

CS-417 INTRODUCTION TO ROBOTICS AND INTELLIGENT SYSTEMS

Ultrasonic Sensing and Mapping

Ioannis Rekleitis

Introduction to Mapping

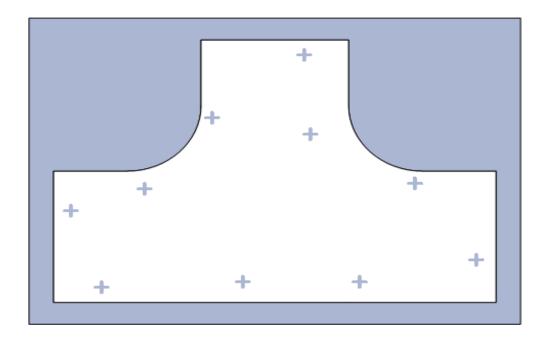
- What the world looks like?
- Knowledge representation
 - Robotics, AI, Vision
- Who is the end-user?
 - Human or Machine
- Ease of Path Planning
- Uncertainty!

Simultaneous Localization And Mapping

SLAM is the process of building a map of an environment while, at the same time, using that map to maintain the location of the robot.

- Problems for SLAM in large scale environments:
 - Controlling growth of uncertainty and complexity
 - Achieving autonomous exploration

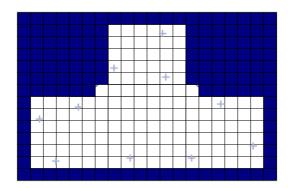
Consider this Environment:

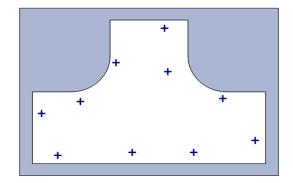


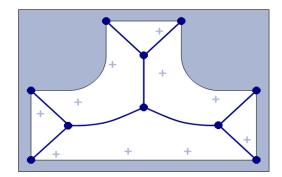
Three Basic Map Types

Topological:

Collection of nodes and their interconnections





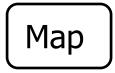


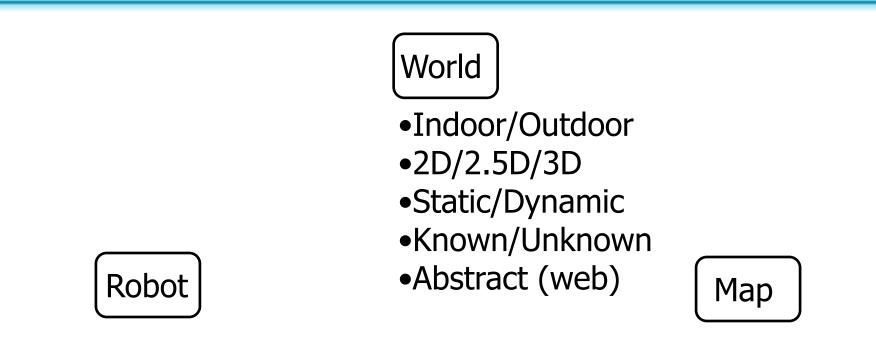
Three Basic Map Types

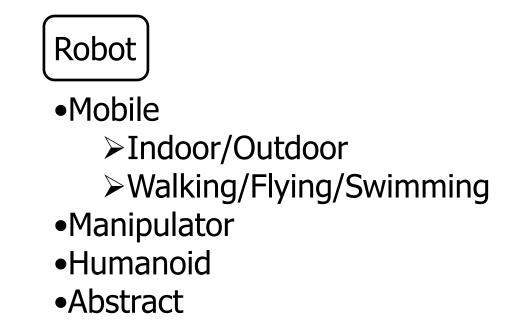
	Grid-Based	Feature-Based	Topological
Construction	Occupancy grids	Kalman Filter	Navigation control laws
Complexity	Grid size <i>and</i> resolution	Landmark covariance (N ³)	Minimal complexity
Obstacles	Discretized obstacles	Only structured obstacles	GVG defined by the safest path
Localization	Discrete localization	Arbitrary localization	Localize to nodes
CS-417 Introduction to Ro	Frontier-based exploration botics and Intelligent Systems	No inherent exploration	Graph exploration

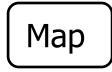
Other Maps

	Appearance	Geometry	Mesh
	Based	Based	Based
Construction	Images	Lines, planes, etc	Mesh
Path Planning	N/A	Geometry based	Graph based
Localization	Arbitrary	Arbitrary	Arbitrary
	localization	localization	localization



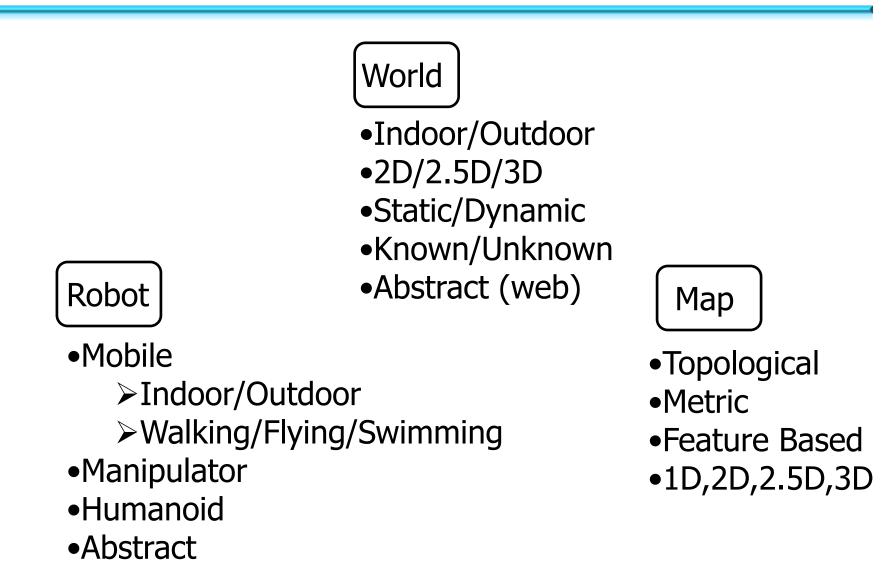




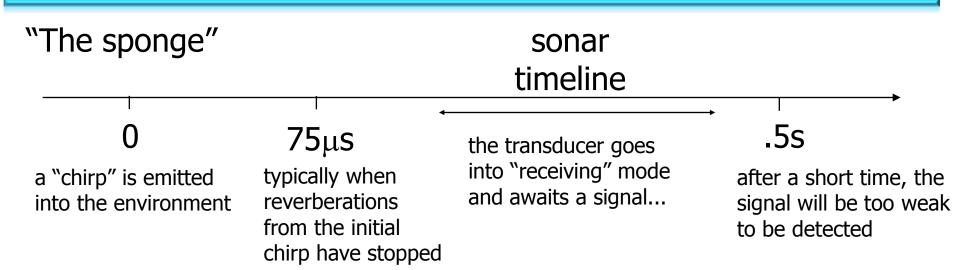




- Topological
- •Metric
- •Feature Based
- •1D,2D,2.5D,3D



CS-417 Introduction to Robotics and Intelligent Systems

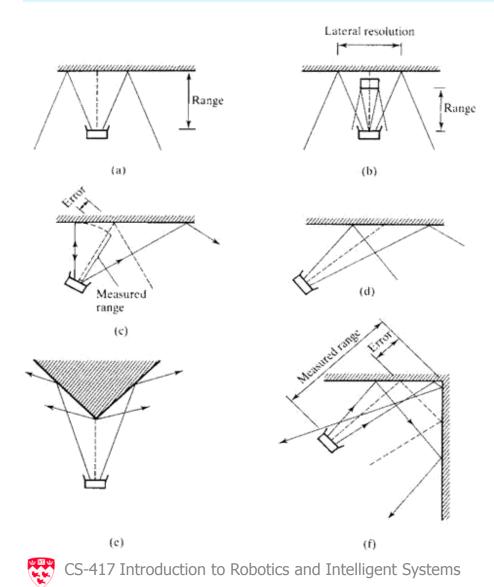




Polaroid sonar emitter/receivers

Why is sonar sensing limited to between ~12 in. and ~25 feet ?

Sonar effects



(a) Sonar providing an accurate range measurement

(b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response

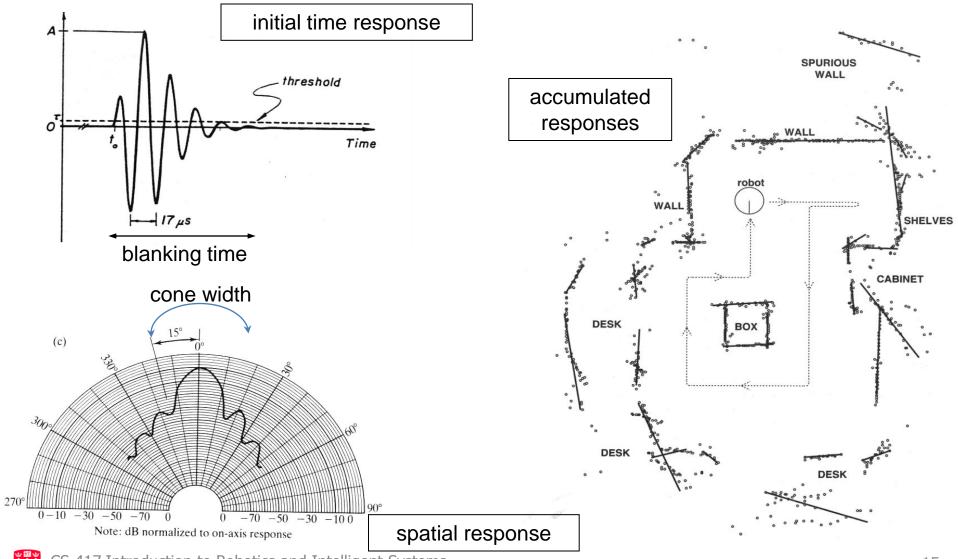
(d) Specular reflections cause walls to disappear

(e) Open corners produce a weak spherical wavefront

(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

resolution: time / space

Sonar modeling

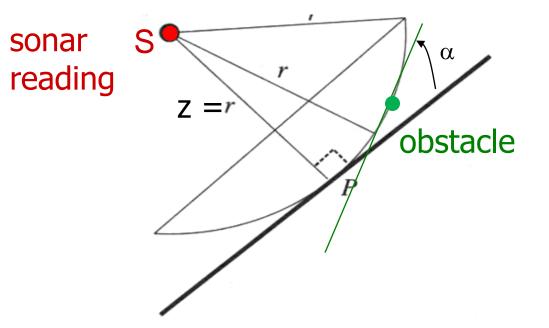


CS-417 Introduction to Robotics and Intelligent Systems

Sonar Modeling

response model (Kuc)

$$h_R(t, z, a, \alpha) = \frac{2c \cos \alpha}{\pi a \sin \alpha} \sqrt{1 - \frac{c^2(t - 2z/c)^2}{a^2 \sin^2 \alpha}}$$



 \bullet Models the response, $h_{\rm R},$ with:

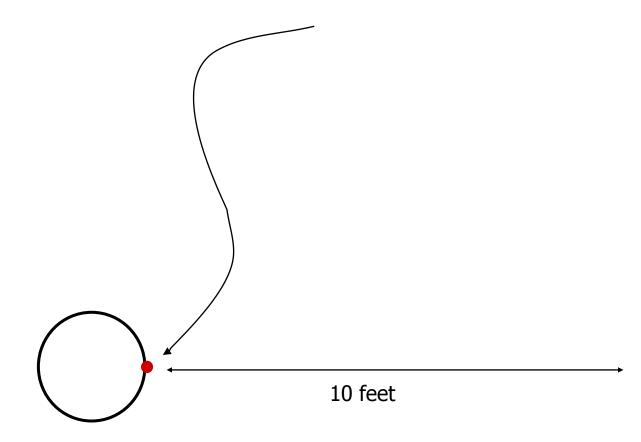
- c = speed of sound
- a = diameter of sonar element
- t = time
- z = orthogonal distance
- α = angle of environment surface

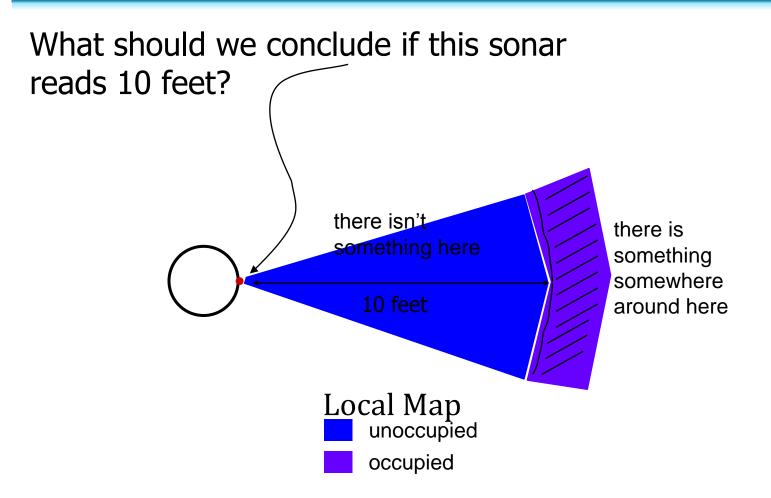
• Then, add noise to the model to obtain a probability: p(S | o)

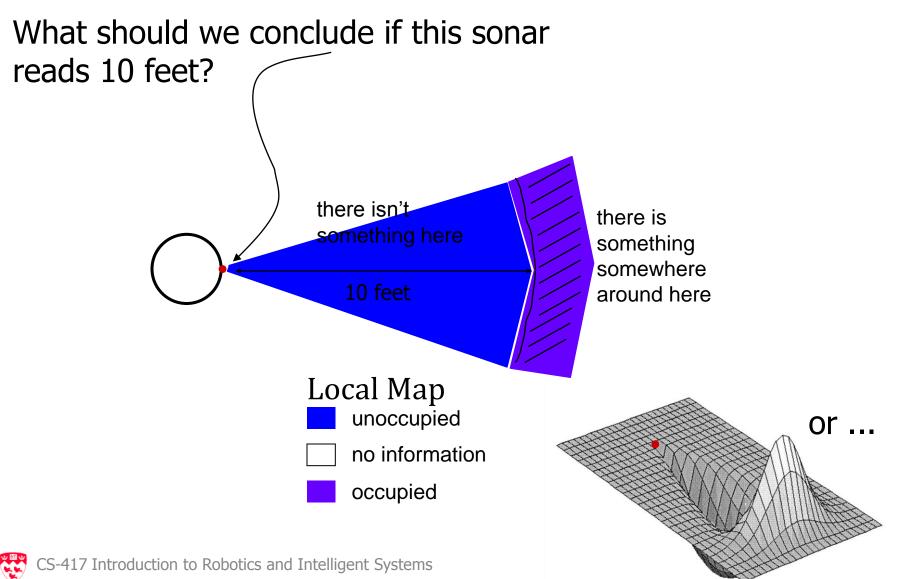
chance that the sonar reading is S,

given an obstacle at location O

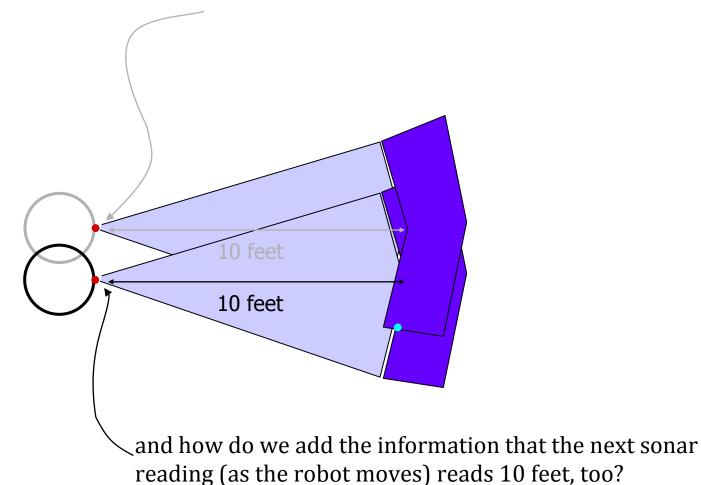
What should we conclude if this sonar reads 10 feet?





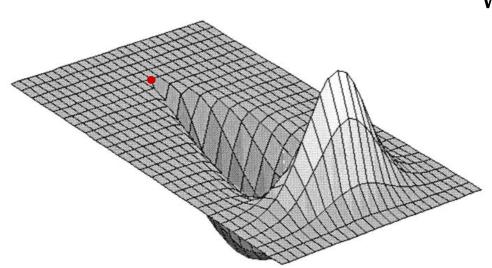


What should we conclude if this sonar reads 10 feet...



Combining sensor readings

- The key to making accurate maps is combining lots of data.
- But combining these numbers means we have to know what they are !

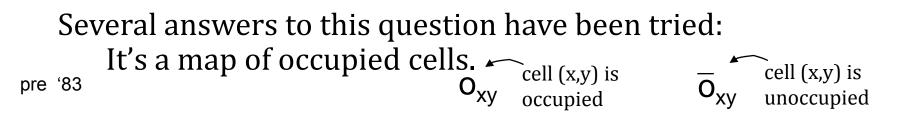


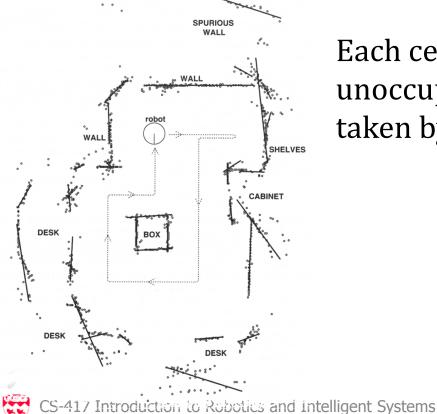
what is in each cell of this sonar model / map?

What should our map contain ?

- small cells
- each represents a bit of the robot's environment
- larger values => obstacle
- smaller values => free

What is it a map of?



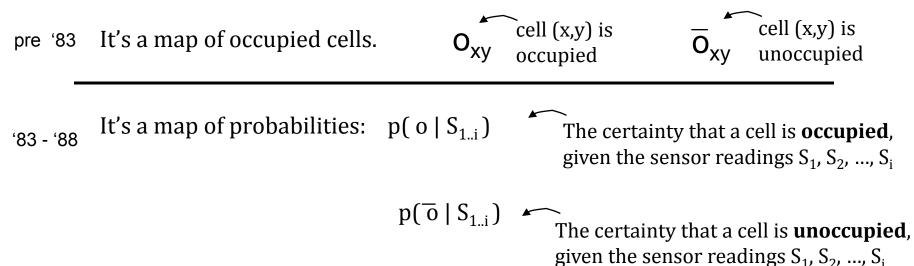


Each cell is either occupied or unoccupied -- this was the approach taken by the Stanford Cart.

What information **should** this map contain, given that it is created with sonar ?

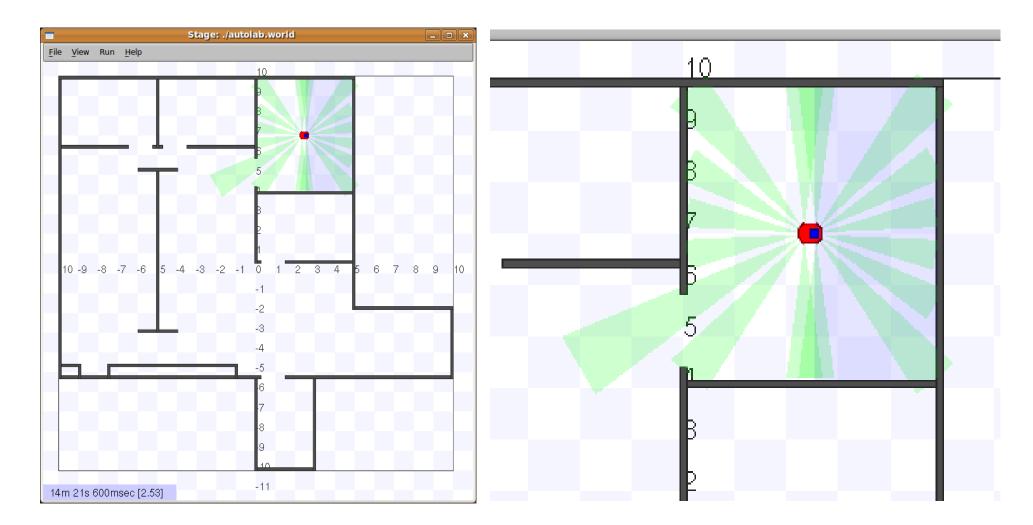
What is it a map of ?

Several answers to this question have been tried:

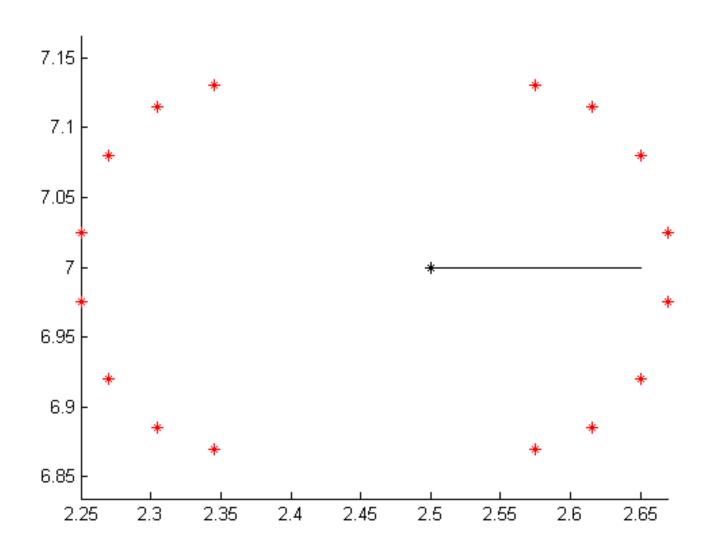


- maintaining related values separately?
- initialize all certainty values to zero
- contradictory information will lead to both values near 1
- combining them takes some work...

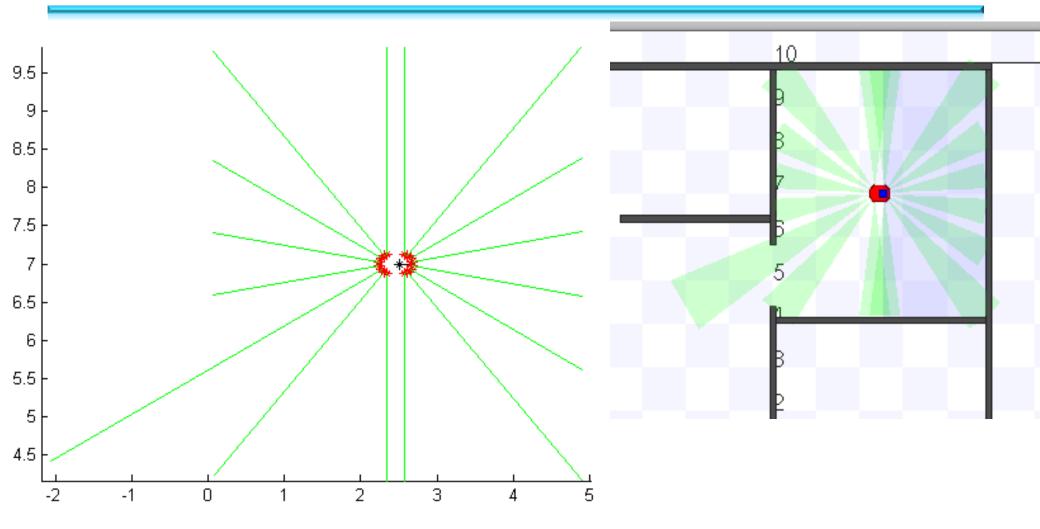
Sonars from P/S



Sonar Locations Pioneer 3DX Robot



Sonar Data Calculation

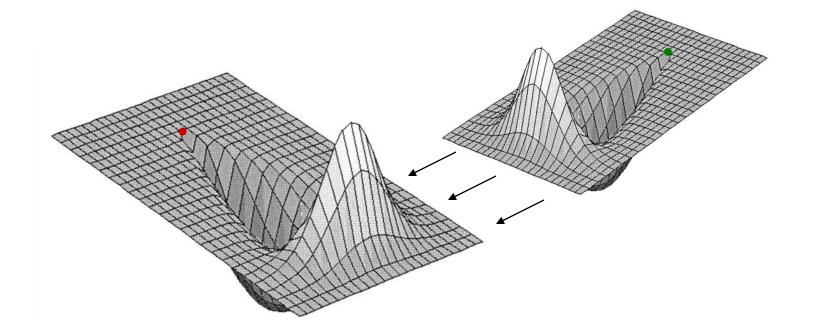


A Geometric (non-probabilistic) Approach

Arc-Carving

CS-417 Introduction to Robotics and Intelligent Systems

Combining probabilities



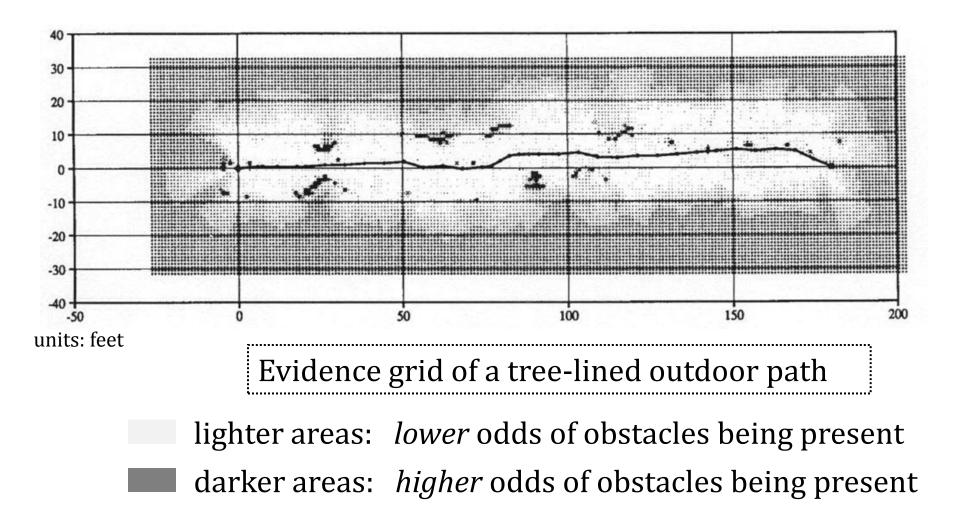
How to combine two sets of probabilities into a single map?

What is it a map of ?

Several answers to this question have been tried: O_{xy} cell (x,y) is unoccupied O_{xy} cell (x,y) is occupied It's a map of occupied cells. pre '83 The certainty that a cell is **occupied**, It's a map of probabilities: $p(o | S_{1,i})$ '83 - '88 given the sensor readings S₁, S₂, ..., S_i The certainty that a cell is **unoccupied**, $p(\overline{o} \mid S_{1...i})$ given the sensor readings $S_1, S_2, ..., S_i$ It's a map of *odds*. The odds of an event are expressed *relative* to the complement of that event. probabilities The odds that a cell is **occupied**, given the sensor readings $S_1, S_2, ..., S_i$ $odds(o \mid S_{1...i}) = \frac{p(o \mid S_{1...i})}{p(\overline{o} \mid S_{...i})}$ CS-417 Introduction to Robotics and Intelligent Systems

29

An example map



how to combine them?

Conditional probability

Some intuition...

	The probability of event o , given event S .	
p(o S) =	The probability that a certain cell ${f o}$ is occupied, given that the robot sees the sensor reading ${f S}$.	
	The probability of event S , given event o .	
$p(S \mid o) =$	The probability of event 3 , given event 0 .	

- •What is really meant by conditional probability ?
- •How are these two probabilities related?

- Conditional probabilities

 $p(o \land S) = p(o \mid S) p(S)$

- Conditional probabilities

$$p(o \wedge S) = p(o \mid S) p(S)$$

- Bayes rule relates conditional probabilities

$$p(o \mid S) = \frac{p(S \mid o) p(o)}{p(S)}$$
Bayes rule

CS-417 Introduction to Robotics and Intelligent Systems

- Conditional probabilities

$$p(o \wedge S) = p(o \mid S) p(S)$$

- Bayes rule relates conditional probabilities

$$p(o \mid S) = \frac{p(S \mid o) p(o)}{p(S)}$$
Baye

Bayes rule

- So, what does this say about odds($o \mid S_2 \wedge S_1$) ?

Can we update easily ?

So, how do we combine evidence to create a map?

What we want -the new value of a cell in the map odds($o \mid S_2 \land S_1$) after the sonar reading S_2 What we know -odds($o | S_1$) $p(S_i | o) \& p(S_i | \overline{o})$

the old value of a cell in the map (before sonar reading S_2)

the probabilities that a certain obstacle causes the sonar reading S_i

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$

definition of odds

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$
$$= \frac{p(S_2 \mid o) p(S_1 \mid \overline{o}) p(\overline{o})}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(\overline{o})}$$

definition of odds

Bayes' rule (+)

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$

 $=\frac{p(S_2 \wedge S_1 \mid o) p(\overline{o})}{p(S_2 \wedge S_1 \mid \overline{o}) p(o)}$

definition of odds

$$\frac{p(S_2 \mid o) p(S_1 \mid o) p(\overline{o})}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(o)}$$

$$= \frac{p(S_2 \mid o) p(o \mid S_1)}{p(S_2 \mid \overline{o}) p(\overline{o} \mid S_1)}$$

 $\begin{array}{l} \text{conditional} \\ \text{independence of} \\ S_1 \text{ and } S_2 \end{array}$

Bayes' rule (+)

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
 definition of odds

$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$
Bayes' rule (+)

$$= \frac{p(S_2 \mid o) p(S_1 \mid o) p(o)}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(\overline{o})}$$
conditional
independence of

$$S_1 \text{ and } S_2$$

$$= \underbrace{\frac{p(S_2 \mid o) p(o \mid S_1)}{p(S_2 \mid \overline{o}) p(\overline{o} \mid S_1)}}_{p(\overline{o} \mid S_1)}$$
Bayes' rule (+)
computed values

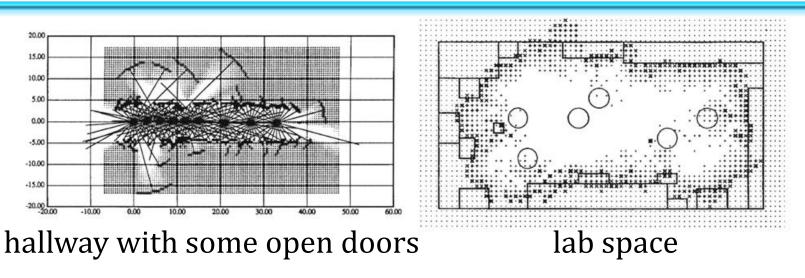
the sensor model

pre

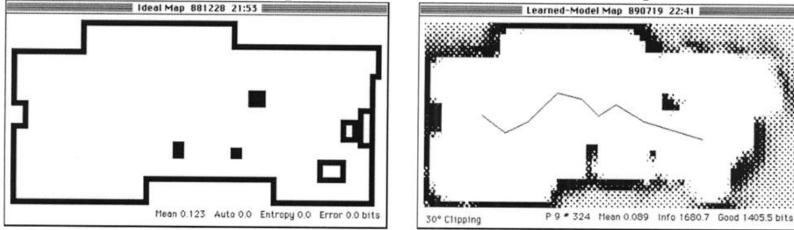
Update step = multiplying the previous odds by a precomputed weight.

CS-417 Introduction to Robotics and Intelligent Systems

Evidence grids



known map and estimated evidence grid

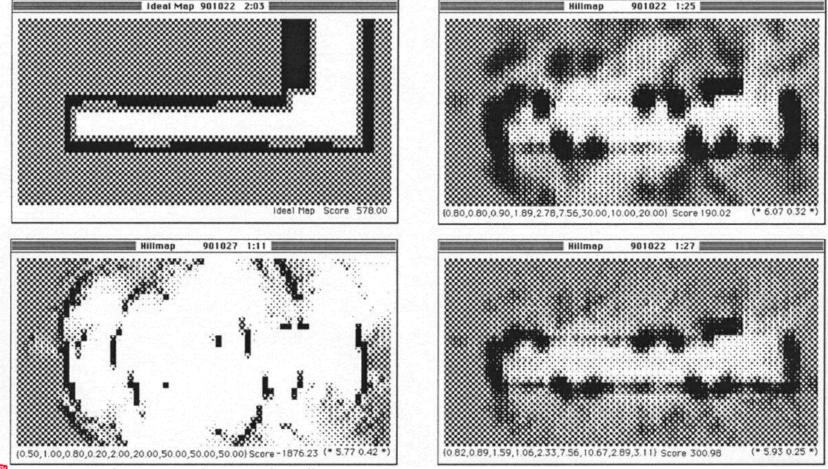


CMU -- Hans Moravec

Learning the Sensor Model

The sonar model depends dramatically on the environment -- we'd like to *learn* an appropriate sensor model

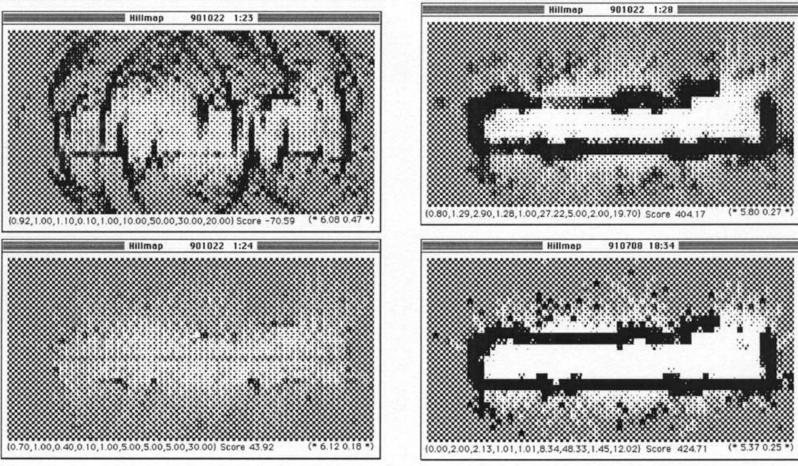
rather than hire Roman Kuc to develop another one...



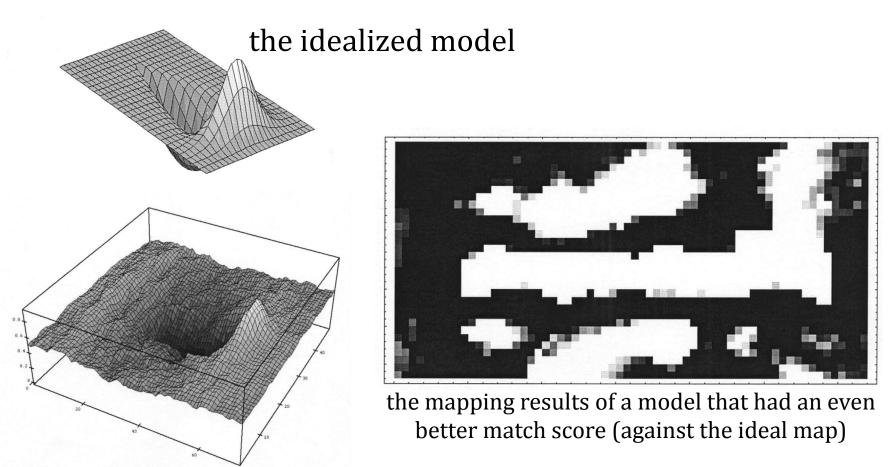
Learning the Sensor Model

The sonar model depends dramatically on the environment -- we'd like to *learn* an appropriate sensor model

rather than hire Roman Kuc to develop another one...



Learning the Sensor Model

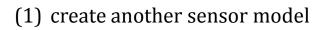


part of the learned model

CS-417 Introduction to Robotics and Intelligent Systems

Sensor fusion

Incorporating data from other sensors -- e.g., IR rangefinders and stereo vision...



(2) update along with the sonar

