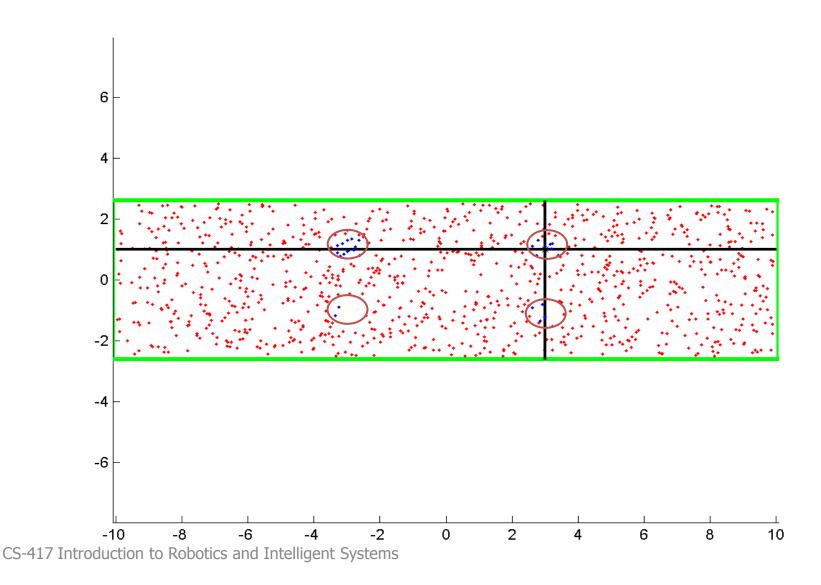
Environment with two red doors (Sensing the red door)

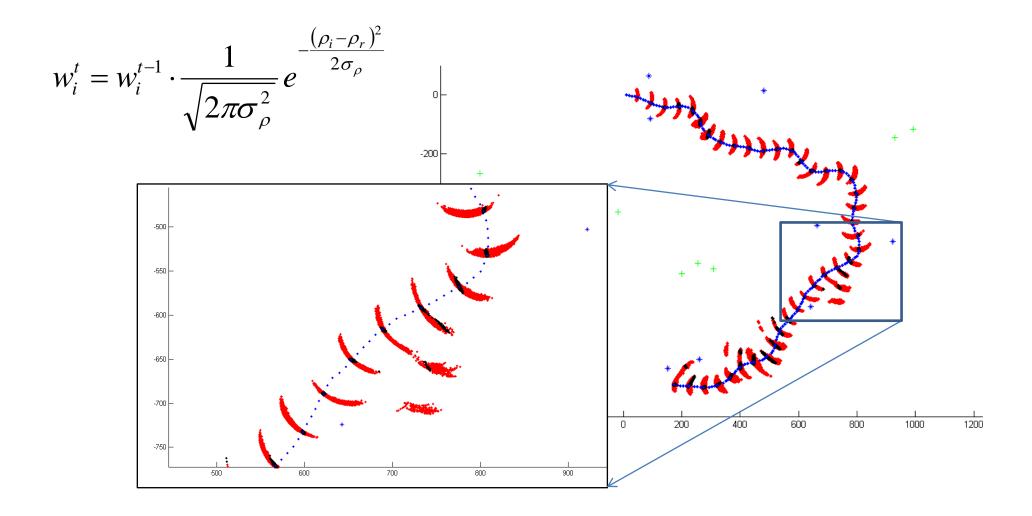


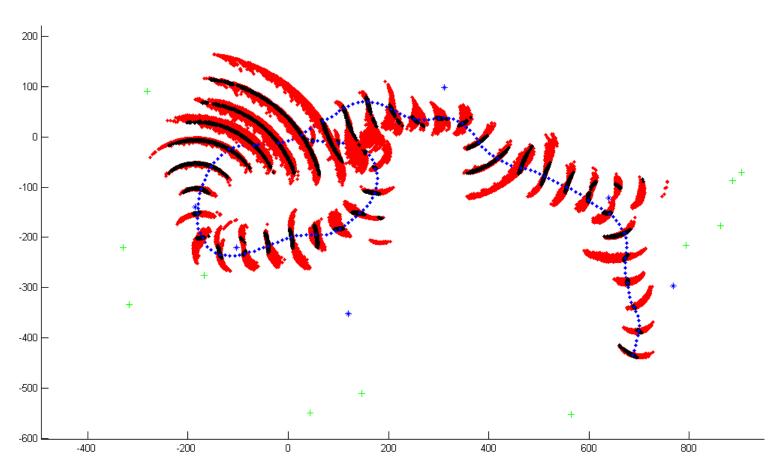
Sensing four walls

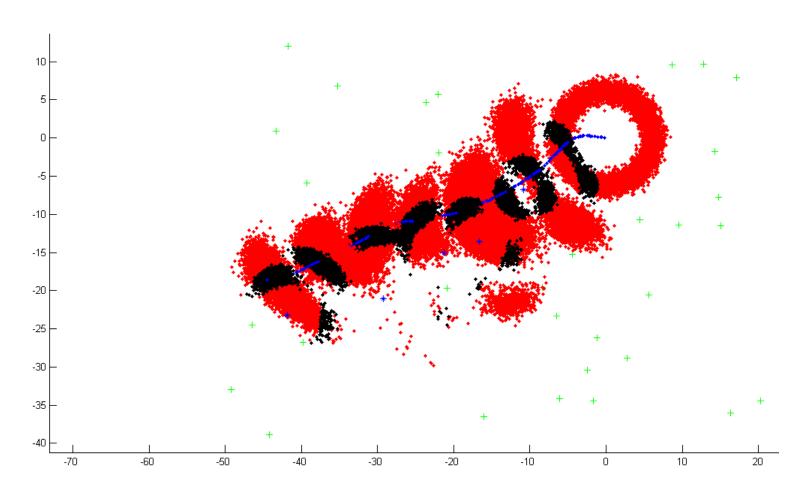


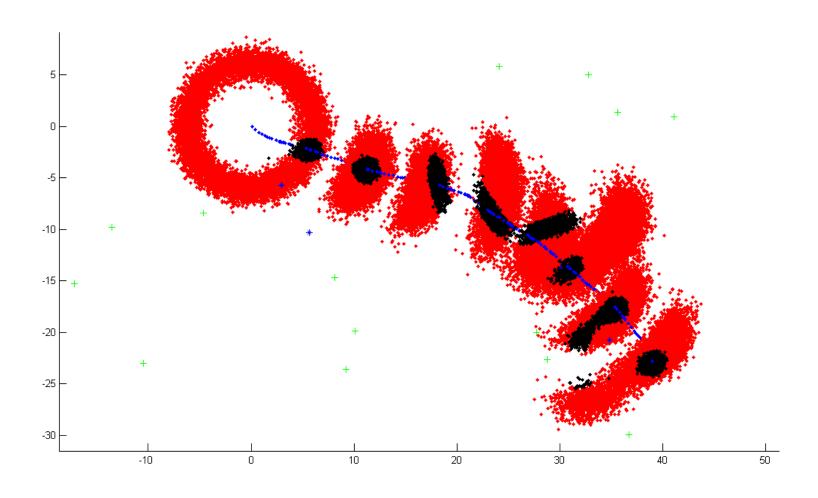
Four possible areas

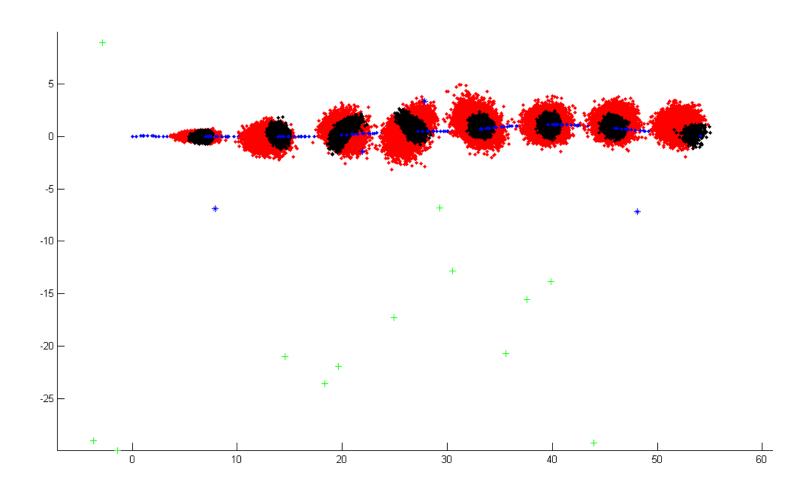




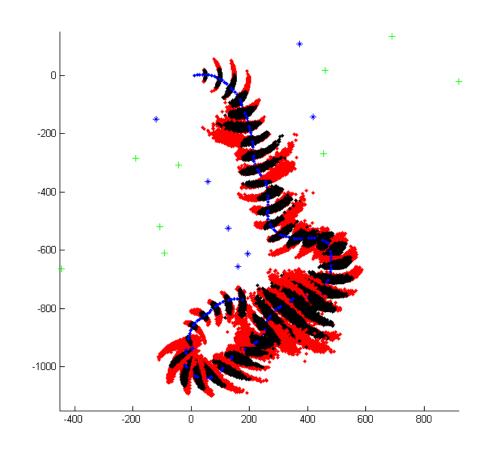


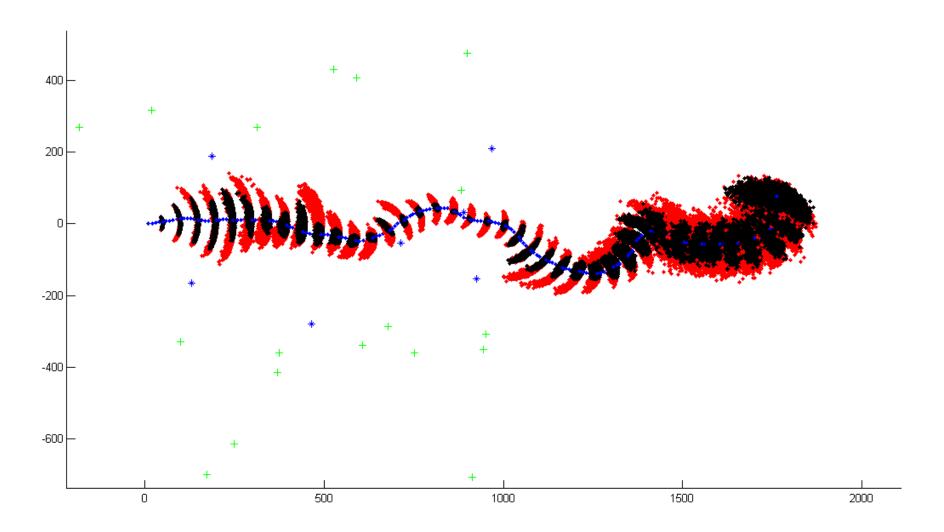


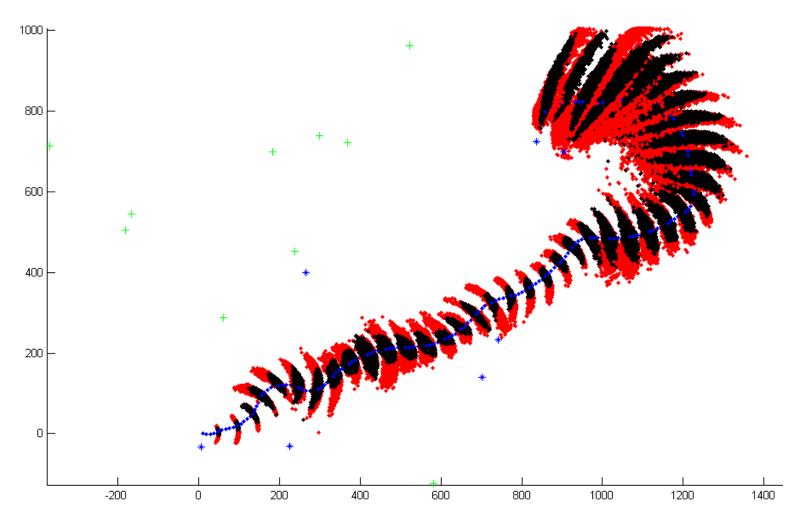


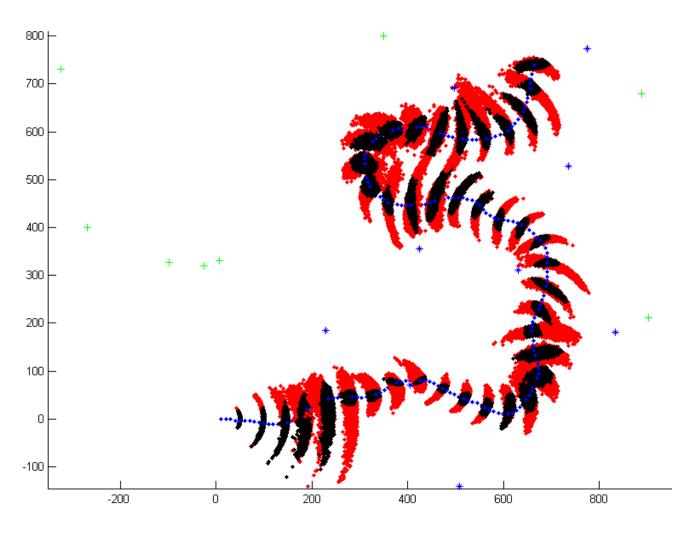


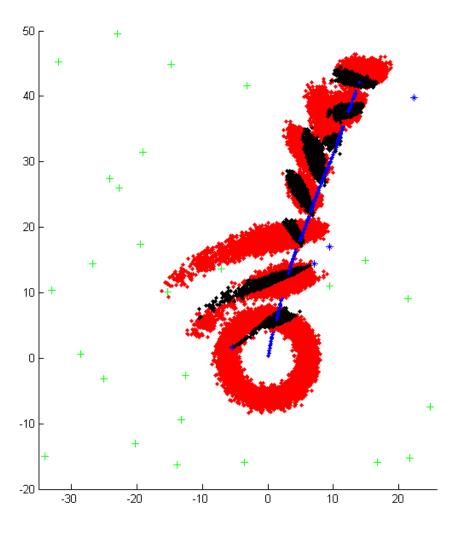
$$w_i^t = w_i^{t-1} \cdot \frac{1}{\sqrt{2\pi\sigma_{\varphi}^2}} e^{-\frac{(\varphi_i - \varphi_r)^2}{2\sigma_{\varphi}}}$$

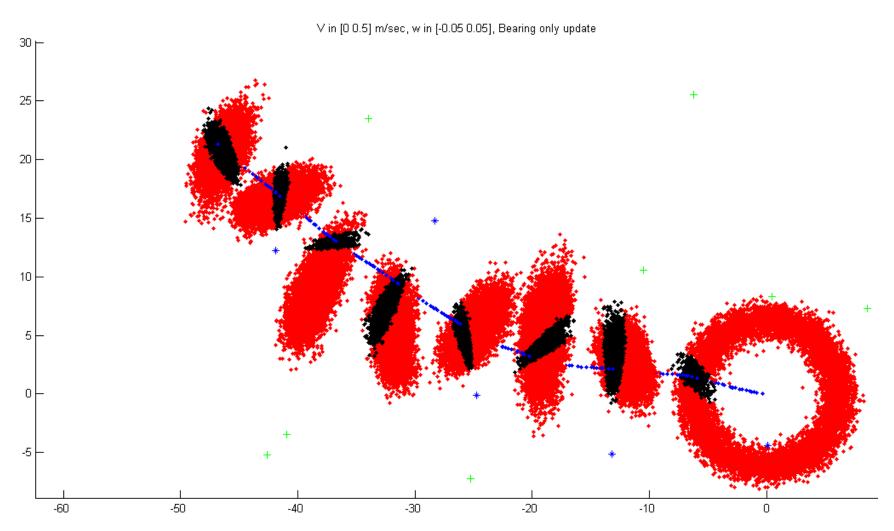


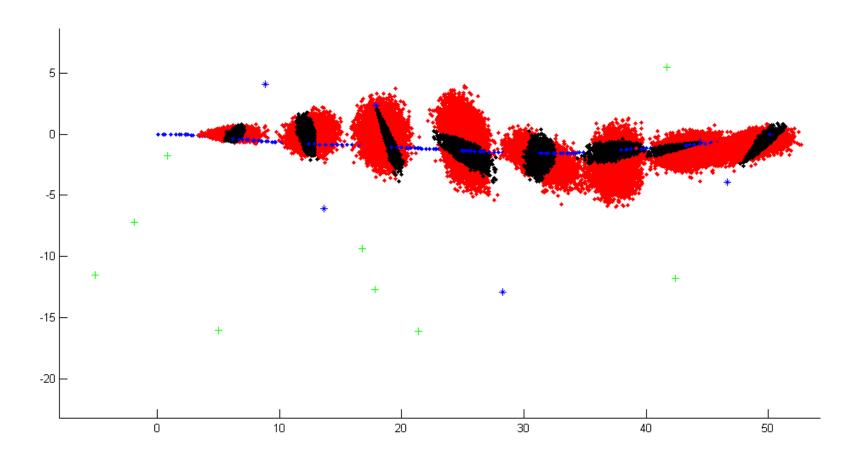




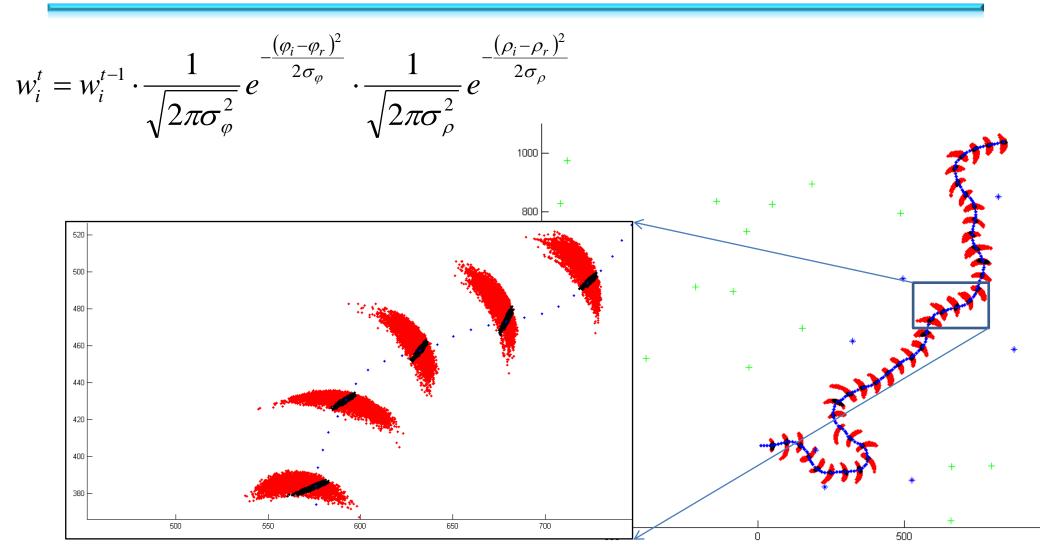




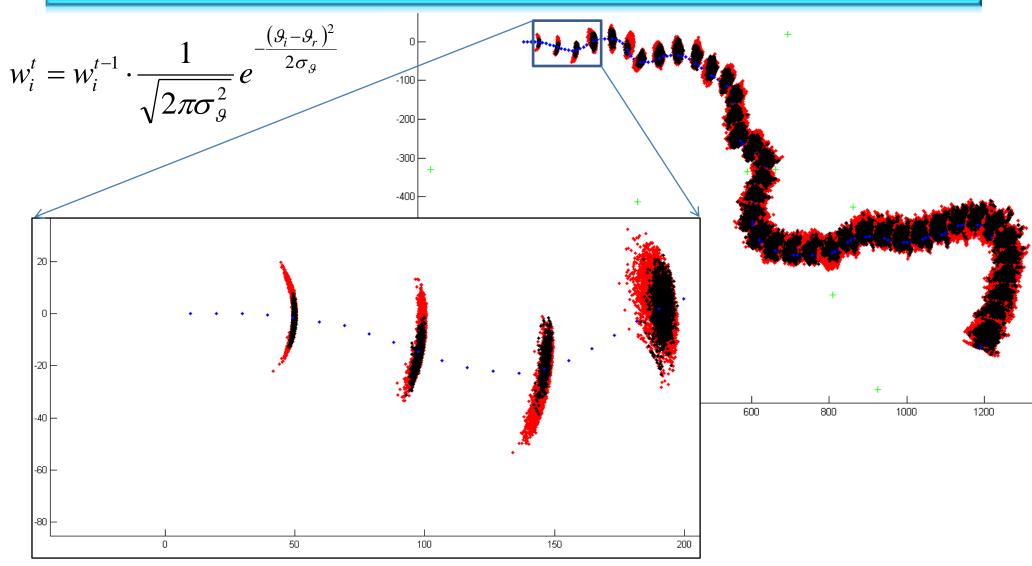




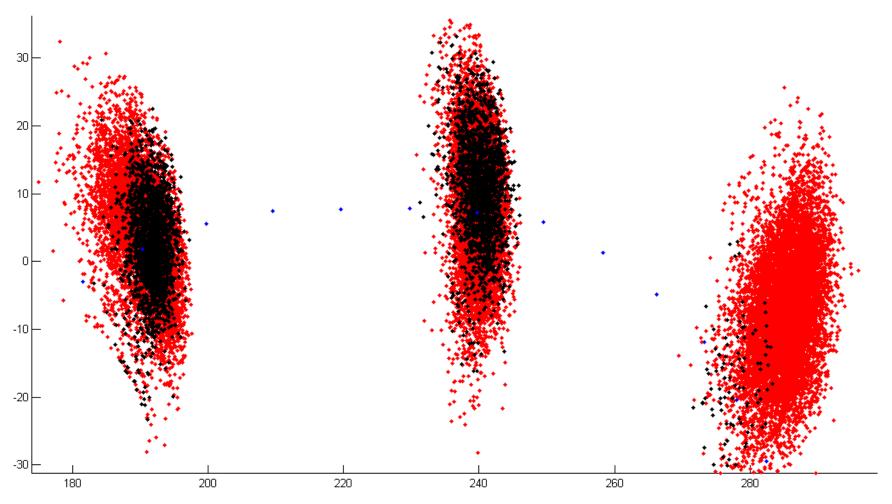
Update Range and Bearing



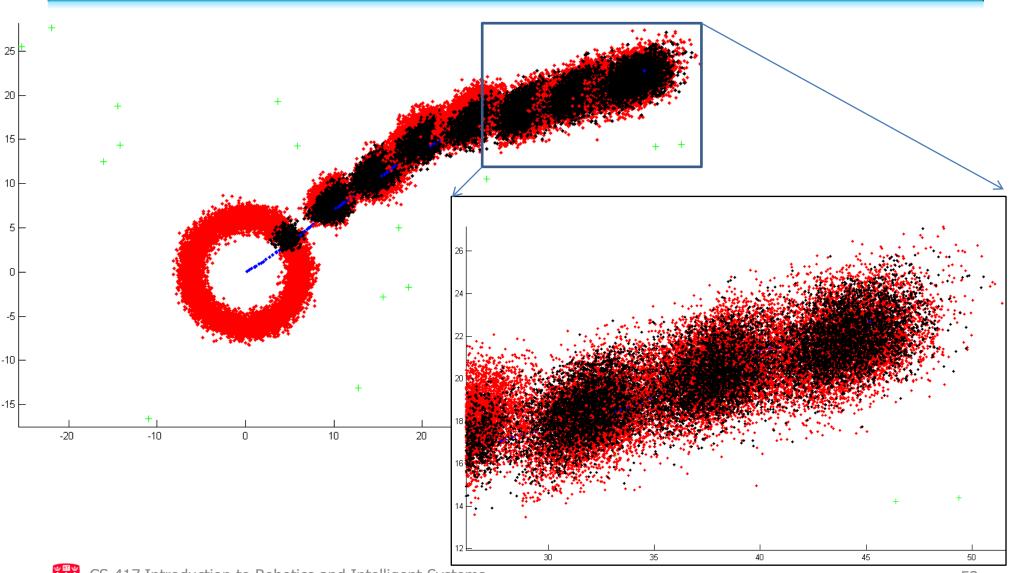
Update Compass only



Update Compass only



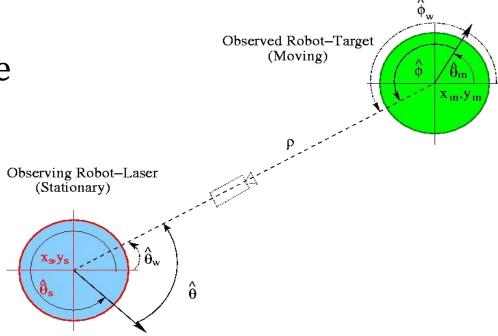
Update Compass only



Cooperative Localization

 Pose of the moving robot is estimated relative to the pose of the stationary robot.

Stationary Robot observes the Moving Robot.



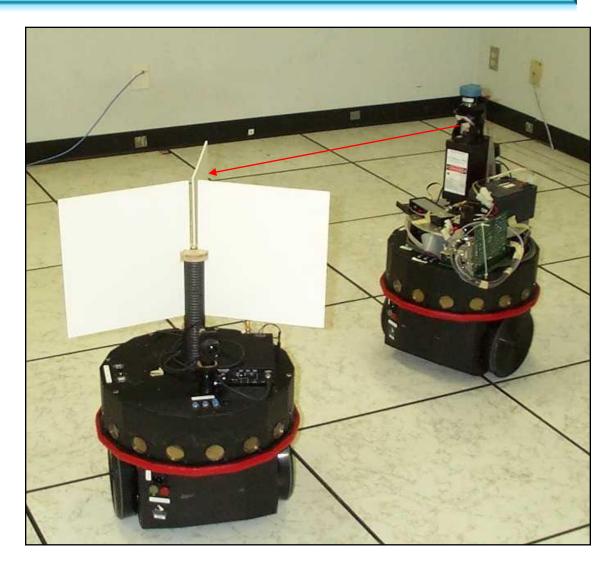
Robot Tracker Returns:

$$\mathbf{x}_{m_{est}}(k+1) = \begin{pmatrix} x_{m_{est}} \\ y_{m_{est}} \\ \theta_{m_{est}} \end{pmatrix} = \begin{pmatrix} x_{s} + \rho \cos(\theta + \theta_{s}) \\ y_{s} + \rho \sin(\theta + \theta_{s}) \\ \pi - (\phi - (\theta + \theta_{s})) \end{pmatrix}$$

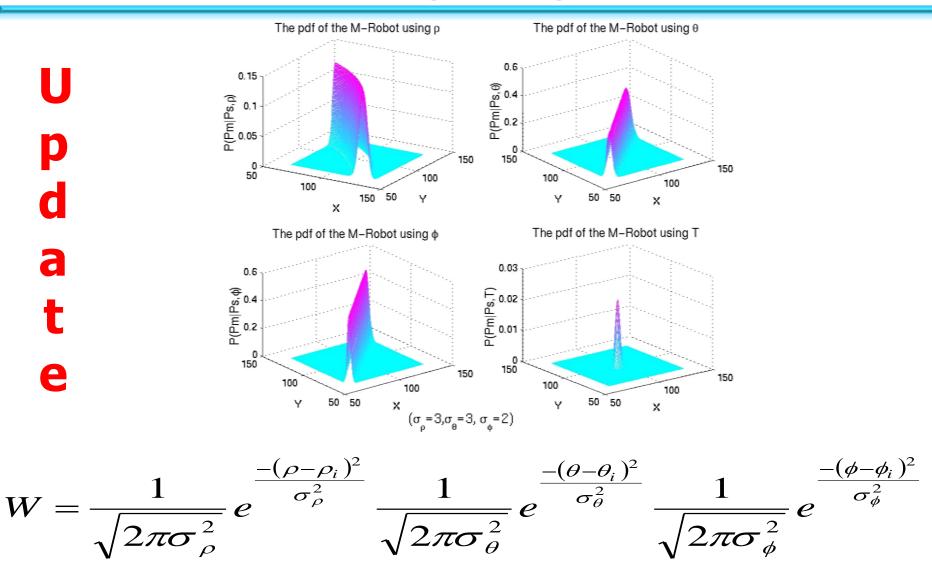
Laser-Based Robot Tracker

Robot Tracker Returns:

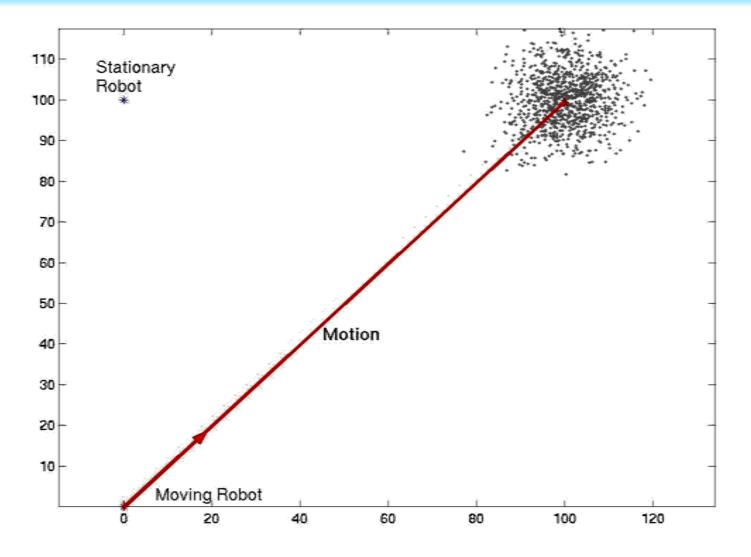
<ρ,θ,φ>



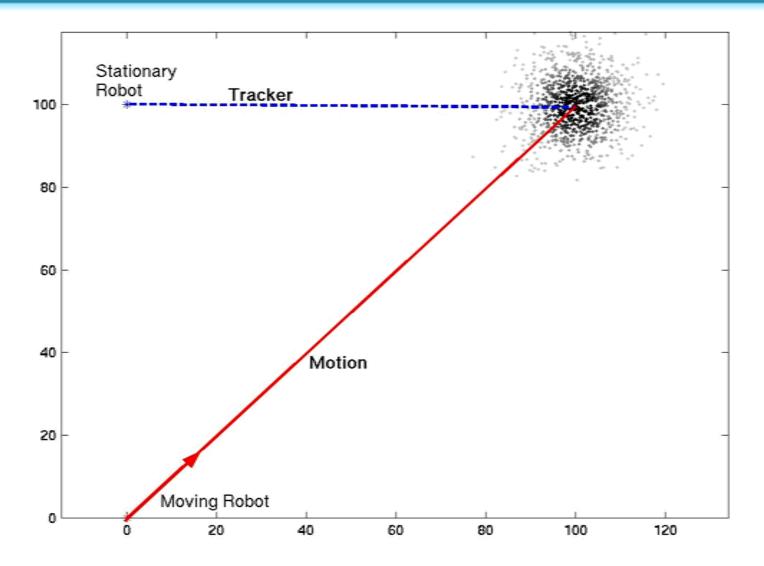
Tracker Weighting Function



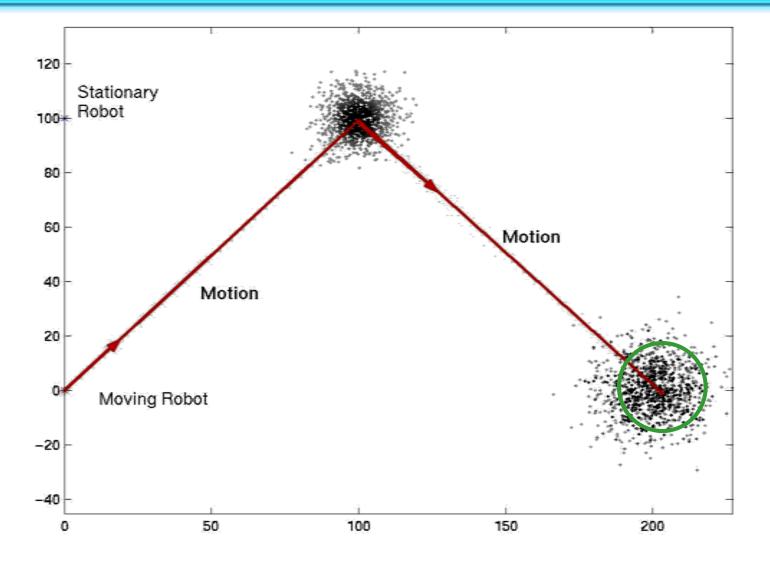
Example: Prediction



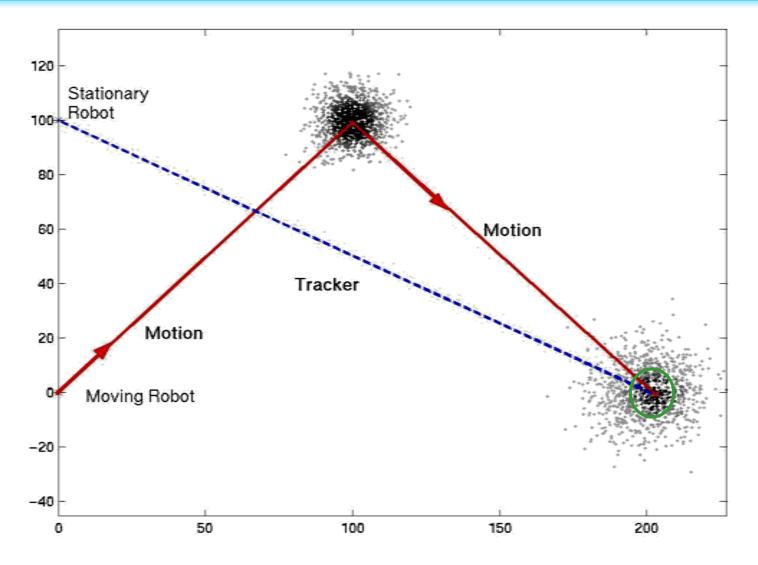
Example: Update



Example: Prediction



Example: Update

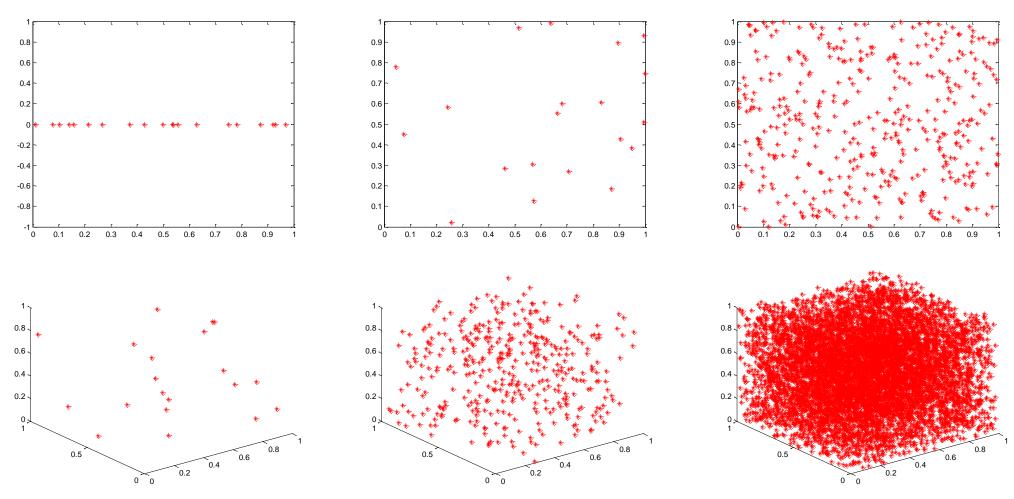


Variations on PF

- Add some particles uniformly
- Add some particles where the sensor indicates
- Add some jitter to the particles after propagation
- Combine EKFs to track landmarks

Keep in Mind:

The number of particles increases with the dimension of the state space



Complexity results for SLAM

- n=number of map features
- Problem: naïve methods have high complexity
 - EKF models O(n^2) covariance matrix
 - PF requires prohibitively many particles to characterize complex, interdependent distribution
- Solution: exploit conditional independencies
 - Feature estimates are independent given robot's path

Rao-Blackwellization

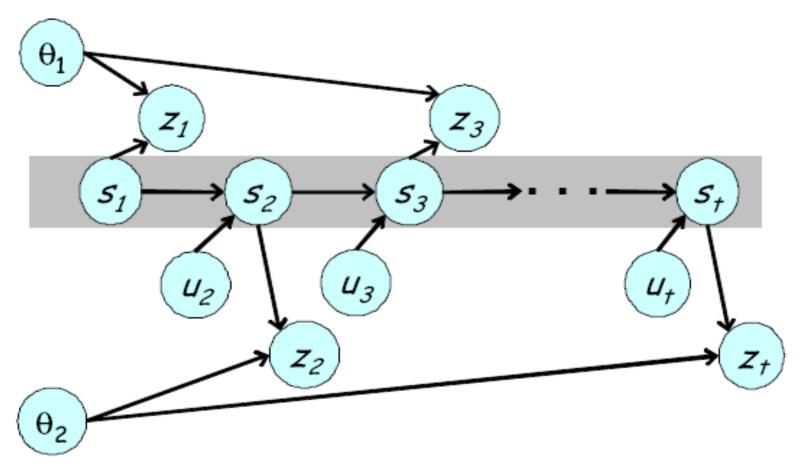


Figure from [Montemerlo et al – Fast SLAM]

RBPF Implementation for SLAM

- 2 steps:
 - Particle filter to estimate robot's pose
 - Set of low-dimensional, independent EKF's (one per feature per particle)
- E.g. FastSLAM which includes several computational speedups to achieve O(M logN) complexity (with M number of particles)

Questions

For more information on PF:

http://www.cim.mcgill.ca/~yiannis/ParticleTutorial.html

Thanks to D. Meger for his help with the RBPF work

References

- **Ioannis Rekleitis**. <u>A Particle Filter Tutorial for Mobile Robot Localization</u>. Technical Report TR-CIM-04-02, Centre for Intelligent Machines, McGill University, Montreal, Québec, Canada, 2004.
- **Ioannis M. Rekleitis**, Gregory Dudek and Evangelos Milios. Multi-robot Cooperative Localization: A study of Trade-offs Between Efficiency and Accuracy. In *Proc. of Int. Conf. on Intelligent Robots and Systems*, pp. 2690-2695, Lausanne, Switzerland, Oct. 2002.
- <u>Sequential Monte Carlo Methods in Practice.</u> Arnaud Doucet Nando de Freitas Neil Gordon (eds). Springer-Verlag, 2001, ISBN 0-387-95146-6.
- Isard M. and Blake A. <u>CONDENSATION conditional density propagation for visual tracking.</u> *Int. J. Computer Vision*, 29, 1, 5-28, 1998.
- F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation algorithm for robust, vision-based mobile robot localization. In Conf. on Computer Vision & Pattern Recognition, 1999.
- M. Montemerlo and S. Thrun. Fastslam 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In SODA '01: Proc. of the 12th annual ACM-SIAM symposium on Discrete algorithms, pages 735–744, 2001.
- Doucet, A., de Freitas, N., Murphy, K., and Russell, S. 2000. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In *Uncertainty in Artificial Intelligence*, pp. 176–183.
- <u>Sim, R.[Robert]</u>, <u>Elinas, P.[Pantelis]</u>, <u>Little, J.J.[James J.]</u>, A Study of the Rao-Blackwellised Particle Filter for Efficient and Accurate Vision-Based SLAM, <u>IJCV(74)</u>, No. 3, September 2007, pp. 303-318.
- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit (2003). "FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that provably converges." Eighteenth International Joint Conference on Artificial Intelligence (IJCAI).
- Doucet, A.; Johansen, A.M.; "A tutorial on particle filtering and smoothing: fifteen years later". *Technical report, Department of Statistics, University of British Columbia*. December 2008.
- Arulampalam, M.S., Maskell, S., Gordon, N. and Clapp, T. <u>A Tutorial on Particle Filters for nonlinear/non-Gaussian Bayesian Tracking</u>. IEEE Trans. Signal Processing, Vol. 50, No. 2, 2002. p.174-188.
- <u>Sequential Monte Carlo Methods Homepage</u>
- Monte-Carlo Localization-in-action page