Configuration Space

Configuration Space

Free Space

Obstacles

@1— Robot

X, ¥

Configuration Space

Free Space

Obstacles

@1— Robot
(treat as point object)

X,y

Definition

E A robot configurationis a specification
of the positions of all robot points
relative to a fixed coordinate system

B Usually a configuration is expressed as
a ‘vector” of position/orientation
parameters

What is a Path?

* Qinit
qgoa

1

¥ -\ £
= = .
1 -
N\
2
@)
g - e
>
q .
£0
<
-
al e]
3 82 > pa
X WER T © 2
a S D"
- - .
& $ S8 I

What is a Path?

Tool: Configuration Space

(C-Space C)

\ ¥ '
& y |
- B ‘ N —l““m-m ‘l||| ll“

W,

I
""“l f

—

J:

Tool: Configuration Space
(C-Space C)

A\

—

I

0 \ *||l|||| mﬂllll i

Tool: Configuration Space
(C-Space C)

"
mfz

Articulated Robot Example

Ay

Ao o) q-= (Ch,qZ:---:QIO)

o) OAT

As

As Ay

Configuration Space of a Robot

B Space of all its possible configurations

E But the topology of this space is usually
not that of a Cartesian space

O~
@ —

Configuration Space of a Robot

B Space of all its possible configurations

E But the topology of this space is usually
not that of a Cartesian space

Configuration Space of a Robot

B Space of all its possible configurations

E But the topology of this space is usually
not that of a Cartesian space

Structure of Configuration Space

mltisa
For each point q, there is a 1-to-1 map
between a neighborhood of q and a

Cartesian space R", wheren is the
of C

m This map is a local coordinate system
called a .
C can always be covered by a finite number
of charts. Such a set is called an

Case of a Planar Rigid Robot

workspace

ence direction

Yl r‘efer‘ence oint

5(

» 3-parameter representation: q = (x,y,0)

with 0 € [0,27n). Two charts are needed

* Other representation: q = (x,y,cos0,sin0)

—>c-space is a 3-D cylinder R? x S!
embedded in a 4-D space

Rigid Robot in 3-D Workspace

© q=(xy.zoB.y)
The c-space is a 6-D space (manifold) embedded
ina 12-D Cartesian space. It is denoted by R3xSO(3)

* Other representation: q = (x,y,z,riy,rp,....'s3) where ry,
ry, ..., '35 are the elements of rotation matrix R:

riq e s
Fa1 a2 I3
rs1 I's "'33J

with: °
TR PR S TR

= Ml + FigPa; + Piglys = 0
- det(R) = +1

Parameterization of SO(3)
- Euler angles: (¢,0,y)

z Z

1>2>3>4

+ Unit quaternion:”
(cos 6/2, n; sin 6/2, n, sin 6/2, n; sin 6/2)

A welding robot

A Stuart Platform

Barrett WAM arm

Barrett WAM arm on a mobile platform

Two link path

Thanks to Ken Goldberg

2D Rigid Object

T ——— e e

4
e

b ._H\N§ﬁ

e

The Configuration Space

workspace (C-space

Moving a piano

Metric in Configuration Space

A metric or distance function d in C is a map

d: (qltqZ) < CZ -2 d(qlqu) 2 O
such that:

- d(q1,92) = 0 if and only if q; = g,
- d(91,.92) = d (92.91)
- d(q1.92) < d(q1,93) + d(93.92)

Metric in Configuration Space

Example:
* Robot A and point x of A

* X(q): location of x in the workspace when A is
at configuration g

- Adistance d in C is defined by:
d(q.9) = max,.a |1x(q)-x(q)I1

where ||a - b|| denotes the Euclidean distance
between points a and b in the workspace

Obstacles in C-Space

® A configuration q is collision-free, or free, if
the robot placed at q has null intersection with
the obstacles in the workspace

® The free space F is the set of free
configurations

m A C-obstacle is the set of configurations where
the robot collides with a given workspace
obstacle

m A configuration is semi-free if the robot at this
configuration touches obstacles without overlap

Disc Robot in 2-D Workspace

Rigid Robot Translating in 2-D
CB = BoA = {b-a | aeA, beB}

/ P bl-al
iz I
al @J_ ,,. ‘é
o=6r [} L

Linear-Time Computation of
C-Obstacle in 2-D

vi'(8e V.
7200) T’ (convex polygons)
v b, b, =g
e Vi B Vi,
b, b,
._-,l:n
.F{t(ﬂo) b!'a!tolao) b,-a.(0.0.B,)

% b 1y (Orﬂu 60)

braz(o.ﬂ.ﬂo) - = bl "a)(0.0.gg)

b-33(0,0,80) b,-3:(0,0,6,)

Rigid Robot Translating and
Rotating in 2-D

ANV

=

Free and Semi-Free Paths

= A free path lies entirely in the free
space F

= A semi-free path lies entirely in the
semi-free space

Remarks on Free-Space Topology

- The robot and the obstacles are modeled as closed
subsets, meaning that they contain their boundaries

- One can show that the C-obstacles are closed subsets of
the configuration space C as well

+ Consequently, the free space F is an open subseft of C.
Hence, each free configuration is the center of a ball of
non-zero radius entirely contained in F

* The semi-free space is a closed subset of C. Its
boundary is a superset of the boundary of F

Notion of Homotopic Paths

B Two paths with the same endpoints are
if one can be continuously deformed
into the other

B R x S!example:
T T
. J9

¥ 1, and 1, are homotopic
¥ 7, and 13 are not homotopic
B In this example, infinity of

Connectedness of C-Space

® Cis connected if every two configurations can
be connected by a path

Cis simply-connected if any two paths
connecting the same endpoints are homotopic
Examples: R? or R?

Otherwise C is multiply-connected

Examples: S! and SO(3) are multiply- connected:

- In S!, infinity of homotopy classes
- In SO(3), only two homotopy classes

Classes of Homotopic Free Paths

Probabilistic Roadmaps PRMs

Rapidly-exploring Random Trees

A point P in C is randomly chosen.
he nearest vertex in the RRT Is selected.

A new edge Is added from this vertex in the
direction of P, at distance .

The further the algorithm goes, the more
space IS covered.

Rapidly-expanding Random Trees

O .
Starting vertex

Rapidly-expanding Random Trees

O
Vertex randomly drawn

Rapidly-expanding Random Trees

©

O
Nearest vertex

Rapidly-expanding Random Trees

©

O‘Y/" New vertex

The vertex is In Cfree

Rapidly-expanding Random Trees

e

Vertex randomly drawn
O

Rapidly-expanding Random Trees

./Q Nearest point

Rapidly-expanding Random Trees

./@\T.he vertex Is Iin Cfree
\ New vertex

Rapidly-expanding Random Trees

o e

Rapidly-expanding Random Trees

® Vertex randomly drawn

o e

Rapidly-expanding Random Trees

©

.Nirest vertex

Rapidly-expanding Random Trees

New vertex

N

Rapidly-expanding Random Trees

N

And it continues...

RRT-Connect

* We grow two trees, one from the beginning
vertex and another from the end vertex

 Each time we create a new vertex, we try to
greedily connect the two trees

RRT-Connect: example
® Start

@ Goal

RRT-Connect: example

o Random vertex

RRT-Connect: example

RRT-Connect: example

'\ We greedily connect the
@ - bottom tree to our new
vertex

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

Obstacle found !

RRT-Connect: example

.\

Now we swap roles !

RRT-Connect: example

.\

Now we swap roles !

RRT-Connect: example

.\

We grow the bottom tree

RRT-Connect: example

.\

@
Now we greedily try to connect

And we continue...

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

N :

s ol

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

.\

made !

/—L / Connection

RRT-Connect: example

Q\

e,

/)—O\O/

Now we have a solution !

RRT-Connect: example

Q\

Lann U

/)—O\O/

Last step: path smoothing

RRT-Connect: example

Q\

St

»/o\o/

Last step: path smoothing

An RRT In 2D

AT
. ‘ oy
5 |17 e
e

N AL ALY
R [N ,' 9,
K b AR T o\ PRI
AGH ¢ =
o m‘"" Z 4 t / '
b g i
o & / & : 7 5 /‘(
I / ""g
[P

Example from: http://msl.cs.uiuc.edu/rrt/gallery 2drrt.html

A Puzzle solved using RRTSs

The goal is the separate the two bars from each other. You might have seen a puzzle like this
before. The example was constructed by Boris Yamrom, GE Corporate Research & Development
Center, and posted as a research benchmark by Nancy Amato at Texas A&M University. It has
been cited in many places as a one of the most challenging motion planning examples. In 2001, it
was solved by using a balanced bidirectional RRT, developed by James Kuffner and Steve
LaValle. There are no special heuristics or parameters that were tuned specifically for this
problem. On a current PC (circa 2003), it consistently takes a few minutes to solve.

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The
video shows an X-Wing fighter that must fly through structures on a lunar base before entering
the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on
the Algorithmic Foundations of Robotics, 2000.

