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Abstract. The exterior surface of the brain is characterized by a jux-
taposition of crests and troughs that together form a folding pattern.
The majority of the deformations that occur in the normal course of
adult human development result in folds changing their length or width.
Current statistical shape analysis methods cannot easily discriminate
between these two cases. Using discrete exterior calculus and Tikhonov
regularization, we develop a method to estimate a dense orientation field
in the tangent space of a surface described by a triangulated mesh, in the
direction of its folds. We then use this orientation field to distinguish be-
tween shape differences in the direction parallel to folds and those in the
direction across them. We test the method quantitatively on synthetic
data and qualitatively on a database consisting of segmented cortical
surfaces of 92 healthy subjects and 97 subjects with Alzheimer’s disease.
The method estimates the correct fold directions and also indicates that
the healthy and diseased subjects are distinguished by shape differences
that are in the direction perpendicular to the underlying hippocampi,
a finding which is consistent with the neuroscientific literature. These
results demonstrate the importance of direction specific computational
methods for shape analysis.

1 Introduction

The exterior surface of the human brain has a characteristic shape formed by a
collection of folds. A fold can be described in loose terms as an oriented structure
where the surface curvature has a greater magnitude in the direction perpendic-
ular to its orientation than in the direction parallel to it. The study of the shape
of folds on surfaces is particularly relevant in medical imaging. For example, it
has been hypothesized by [1] that folds on the exterior surface of the brain are
the result of the underlying mechanical tensions that force the surface to sink
at certain locations. Thus, numerous mechanical models have been developed to
analyze the shape of folding patterns and to find correlations among particular
folds as a function of disease or other factors, such as age [2–5].
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If one wishes to mathematically characterize the variability of surface shape
in a population, a statistical shape model must be used and two ingredients are
necessary. The first is a notion of the average shape and the second is an ap-
propriate metric to provide a distance measure between two exemplars. In the
case of brain imaging, the cortical surface is often represented as a single surface
and continuous deformation models are built using diffeomorphic maps to match
the fold on each exemplar surface with those on a population average. Several
metrics has been proposed to describe how two surfaces are locally dissimilar
(see e.g. [3, 6, 7]). These metrics however lack specificity when it comes to dif-
ferentiating between a deformation that occurs in the direction parallel to a fold
and one in the direction perpendicular to it. Certain shape differences, such as
a relative depth difference between two folds, can only occur when the spacing
between two consecutive crests is altered. Thus, in the context of medical image
analysis, the interpretation of the results can strongly depend on the orientation
of the shape deformation.

To address the above problem, we develop a method to estimate a dense
orientation field on a surface, such that it is optimally oriented along the direction
of its folds1. A fold on a surface is comprised by locations where the principal
curvature is high in the direction perpendicular to it, and is low in the direction
along it. We thus use this description of a fold to estimate an orientation field
using Tikhonov regularization. The approach we develop is motivated by the
literature on smoothing direction fields in images, such as the techniques in [8–
10]. These methods cannot be directly applied to our problem. For example, in
the method in [8] the underlying vector field is embedded in Euclidean space
whereas we need to embed the orientation field into the tangent space of the
surface. For this purpose, we use the discrete exterior calculus framework of [11]
to develop a simple computational method for a discrete triangulated mesh. The
triangles provide an estimate of the tangent space and the orientation field is
embedded within each triangle. The mesh surface is then unfolded locally to
solve the variational problem. Once the orientation field is found, we provide a
statistical measure of shape difference to determine if two folds differ in length
or in width.

We validate our approach quantitatively on synthetic surfaces, where the un-
derlying ground truth fold orientation is known, and qualitatively on a database
comprised of a combination of cortical surfaces of healthy subjects and those of
patients with Alzheimer’s disease. We find that on a surface with known ground-
truth, the estimated orientation fields follow the expected orientation. We then
provide a metric for oriented shape differences and test this metric on the popula-
tion affected by Alzheimer’s disease. We find that the hippocampi are atrophied
(p < 0.001) in the direction perpendicular to an associated fold, which is con-
sistent with the neuroscientific literature. Our results thus imply that increased
specificity is achieved by orienting the analysis of shape difference.

1 In this paper, a direction field is a vector field where all vectors are constrained to
have unit length. An orientation field is a direction field where opposing vectors are
considered equivalent.
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2 Finding the Orientation of Folds

We begin by developing an energy functional which when minimized results in
a smooth orientation field on a surface, which follows the direction of a folding
pattern. To get an intuitive sense of our goals, consider Fig. 1 which illustrates
a portion of a cortical surface. A crest (or ridge) is shown in red, with a nearby
parallel trough (or valley) in yellow. A fold is characterized by a juxtaposition
of crests and troughs with the same orientation. In the case of the human brain
this is an approximation that is correct for the most part, except at pattern
singularities. The dense orientation field estimated by our method corresponds
to the local orientation of crests and troughs. In Section 2.2 we describe how our
solution can be discretized and solved numerically on a triangulated mesh. Then,
in Section 2.3, we present a statistical shape model which uses the estimated
orientation field to differentiate between shape differences which occur in the
direction of a fold and those which occur across it.

Fig. 1. A dense orientation field that follows crests and troughs

2.1 A Minimum Principal Curvature Orientation Field

We first develop a mathematical model of a fold on a surface. Consider a Rie-
mannian manifold (S, g), where g is a Riemannian metric. Let the unit normal
vector to the surface be n. Let v be a vector field tangent to the surface S and let
∇ be the torsion-free affine connection on S. Using this notation, the associated
covariant derivative along v is ∇v and the shape operator S(v) is given by ∇vn.
Covariant derivation being a linear operation, with a slight abuse in notation
the action of the shape operator S on the vector field can be expressed as

S(v) = Sv. (1)

Because the affine connection ∇ is torsion free, the second fundamental form is
symmetric, i.e., S = St.

We first define an orientation field on a surface and provide a differentiable
metric on orientation fields, which will later be used to set up an appropriate
variation problem. Let a unit-norm vector field within the tangent space of the
surface S be defined such that the norm of any vector is equal to 1:

v : S �→ TpS, ‖v(p)‖ = 1 . (2)
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We define an orientation field as a unit-norm vector field which is invariant under
rotations of π radians. For example, the structure tensor, defined as

M(v) = v ⊗ v, (3)

is invariant under rotations of π radians (M(v) = M(−v)). It is often more con-
venient to parametrize the space of possible orientations using angles θ. A unit
length vector v is then expressed as vθ = (cos(θ), sin(θ)). The θ parameteriza-
tion allows us to define a natural Riemannian metric between two orientations
vθ1 and vθ2 as

dRiemann(vθ1 ,vθ2)
2 = minn(θ1 − θ2 + nπ)2, n ∈ Z. (4)

However, this metric lacks differentiability at the point θ1 − θ2 + nπ = π/2. In
practice, the lack of differentiability makes it difficult to find a global minimum
of a variational problem using a gradient descent approach. For this reason, we
follow the approach described in [8, 9] which is to approximate the Riemannian
metric by a differentiable metric which is locally equivalent to Equation 4 if the
orientation field is continuous. Let the structure tensor be given as

M(vθ) =
(

cos2(θ) sin(θ)cos(θ)
sin(θ)cos(θ) sin2(θ)

)
. (5)

Let Mθ = M(vθ), and let a basis vector of the tangent space of Mθ be given as

Tθ =
∂Mθ

∂θ
=

(
−sin(2θ) cos(2θ)
cos(2θ) sin(2θ)

)
. (6)

Let the contraction : be defined between two matrices A and B as A : B = trace
(AtB) and the associated Frobenius norm defined as ‖A‖2

F = A : A. We define the
Euclidean orthonormal projection of Mθ2 onto the tangent space of Mθ1 as

ΠMθ1
(Mθ2) = Mθ2 − Tθ1

Tθ1 : Mθ2

‖Tθ1‖2
F

. (7)

We then define a differentiable metric between M1 and M2 as

d(Mθ1 , Mθ2) =
1
2
‖ΠMθ1

(Mθ2)‖F . (8)

The following theorem shows d(Mθ1 , Mθ2) and dRiemann(vθ1 ,vθ2) are locally
equivalent if the orientation field is continuous.

Theorem 21

limθ2→θ1

d(Mθ1 , Mθ2)
dRiemann(vθ1 ,vθ2)

= 1

Proof. Choose θ′2 = θ2 + nπ, n ∈ Z such that (θ1 − θ′2 + nπ)2 is minimum for
n = 0 and perform a Taylor series expansion of d(Mθ1 , Mθ′

2
) around Mθ1 to

obtain that

d(Mθ1 , Mθ2) = dRiemann(vθ1 ,vθ2)
(
1 + O

(
dRiemann(vθ1 ,vθ2)

2
))

.

Thus, in the limit, the two metrics are equivalent. �
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We now use this differentiable structure to set up a variational problem whose
solution will provide a direction field oriented along the crest lines and trough
lines of a surface. A crest on a surface is given by a curve γ ⊂ S such that
the curvature of S in the direction perpendicular to γ is positive, and reaches a
maximum in magnitude. A trough has the same property, except that the sign
of the curvature in the direction perpendicular to γ is now negative. Hence, to
estimate the presence of a fold in a given orientation we define the following
surface curvature energy function

Ecurvature(vθ) =
∫
S
‖Svθ‖2dS. (9)

If λ2
1 < λ2

2 are the eigenvalues of StS with associated eigenvectors v1,v2, then
the minimum value of Ecurvature is achieved for v = v1.

A fold is characterized by a juxtaposition of crests and troughs with the same
orientation (see Fig. 1). To capture this idea, we define a second energy functional
which measures the local smoothness of the orientation field

Esmoothness(Mθ) =
∫
S
‖∇Mθ‖2dS. (10)

We will deem a crest γ1 and a trough γ2 to have roughly the same orientation
if there is an orientation field v on S such that v is tangent to both γ1 and γ2

and such that the energy functional Esmoothness(Mθ) is small. Our goal is not to
explicitly locate the crests and troughs but rather to directly find an orientation
field that minimizes both Equations 9 and 10. This leads to the following estimate
for a fold orientation, based on a regularization functional:

Mθ = argminM∗
θ

(αEsmoothness(M∗
θ ) + Ecurvature(M∗

θ )) . (11)

Here Esmoothness is the smoothness term, Ecurvature is the data attachment term
and α is a constant to balance to the two.

We can then find the first variation of Equation 11 to find a minimum via the
gradient descent equation

∂Mθ

∂t
= ΠMθ

(
αΔSMθ − StS

)
. (12)

2.2 Discrete Heat Diffusion of the Orientation Field on a
Triangulated Mesh

To solve Equation 11 on a discrete triangulated mesh, we need to be able to
smooth an orientation field on a surface. The initial orientation field is given
by the eigendirection with lowest absolute eigenvalue of the shape operator. We
thus first describe an expression for the shape operator S and then provide a
numerical scheme to diffuse the orientation field on each triangle. We assume that
the orientation field is constant over each triangle and use finite volume methods.
Since the normal vector of a triangle is constant on it, the tangent space of a
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triangle is uniquely defined. More importantly, we can use parallel transport to
transport the orientation field between any two neighboring triangles in a unique
fashion.

The shape operator simply describes the rate of change of the unit normal
between two neighboring triangles, as explained in [12]. On an orientable tri-
angulated mesh, the unit normal vector is uniquely defined for every triangle,
by choosing one of the two possible directions. Let the set of all triangles be
denoted {	i, i = 1, . . . , N} and let pi,j , j = 1, 2, 3, be the three vertices of tri-
angle 	i. We denote the oriented edges of the triangle as li,1 = pi,2 −pi,1, li,2 =
pi,3 −pi,2, li,3 = pi,1 −pi,3 and by ei,j the unit normal vector that points in the
same direction as li,j . We denote by ni the unit normal of the triangle and by
ni,j , j = 1, 2, 3 the unit normals of the neighboring triangles (those with which
an edge is shared). Finally, let Ai be the area of the triangle and e⊥i,j the unit
outward pointing vector that is perpendicular to both ei,j and ni. The shape
operator Si then measures the difference in the orientation of the normal vec-
tors ni with the one of its neighboring triangles ni,j weighted by length of the
adjacent edges [12]:

Si =
1
Ai

∑
j∈{1,2,3}

‖li,j‖M(e⊥i,j) < e⊥i,j ,ni,j − ni > . (13)

We now need to diffuse the orientation field on a discrete triangulated surface so
that it is restricted to the tangent space of a surface. The solution we propose
to this problem is to locally unfold the surface around a triangle to place the
neighboring triangles within the same Euclidean plane. Once the solution is com-
puted, it can be mapped back onto the original surface. We write the orientation
vector Mθ as a general Euclidean tensor in R

3 × R
3. Suppose that Mθ,i is our

current estimate at 	i and Mθ,i,j, j = 1, 2, 3 is the estimate at the neighboring
triangles. To locally unfold the surface, we need to rotate the estimate at the
neighboring triangles Mθ,i,j such that they lie in the same plane as Mθ,i. To
do this, we need to pick a rotation matrix such that ni,j is mapped onto ni.
Also, we already know that an edge ei,j that separates two triangles is already
in the tangent space of both triangles and hence should remain fixed. These two
constraints uniquely define the orientation matrix that maps the tangent space
of neighboring triangles:

Ri,j = ei,j ⊗ ei,j + ni ⊗ ni,j + (ei,j × ni) ⊗ (ei,j × ni,j). (14)

Obviously, since the orientation field is always perpendicular to the normal vector
to the triangle, it is not necessary to rotate the entire space, but only the plane
that contains the triangle. On 	i, we use local coordinates ui,k, k = 1, 2 such
that ui,1 × ui,2 = ni, as a basis to describe the orientation field. We express
the orientation field using the ui,j coordinates for each triangle. Let ui,j,k be
the coordinate frame of the triangle 	i,j . Then the rotation matrix between the
tangent space of 	i and 	i,j is given as

Ri,j = [ui,1,ui,2]
(
ei,j ⊗ ei,j + (ei,j × ni) ⊗ (ei,j × ni,j)

)
[ui,j,1,ui,j,2]t (15)
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To perform diffusion on a triangulated mesh, we also need a discrete Laplace-
Beltrami operator. In the case of a scalar density field over a triangle, an expres-
sion for the discrete Laplace-Beltrami operator in terms of differences between
the value of the density field at 	i and its neighboring triangles is given in [12].
Let Ai,j be the area of triangle 	i,j and let F be a scalar function on the mesh
such that F (	i) = Fi. We denote by βi,j and γi,j the opposite angles of triangles
	i and 	i,j . Then, the discrete Laplace-Beltrami operator is

(ΔSF )i =
1
Ai

3∑
j=1

1
cot(βi,j) + cot(γi,j)

(Fi − Fi,j) . (16)

If we write F = (F1, . . . , FN )t as a vector, over a discrete triangular mesh ΔS
can be written as a product of two matrices ΔS = A−1L, where A is a diagonal
matrix whose diagonal entries are given by Ai and L is a sparse positive semi-
definite symmetric matrix whose entries are given by Equation 16.

We can now express the Laplace-Beltrami operator for an orientation field
using the rotation matrices given by Equation 15:

(ΔSMθ)i =
1
Ai

3∑
j=1

1
cot(βi,j) + cot(γi,j)

(
Mθ,i − Ri,jMθ,i,jR

t
i,j

)
. (17)

Now let Mθ,i be expressed as a vector of coordinates a1ui,1⊗ui,1+bi(ui,1⊗ui,2+
ui,2 ⊗ ui,1) + ciui,2 ⊗ ui,2. Then, if we write Mθ = [a1, b1, c1, . . . , aN , bN , cN ],
ΔS can be written as ΔS = A−1L with L a sparse symmetric positive semi-
definite matrix with entries given by Equation 17. This provides us with an
efficient numerical scheme to find a minimum of the variational problem given
in Equation 11.

2.3 An Oriented Shape Deformation Model

Once a dense orientation field v in the direction of folds has been found it is pos-
sible to develop a shape deformation model that is specific to deformations that
occur either along the orientation of a fold or in the direction parallel to it. As-
sume that we have a set of surfaces Sl, l = 1, . . . , n with a set of diffeomorphisms
that map these surfaces onto a template average S̄:

φl : Sl → S̄. (18)

Examples of algorithms to find diffeomorphisms that match the shape of the
surfaces based on the folding patterns can be found in [4, 13]. Suppose that 	̄i

is a triangle on S̄ and φ−1
l is its mapping on Sl. We note by DS̄ the differential

in the triangle’s coordinate, given as

DiS̄ = [̄li,1, l̄i,2]. (19)

The grad operator, given by the dual of the differential is

∇iS̄ = (DiS̄tDiS̄)−1DiS̄t. (20)
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The dilation of the triangle 	̄i by the diffeomorphism φl is then given by

Di,l = (DiSl∇iS̄)t(DiSl∇iS̄). (21)

The directional dilatation is then given as

Di,l,v = vt
i,eucDi,lvi,euc, (22)

where vi,euc is the projection of the tangent vector onto the corresponding 3× 1
vector in Euclidean space R

3. From Equation 21, we see that Di,l,v is always
positive. This means that the dilation can be modeled using a log-normal distri-
bution as

log(Di,l,v) ∼ ˜log(Di,v) + εi,l, (23)

where ˜log(Di,v) is the average dilation over all surfaces Sl and εi,l is a random
variable which is normally distributed and has finite variance. The likelihood of
such a model can be determined using a standard Student t-test while correcting
for multiple comparisons, using the method described in [14].

3 Results

In this section we validate our method on synthetic data, for which the ground
truth (desired) orientation field is known. We then present experimental results
on a population of surfaces extracted from MRI scans of elderly humans.

3.1 Quantitative Validation

We created a circle relief on a flat background as our first test surface (see
Fig. 2(a)). On this surface, we expect that the detected fold orientation will
be tangential to the radial direction. To generate the figure, we used a simple
grayscale image of the desired circle relief and randomly placed points on the
resulting height function. These points were then triangulated using the approach
of [15]. A second “T” relief surface, shown in Fig. 2(b), was also used. On this
surface, we expect that the detected fold orientation will be tangential to the
edges of the “T” . Equation 12 was solved on both of these surfaces. We stopped
the simulation whenever the following ratio fell below a chosen threshold:

sup (‖ΠMθ
(αΔSMθ − StS) ‖)

sup (‖ΠMθ
(αΔSMθ) ‖ + ‖ΠMθ

(StS) ‖) < ε . (24)

For the circle relief, we initialized our algorithm using random orientations. We
picked a constant of α = 10 for the smoothness term and an ε of 1e− 4 in Equa-
tion 24. Visual results for the circle relief are shown in Fig. 2(c). The colormap
shows the difference between the estimated orientation of the fold and the ex-
pected orientation. The recovered orientation field is accurate everywhere, with
the exception of the center of the relief, where the notion of a fold orientation
is not evident. On Fig. 2(a), we see there are two singularities in opposition to
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(a) Recovered Fold Orienta-
tion for the Circle Relief

(b) Recovered Fold Orienta-
tion for the T Relief

(c) Accuracy of Fold Orien-
tation for the Circle Relief
(in radians)

Fig. 2. Validation on synthetic surfaces

one another, which gives an arbitrary orientation. However, on cortical surfaces,
most orientation singularities would arise from junctions of prominent crests and
troughs. For the second synthetic surface, the results are shown in Fig. 2(b). The
method recovers the expected orientations, as well as a singularity at the junction
of the three segments of the “T” .

3.2 Results on Cortical Surfaces

We used the OASIS database, which consists of 97 healthy subjects and 92
subjects (aged 60 and above) affected with mild and very-mild dementia [16].
We used the same surface extraction pipeline as in [13, 17, 18], which produces
one mid-surface representation of the gray-matter cortical sheet, and obtained
mappings φl for each surface onto a common template average. As with every
surface analysis algorithm, mesh resolution can be a concern. Validations of the
mesh generation and registration technique can be found in [13, 17, 18]. Once this
mapping was found, we computed the average surface of the entire population
and used this average surface to compute orientation fields.

To compute the fold orientation, we solved Equation 11 using both α = 1 and
α = 100. A close up result for the left hemisphere is shown in Figure 3, while a
result for the right hemisphere is shown in Figure 1. As can be visually assessed
on Figure 3, the estimated orientations accurately follow the folds of the surface.
For α = 1, the recovered orientation field is less smooth and closely follows every
ridge on the surface. For α = 100, however, the orientation field is smoothed out
and folds that are separated by a small ridge are connected. This allows us to
obtain a global picture of the folding pattern of the surface, which is used for
oriented shape analysis in the following section.

3.3 Oriented Deformation Morphometry

The direction of the fold on a surface allows us to test if its shape is influenced by
an exterior factor, such as a particular disease. For example, in the neuroscience
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(a) Visualization of the orientation field
for α = 1

(b) Visualization of the orientation field
for α = 100

(c) Close up of the field,
α = 1

(d) Close up of the field,
α = 100

Fig. 3. Estimated Fold Orientation in a saggital cut of the left hemisphere. The orien-
tation field is smoother for α = 100. Visualization of the orientation field produced by
integrating a random image along the orientation field (see [19]).

(a) Interior Right Temporal Lobe
(p < 0.001)

(b) Interior Left Temporal Lobe
(p < 3 × 10−5)

Fig. 4. Shape difference perpendicular to fold orientation due to Alzheimer’s disease.
The perpendicular orientation field is shown with its p value as a colorbar.
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literature, it is well known that regions such as the hippocampus are among the
first to be affected by Alzheimer’s disease [2]. Our estimate of orientation on
surfaces allows us to determine the nature of the deformation on the cortical
surface. As explained in the introduction, a shorter fold corresponds to a defor-
mation parallel to the fold orientation, whereas a shallower one corresponds to
a deformation perpendicular to the fold. We used Equation 22 to produce two
deformation maps, one that is parallel to the folds, and one that is perpendicular
to them. We then performed a T-test using Equation 23 to compute probabil-
ity (p) values, after correcting for age, gender and multiple comparisons [14].
We found that the main shape differences occur in the direction perpendicular
to the folds, as illustrated in Figure 4. These results indicate that atrophy on
the cortical surface may have preferential direction. We point out that it would
not be possible to assess such changes using methods such as [3, 7], which lack
direction specificity.

4 Conclusion

We have described a method to estimate a dense orientation field in the direction
of folds on a surface. The method is based on a regularization functional and
a numerical implementation that works directly on a triangulated mesh. The
experimental results indicate that this method has great promise. In particular,
for synthetic data the obtained orientation field is quantitatively accurate and
for a database of cortical surfaces the method allows us to distinguish between
direction specific shape changes.

Acknowledgments

This work was supported by funds from NSERC, FQRNT and CIHR.

References

1. Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in
the central nervous system. Nature 385, 313–318 (1997)

2. Buckner, R.: Memory and Executive Function in Aging and AD Multiple Factors
that Cause Decline and Reserve Factors that Compensate. Neuron 44(1), 195–208
(2004)

3. Chung, M., Worsley, K., Robbins, S., Paus, T., Taylor, J., Giedd, J., Rapoport,
J., Evans, A.: Deformation-based surface morphometry applied to gray matter
deformation. NeuroImage 18(2), 198–213 (2003)

4. Fischl, B., Sereno, M., Dale, A.: Cortical surface-based analysis. II: Inflation, flat-
tening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

5. Toga, A., Thompson, P.: Mapping brain asymmetry. Nature Reviews Neuro-
science 4(1), 37–48 (2003)

6. Fillard, P., Arsigny, V., Ayache, N., Pennec, X.: A Riemannian Framework for the
Processing of Tensor-Valued Images. In: Fogh Olsen, O., Florack, L.M.J., Kuijper,
A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 112–123. Springer, Heidelberg (2005)



Oriented Morphometry of Folds on Surfaces 625

7. Lepore, N., Brun, C., Chou, Y., Chiang, M., Dutton, R., Hayashi, K., Luders, E.,
Lopez, O., Aizenstein, H., Toga, A., et al.: Generalized Tensor-Based Morphom-
etry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors. IEEE
Transactions on Medical Imaging 27(1), 129–141 (2008)

8. Tang, B., Sapiro, G., Caselles, V.: Diffusion of General Data on Non-Flat Manifolds
via Harmonic Maps Theory: The Direction Diffusion Case. International Journal
of Computer Vision 36(2), 149–161 (2000)

9. Perona, P.: Orientation diffusions. IEEE Image Processing 7, 457–467 (1998)
10. Kimmel, R., Sochen, N.: Orientation Diffusion or How to Comb a Porcupine. Visual

Com. and Image Representation 13(1-2), 238–248 (2002)
11. Hirani, A.: Discrete exterior calculus. PhD thesis, California Institute of Technol-

ogy (2003)
12. Grinspun, E., Gingold, Y., Reisman, J., Zorin, D.: Computing discrete shape op-

erators on general meshes. In: Computer Graphics Forum, vol. 25, pp. 547–556.
Blackwell Synergy, Malden (2006)

13. Lyttelton, O., Boucher, M., Robbins, S., Evans, A.: An unbiased iterative group
registration template for cortical surface analysis. Neuroimage 34(4), 1535–1544
(2007)

14. Worsley, K., Andermann, M., Koulis, T., MacDonald, D., Evans, A.: Detecting
changes in nonisotropic images. Human Brain Mapping 8(2-3), 98–101 (1999)
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