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Abstract. The folding pattern of the human cortical surface is orga-
nized in a coherent set of troughs and ridges, which mark important
anatomical demarcations that are similar across subjects. Cortical sur-
face shape is often analyzed in the literature using isotropic diffusion, a
strategy that is questionable because many anatomical regions are known
to follow the direction of folds. This paper introduces anisotropic diffu-
sion kernels to follow neighboring fold directions on surfaces, extending
recent literature on enhancing curve-like patterns in images. A second
contribution is to map deformations that affect sulcal length, i.e., are
parallel to neighboring folds, with other deformations that affect sul-
cal length, within the diffusion process. Using the proposed method, we
demonstrate anisotropic shape differences of the cortical surface asso-
ciated with aging in a database of 95 healthy subjects, such as a con-
traction of the cingulate sulcus, shorter gyri in the temporal lobe and a
contraction in the frontal lobe.
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1 Introduction

The folding pattern of the human cortical surface results in a coherent set of
troughs and ridges, which to some extent are similar across subjects. Folds can
mark important anatomical boundaries and they vary in width and length across
individuals. Differences in fold shape can be associated with aging, gender, dis-
ease and underlying white matter connectivity.

Several methods exist to analyze cortical surface fold shape. For example,
one approach is to compute the average shape of a set of surfaces using an
iterative registration process, following which the mechanical deformation field
required to deform an individual surface onto the mean surface is used as a
statistical shape model [4, 9, 11, 2]. This approach faces a statistical estimation
problem: the effect of a factor on the shape of the underlying cortical surface
needs to be estimated in the presence of statistical noise. The presence of noise
reduces the confidence that the estimated effect of a factor is different from
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zero and reduces the detection power of the statistical framework. One way to
mitigate this problem is to locally average the shape measurements using surface
diffusion kernels [4]. However, isotropic diffusion averages measurements across
neighboring neuroanatomic regions, which is generally not desirable.

In this paper we propose to use anisotropic diffusion on surfaces to highlight
patterns that occur on specific folds, an example of which is shown in Figure 1.
We use the approach of surface-based morphometry for statistical analysis, where
each individual cortical surface is viewed as a deformed version of a template
surface. We use a simplicial mesh as a representation to find the correspondence
between vertices on the template surface and each of the individual surfaces via
a surface registration process. We then carry out anisotropic diffusion in tensor-
based morphometry and statistical analysis on the deformation tensor of that
mapping, which is the 2-dimensional version of the one used in [9].

There are two main contributions in this paper. The first is a method to
anisotropically diffuse a scalar field on a surface, such that the diffusion speed
is faster along neighboring fold orientations, as shown in Figure 1. This differs
from other anisotropic diffusion schemes that are designed primarily to suppress
diffusion across creases [5]. The second contribution is related to tensor diffusion
on surfaces. The added complexity is that tensors have a directional component,
which needs to be taken into consideration. We propose to keep tensors aligned
with neighboring folds within the diffusion process. This requires us to rotate the
tensor field within the diffusion scheme according to how the neighboring folds
change in orientation. The method we develop is similar to the one proposed
in [8] for enhancing curve like patterns in images.

Fig. 1. We illustrate our anisotropic diffusion process on two examples, a template
surface (left) and the mid-cortical surface of a subject (right). In both examples seed
regions are placed and the color maps indicate how the diffusion follows the shape of
folds.

The paper is organized as follows. We first describe a general setting to carry
out tensor-based morphometry on surfaces, in Section 2.1. We then show how
orientation estimates can be used to generate anisotropic filters on surfaces in
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Section 2.3. The method to rotate tensors according to neighboring fold orien-
tation is developed in Section 2.4. Finally, in Section 3 we present experimental
results on cross-sectional data that demonstrate that the anisotropic diffusion
scheme is able to follow the orientation of neighboring folds, and that the method
offers increased sensitivity in detecting shape differences in test studies. Using
the proposed coherence-enhancing filters, we analyze how the shape of cortical
folds is correlated with aging, in a database of 95 healthy subjects. We are able
to find significant shape differences of the cortical surface associated with ag-
ing, which are strongly localized along specific folds. Such results would not be
possible using isotropic diffusion kernels.

2 Methods

We first describe a general setting to carry out morphometric analysis on sur-
faces in Sections 2.1 and 2.2. We then develop anisotropic filters on surfaces
in Section 2.3. Finally Section 2.4 combines these methods for estimating fold
orientation.

We begin by introducing some notation. In this paper, all operations are
performed on a template surface M̄ with a Riemannian metric g. The surface
M̄ represents the template shape of one hemisphere of the cerebral cortex. The
Riemannian metric used is therefore the one induced by the imbedding in R3.

Bold face letters are used for vector fields and tensor fields, such as u,v ∈
T M̄, where T M̄ is the tangent bundle of M̄. We denote the inner product
according to the Riemannian metric as g(u,v). In order to keep the notation
simple, we use a global coordinate frame formed of two tangent vector fields,
x1,x2 ∈ T M̄. We use lower indices for vector fields and upper indices for covector
fields, such that u can be written in terms of the [x1,x2] coordinate frame as

u = u1x1 + u2x2. (1)

Upper case letters are used for second order tensor fields (e.g.: T), with lower
case letters such as u,v for vector fields. The only exception to the upper/lower
case convention for tensor fields is the Riemannian metric where g is used.

Using the [x1,x2] frame, we write g the metric tensor expressed in this basis
and gij , the i, j component of the Riemannian metric. This allows us to define
a point-wise dot-product between the tangent vector fields u,v as

g(u,v) = [u1, u2]g

[
v1

v2

]
=

∑
i,j∈{1,2}

giju
ivj . (2)

We use g−1 for the inverse of the metric tensor and gij the i, j component of this
inverse. The L2 norm of a second-order tensor field T ∈ T M̄×T M̄ is expressed
as

‖T‖2g =

∫
M̄
‖T‖2gp

dM̄ =
∑

i,j,k,l∈{1,2}

∫
M̄
gikgjlT

ijT kldM̄, (3)
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where the notation ‖T‖2gp
represents the l2 norm at a point p ∈ M̄. Where

it is convenient to do so, we will denote a multiplication between tensors, say
T,S, by writing the tensors next two each other and including a metric term if
necessary. For example, a multiplication between two tensors is given by

TgS =
∑

j,k∈{1,2}

T ijgjkS
kl. (4)

2.1 Morphometric Analysis on Surfaces

We now review the framework of tensor-based morphometry used for shape anal-
ysis [9]. The shape of each hemisphere of the human cerebral cortex is represented
as a single surface embedded in Euclidean space R3. LetMs ⊂ R3, k = 1, . . . , N
be surfaces representing the cerebral cortices of N individuals, one surface per
hemisphere. We suppose that these surfaces are homeomorphic to a sphere.

The surfaces are mapped onto a common template M̄ through a process
known as surface registration [7]. Surface registration produces a diffeomorphic
map ψs : M̄ → Ms that matches the features of M̄ onto the corresponding
features on Ms. The amount of deformation required to map M̄ to Ms is used
to analyze the shape of individual surfaces. This amount is computable from
the diffeomorphic map ψs. We obtain a tensor [9] representing the amount of
deformation required to morph Ms into M̄ as

Ts = [grad(ψs)]
t[grad(ψs)]. (5)

In this case, Ts forms a 2x2 positive symmetric definite tensor field on the
surface. A multivariate statistical test is then applied on the tensor field Ts in
order to see if there is any significant correlation with an exterior factor. The
method for statistical analysis is described in [6, 9] and we provide an example
result in Fig. 5. Unless we refer to a specific subject, the s index will be dropped
and we will use the notation T for a tensor field on M̄ in the rest of this paper.

2.2 Diffusion of Tensor Fields

In this section, we present a method for diffusion of tensor fields on surfaces.
The tensor laplacian, in terms of the vector fields x1,x2 is given as

∆T =
∑

i,j∈{1,2}

∇xig
ij∇xjT, (6)

where ∇ is the covariant derivative. Equation 6 allows to perform diffusion on
surfaces as

∂T

∂t
= ∆T. (7)
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2.3 Anisotropic Diffusion of Scalar Fields along Folds

The anisotropic filter for surface shape analysis we propose is designed to follow
the orientation of neighboring crests and troughs, as shown in Figure 1. The
general anisotropic diffusion equation used to build these filters for a scalar field
f : M̄ → R is given as [10]:

∂f

∂t
=

∑
i,j,k∈{1,2}

1√
|g|
∂xi
√
|g|Aij gjk∂xkf , (8)

where A : T M̄ → T M̄ is a symmetric positive definite operator which controls
diffusion speed on M̄, and |g| is the determinant of g.

The most direct method by which A can be adapted to follow curve patterns
on M̄ is to estimate the local orientation of the folding pattern. Let vθ be an
estimate of the local fold orientation (‖vθ‖gp = 1) on M̄. Then A can be chosen
as

A = αI + (1− α) ((vθ ⊗ vθ) g) , (9)

where α ∈]0, 1] is the anisotropic factor, I is the identity operator, ⊗ is a tensor
product. The challenge is to select vθ such that it is a good estimate of the local
folding pattern orientation.

The principal curvature directions on a surface provide a first-hand estimate
of the local orientation of its folds. The curvature of the surface is low in the
direction parallel to the fold, and is high perpendicular to fold orientation. The
principal curvatures are measured by the shape operator. Let n be the unit
surface normal. The shape operator C of a surface is defined as the covariant
derivative of the normal n along u as

Cu = −∇un, (10)

where ∇ is the covariant derivative in R3. The covariant derivative of the normal
is a tangent vector field on M̄. To focus on the magnitude of the principal cur-
vatures, we use the absolute value of the curvature. Let, the following definition
of S be given as the non-negative symmetric tensor such that, if v1,v2 are the
two eigenvectors of C with eigenvalue λ1, λ2. Then, S is defined as

S = |λ1|v1 ⊗ v1 + |λ2|v2 ⊗ v2. (11)

In other words, the tensor S is the tensor whose eigenvalues are |λ1|, |λ2|. This
allows us to define an estimator of the local orientation vθ of neighboring folds
as the eigenvector of S with smallest eigenvalue, i.e.

vθ = argmin{vθ|‖v′
θ‖gp=1}g(v′θ,Sgv′θ). (12)

However, between creases where curvature is small, the principal directions of S
may not accurately reflect neighboring fold directions. Hence, we first apply a
small amount of regularization to the tensor S using tensor diffusion as expressed
by Equation 7. Let, S(t) be the result of applying diffusion on S for a time t
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(a) Generation of a vector field vθ using the normal curvature of neighboring folds. The
vector field shown is parallel to the folds on the patch.

(b) Medial view of the Left Hemisphere (c) Exterior view of the Left Hemisphere

Fig. 2. A visualization of orientation fields on the template surface using line integral
convolution. In a qualitative sense, the vector field shown follows the major folds on
the cortical surface.

according to Equation 7. We then apply Equation 12 to obtain the fold direction
that is perpendicular to the direction of highest curvature.

Typically, we chose an anisotropic factor α of 0.1 for diffusion and a diffusion
time of 100 to estimate local orientation. A few results of scalar field diffusion
are shown in Figure 1 and Figure 2(a). It should be noted that the matrix
field A defined in this section will contain discontinuities, corresponding to the
discontinuities of the vector field vθ. In order for the anisotropic diffusion process
to be well defined, a very small amount of regularization is also applied to A,
again by using isotropic diffusion (Equation 7).

2.4 Anisotropic Diffusion of Tensor Fields on Surfaces

We now consider diffusion of tensor fields on surfaces. Recall that Equation 7
provides a diffusion process for tensors. The center column of Figure 3 illustrates
that the basic diffusion equation provided in Equation 7 does not result in a
diffusion scheme that follows local fold orientation. This is a problem for our
application where we intend to study shape differences that affect fold shape.
In particular, we wish to align the diffusion process using the orientation of
neighboring folds.
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To see how tensors can be realigned according to neighboring fold orientation,
consider the following local rotation process. Let Rθ be a rotation operator, such
that it preserves the local orientation on surfaces and does not change the inner
product between two vector fields, i.e. g(Rθu,Rθv) = g(u,v). Using matrix
notation, a rotated frame t1, t2 can be written in term of the original frame as[

t1

t2

]
= Rθ

[
x1

x2

]
= g−

1
2

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
g

1
2

[
x1

x2

]
. (13)

The technique that we propose in this paper is to compute an optimal rota-
tion operator Rθ such that it best preserves the tensor field S. Then, the same
rotation operator is applied to the deformation tensors computed in Equation 5.

We will now define a diffusion scheme for tensors in a rotated coordinate
system. Consider a rotated differential operator as

R−1
θ ∇xk (RθSRt

θ) Rt
θ
−1

= ∇xkS + vθk

(
g−

1
2

[
0 1
−1 0

]
g

1
2 S + Sg

1
2

[
0 −1
1 0

]
g−

1
2

)
= ∇xkS + vθkDS,

(14)
where DS is defined as the term in parentheses and vθk designates a parameter
that needs to be estimated. Equation 14 allows us to define a rotated anisotropic
diffusion scheme for tensors as

∂S

∂t
=

∑
i,j,k∈{1,2}

∇xiA
i
jg
jk
(
∇xkS + vθkDS

)
. (15)

Fig. 3. An illustration of aligning tensors with neighboring folds while performing diffu-
sion. An anisotropic second-order tensor (shown on the left) was diffused on a template
surface (top: left superior temporal gyros, bottom: left rostral cingulate gyrus). The
center needle map shows the direction of the highest eigenvalue of the diffused tensor.
The diffusion results in a tensor field that does not maintain a constant orientation
with nearby geometric folds. The right needle map shows how the method presented
in Section 2.4 causes the diffused tensors to be aligned with nearby folds.
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Let w = [w1, w2] be an estimator for vθk. We optimize the value of w, by mini-
mizing the norm of the differential of S over the entire diffusion process as

wk = argminw′
k

∫
[0,t]

‖∂xkS(z) +DS(z)w′k‖2gp
dz. (16)

Using calculus of variations, we obtain that the solution w of Equation 16 is

wk

∫
[0,t]

‖DS(z)‖2gp
dz = −

∫
[0,t]

trace(∂xkS(z)gDS(z)g)dz, (17)

where trace is the trace of the tensor. An illustration of performing diffusion
while rotating tensors according to Equation 17 is provided in Figure 3. The left
column shows a tensor field which is equal to zero everywhere, except at one
location, where it equals vθ⊗vθ. The result of diffusing this tensor field without
computing an optimal rotation field is shown in the center column and the result
of diffusion with the optimal rotation field is shown in the right column. The
rotation causes the diffused tensor field to follow the orientation of neighboring
folds.

3 Experimental Results

We now provide additional illustrations and promising applications of the pro-
posed diffusion process. We begin by evaluating the method on the cortical
surfaces of individual subjects. Here our goal is to select a few major folds on
the cortical surface (such as the central sulcus, hippocampal gyrus and superior
temporal sulcus), and to determine if the anisotropic diffusion process follows
these folds. Each fold was first manually identified on the template surface M̄.
Then a geodesic distance function was used to measure the distance to the fold
on the template surface, as shown in Figure 4(a). The level sets of the geodesic
distance function provide an approximation to the direction the diffusion should
follow in order to remain parallel to the segmented fold.

We used surface registration to map the geodesic distance functions com-
puted on the template surface onto 15 cortical surfaces (left hemispheres) of
individual subjects. Let ρ̄ be the geodesic distance function on the template sur-
face and ρ = ρ̄(ψ−1) the mapped geodesic distance function on a specific subject
(see Fig. 4(a)). Let et∆α be the solution to the anisotropic diffusion given in
Equation 8 with α = 0.1. We first computed a diffused value for the geodesic
distance function as µ = et∆αρ, where et∆α is the result of applying diffusion
for a time t according to Equation 8. Then, we determined the extent to which
diffusion follows level sets of the geodesic distance function by measuring how it
varies compared to µ as

E(ρ) =

√
et∆α (ρ− µ)

2
. (18)

In the event where diffusion perfectly follows the level set curves of ρ, E(ρ) is
almost zero. We computed the diffusion until the kernel covered a region of about
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(a) Level-set on the central
sulcus. Left: ρ̄, right: ρ

(b) Orientation field using
principal curvature and our
method

(c) Central Sulcus: Result
of E(ρ) on an individual
surface

(d) Central Sulcus: Average
of E(ρ) over 15 subjects

(e) Hippocampal Gyrus:
Average of E(ρ) over 15
subjects

(f) Temporal Sulcus: Aver-
age of E(ρ) over 15 subjects

Fig. 4. Anisotropic diffusion is able to follow the level sets of a geodesic distance
function to a segmented fold on individual cortical surfaces, as measured by E(ρ). See
the text for a discussion.

4 cm on the cerebral cortex along the longest axis. We display the result for the
three sulci in the second row of Figure 4. As a point of comparison, we used an
anisotropic diffusion scheme where the diffusion was constrained to the direction
of the smaller principal curvature, as measured by S(0) (see the example on the
left of Figure 4(b)). The result of this anisotropic kernel is shown in Figure 4
under the label “principal direction diffusion” .

In the second row of Figure 4, we show that the value of E(ρ) is much smaller
on average in our method as compared with principal direction diffusion. The
orientation field produced by our method is more parallel to the major fold and
is not influenced by the small changes in orientation along the sulcal wall, as
opposed to that obtained using principal direction diffusion (see Fig. 4(b)). Also,
most of the failure cases are due to the fact that the geodesic distance function
is based only on the segmented fold, whereas our method captures neighboring
fold orientation as well.

In a second experiment we used anisotropic diffusion to reveal significant
shape differences in the left hemisphere within a population of 95 adults aged
19 to 85 years old, with a median age of 44 years, selected from the ICBM
database. For illustration purposes, only the left hemisphere was used. We used
multivariate tensor-based T -statistics on this population to compare anisotropic
and isotropic diffusion [6].
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Fig. 5. Multivariate tensor statistics using isotropic and anisotropic diffusion.
Anisotropic diffusion shows peak regions that are well localized around specific folds,
whereas peaks for isotropic diffusion spread across multiple folds.

To compute regression statistics, first a tensor field for each subjects was
computed according to Equation 5. Then, each tensor field was diffused according
to Equation 15 with parameters α = 0.1 and for a time t = 400 (mm2). Let T̂s

be the resulting tensor field after diffusion. The following linear model was used
to compute the regression with age and gender:

Log(T̂s) = M̂ + T̂ageages + T̂gendergenders + Es, (19)

where Log is the tensor logarithm using the Log-Euclidean model of [1], ages
and genders are the age and gender of subject s, and Es is the residual error of
the linear model. A least-squares fit was used to find the regression tensor field
corresponding to the mean M̂, age T̂age and gender T̂gender. A multivariate T
test for age correlation was then computed at each vertex using SurfStat [11].

We first provide a comparison between isotropic diffusion and anisotropic
diffusion in Figure 5 in terms of the resulting T -test. Although a fair comparison
is difficult because there are many diffusion parameters to be selected, Figure 5
demonstrates that results using anisotropic diffusion are well localized around
specific folds. By this, we mean that regions where T is high do not spread over
multiple folds with anisotropic diffusion whereas regions where T is high with
isotropic diffusion spread across several folds and also produce lower peak values
for T .

We computed thresholds for significance to control for false positives us-
ing a permutation test with 10000 permutations. The threshold for significance
(p < 0.05) using multivariate tensor-based morphometry was |T | > 4.752.
We display significance results in Figure 6. These results indeed show that
anisotropic diffusion is able to find regions of significant atrophy localized to
a single fold.
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Fig. 6. Probability maps of multivariate tensor statistics using anisotropic diffusion.
Statistically significant regions are well localized around specific folds.

Fig. 7. A close up view of the maximum negative correlation with aging in the Cin-
gulate sulcus and Frontal lobe. The white lines show the direction which indicates
maximum negative correlation associated with aging.

We also tried to determine which direction showed the highest correlation
with the subject’s age and wether this correlation was positive or negative. We
extracted from the tensor fields T̂age, the orientation which showed the highest
correlation with age:

vmax = argmax{v′|‖v′‖gp=1}|g(v′, T̂agegv′)|. (20)

This orientation field of maximum correlation is shown in Figure 7 and corre-
sponds to a negative correlation in both the cingulate sulcus and a region of
the frontal lobe. The orientation field shows that the folds in question have a
smaller width in the elderly populations. We tested the significance of the shape
difference along this direction using the permutation test presented in [3] and
found the result to be slightly more significant than presented in Figure 6.
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4 Conclusion

This paper proposes a new method for morphometric studies of cortical surfaces.
The proposed anisotropic tensor diffusion process on surfaces can be used to
highlight deformations that affect sulcal folds by enhancing deformation maps
along them. Using the proposed coherence-enhancing filters, we are able to find
anisotropic shape differences of the cortical surface associated with aging that
are well localized along specific folds.
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