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Abstract: As shown in this paper, when designing parallel ma-
nipulators for tasks involving less than six degrees of freedom,
the topology can be laid out by resorting to qualitative reasoning.
More specifically, the paper focuses on cases whereby the manip-
ulation tasks pertain to displacements with the algebraic struc-
ture of a group. Besides the well-known planar and spherical dis-
placements, this is the case of displacements involving: rotation
about a given axis and translation in the direction of the same
axis (cylindrical subgroup); translation in two and three dimen-
sions (two- and three-dimensional translation subgroups); three
independent translations and rotation about an axis of fixed di-
rection, what is known as the Schönflies subgroup; and similar
to the Schönflies subgroup, but with the rotation and the transla-
tion about the axis of rotation replaced by a screw displacement.
For completeness, the fundamental concepts of motion represen-
tation and groups of displacements, as pertaining to rigid bod-
ies, are first recalled. Finally, the concept of -joint, introduced
elsewhere, is generalized to two and three degrees of freedom,
thereby ending up with the - and the -joints, respectively.

li ai son 1: a binding or thickening agent used in cooking
2a) a close bond or connection : INTERRELATIONSHIP

b): an illicit sexual relationship : AFFAIR

Merriam Webster’s Collegiate Dictionary, Tenth Edition
(C)1997,

1996 Zane Publishing, Inc.

Qui pourrait ne pas frémir en songeant aux malheurs
que peut causer une seule liaison dangereuse!

Lettre CLXXV. Madame DE VOLANGES

à Madame DE ROSEMONDE (de Laclos, 1782)

1 Introduction

As robot designers realized the immense possibilities offered by
parallel manipulators, the variety of designs has not ceased to
grow. It would not be exaggerated to say that we are living an
era of robot design comparable to the Cambrian period of natu-
ral history. Indeed, the number of novel designs either published
in conference proceedings and archival journals or disclosed in
patent files is too rich to be recorded exhaustively. We thus not
aim here at a comprehensive account of all work currently known,
but rather a representative sample of this work. The motiva-
tion behind the intense work in parallel manipulator design is
equally rich, mostly pertaining to applications areas such as: a)
machine-tool design, whereby parallel manipulators are termed
Parallel-Kinematics Machines (PKM); b) robot-assisted surgery;
c) surveillance; d) telescope design; and e) motion simulation. In
virtually all these areas it has been realized that a full six-degree-
of-freedom capability is not necessary; in some tances, all six de-
grees of freedom are sometimes even undesirable. This is the
case, for example, in the assembly of electronic boards, with an
essentially planar geometry, whereby any rotation about an axis
lying in the plane of the board is to be prevented; else, the assem-
bly will not be successful and the board can be even damaged.

Work on parallel robot design outside six-degree-of-freedom
(six-dof) systems can be traced back to Hunt (1983). Later work
focused mostly on planar and spherical manipulators (Gosselin
and Angeles, 1987; Craver, 1989). An architecture that received
special attention involves three legs of the revolute-prismatic-
spherical type, producing two rotations and one translation of its
moving platform (Lee and Shah, 1987; Lee and Arjuman, 1991;
Agrawal, 1991; Pfreundschuh, Kumar and Sugar, 1991).

Of special interest is the design of three- and four-dof manip-
ulators for the production of either pure translations or displace-
ments of the Schönflies type, respectively. The latter consist of
three independent translations and one rotation about an axis of
fixed direction. A first manipulator of the pure-translation type
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was disclosed in (Clavel 1990). Although the foregoing patent
file claims a possible rotation about an axis of fixed direction,
for the production of Schönflies displacements, this rotation is
achieved by means of a motor mounted on top of the moving plat-
form, and hence, the device is not a Schönflies-motion generator,
properly speaking. Brogårdh (2001) discloses a parallel array that
is capable of three-dof translations and can produce Schönflies
motions by the addition of one motor at its end plate, similar
to Clavel’s. Other instances of three-dof translational manipu-
lators are those proposed in (Hervé and Sparacino, 1992; Arai,
Hervé and Tanikawa, 1996). A fully-parallel Schönflies-motion
generator was disclosed fairly recently in (Company, Pierrot,
Shibukawa and Koji, 2001).

2 Kinematics Background

The concepts, and to a great extent the notation and nomenclature
that follow, are taken from (Hervé, 1978).

The kinematics of machines is studied via their underlying
kinematic chains. A kinematic chain is the result of the coupling
of rigid bodies, called links. Upon coupling two links, a kine-
matic pair is obtained. When the coupling takes place in such a
way that the two links share a common surface, a lower kinematic
pair results; when the coupling takes place along a common line
or a common point of the two links, a higher kinematic pair is
obtained.

Lower kinematic pairs deserve special attention for various
reasons: One is that they model fairly well the mechanical cou-
plings in a variety of machines; one more is that they are known
to occur in exactly six types, to be described presently. Higher
kinematic pairs occur in the coupling by cam-follower mecha-
nisms and by gears, in which contact occurs along common lines
or common points of the coupled bodies.

We shall denote with lower-case boldfaces all vectors; with
upper-case boldfaces all matrices. Sets will be denoted with cali-
graphic fonts, e.g., , , etc., while lower kinematic pairs are de-
noted with sans-serif upper cases: R, P, H, C, E, and S denote
the six pairs of interest (Denrit and Hartenberg, 1964), which are
recalled below:

( ) The revolute pair R allows a relative rotation through an an-
gle about one axis passing through a point of position
vector a and parallel to the unit vector e;

( ) The prismatic pair P allows a relative translation in the
direction of a unit vector e;

( ) The screw pair H allows both a relative rotation through an
angle about an axis passing through a point of posi-
tion vector a and parallel to the unit vector e, and a relative
translation in the direction of e. However, the rotation and
the translation are not independent, for they are related by
the pitch of the pair: ;

( ) The cylindrical pair C allows both a relative rotation
through an angle about an axis passing through a point

of position vector a and parallel to the unit vector e, and
a relative translation in the direction of e, with rotation and
translation being independent;

( ) The planar pair E allows two independent translations
and in the directions of the distinct unit vectors u and v, re-
spectively, and a rotation about an axis normal to the plane
of these two vectors; and

( ) The spherical pair S, allowing one independent rotation
about each of three noncoplanar axes concurrent at a point

. The relative motions allowed by S are thus character-
ized by point , and are associated with an axis parallel to
the unit vector e and with the angle of rotation about this
axis, as per Euler’s Theorem (Angeles, 1982).

Remark: While the R, H and C pairs are characterized by an
axis, the P pair is characterized by a direction alone; not by an
axis!

3 Groups of Displacements

In the sequel, we shall resort to the algebraic concept of group. A
group is a set of elements related by a binary operation with
four properties:

(a) if and , then ;

(b) if , , and , then ;

(c) contains an element called the identity of under , such
that ; and

(d) for every , there exists an element , called the in-
verse of under such that .

If the elements of a set are the displacements undergone by
a rigid body, then we can define a binary operation —read “o-
dot”—of displacements as the composition of displacements: As
the body undergoes first a displacement and then a displace-
ment , taking the body, successively, from pose to pose ,
and then to pose , it is intuitively apparent that the composition
of the two displacements, , is in turn a rigid-body displace-
ment. Hence,

(a) ;

(b) given and as introduced above, we define a third dis-
placement carrying from pose to pose . Then,

;

(c) under no motion, any pose of a rigid body is preserved, the
motion undergone by the body then being represented by a
displacement that can be defined as the identity element of

, such that, for any displacement , ; and

(d) for any displacement carrying the body from pose
to pose , the inverse displacement is defined as that
bringing back the body from to , and hence,

.
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From the foregoing discussion it is apparent that the set
of rigid-body displacements has the algebraic structure of a
group. Henceforth, we refer to the set of displacements of a rigid
body as group . The interest in studying rigid-body displace-
ments as algebraic groups lies in that, on the one hand, in-
cludes interesting and practical subgroups that find relevant ap-
plications in the design of production-automation and prosthetic
devices. On the other hand, the same subgroups can be combined
to produce novel mechanical layouts that would be insurmount-
ably difficult to produce by sheer intuition. The combination of
subgroups, in general, can take place via the standard set opera-
tions of union and intersection. As we shall see, however, the set
defined as that comprising the elements of two displacement sub-
groups is not necessarily a subgroup, and hence, one cannot speak
of the union of displacement subgroups. On the contrary, the in-
tersection of two displacement subgroups is always a subgroup
itself, and hence, the intersection of displacement subgroups is a
valid group operation.

Rather than the union of groups, what we have is the product
of groups (Macdonald, 1968). Let and be two groups de-
fined over the same binary operation ; if and ,
then the product of these two groups, represented by , is the
set of elements of the form , where the order is important,
for commutativity is not to be taken for granted in group theory.
That is, in general, .

The intersection of the two foregoing groups, represented by
the usual set-theoretic symbol , i.e., , is the group of
elements belonging to both and , and hence, the order is
not important. Thus, .

3.1 Displacement Subgroups

A subgroup of a given group is a set with two properties: (a)
its elements belong to , although some elements of may not
belong to , and (b) has the algebraic structure of a group.
Therefore, a subgroup of the group of rigid-body displace-
ments is itself a group of displacements, but may lack some
rigid-body displacements.

The six lower kinematic pairs can be regarded as generators
of displacement subgroups. We thus have:

( ) The revolute pair R of axis generates the subgroup
of rotations about . Each element of this group is charac-
terized by the angle of the corresponding rotation;

( ) the prismatic pair in the direction e generates the subgroup
of translations along e. Each element of is char-

acterized by the translation along e;

( ) the screw pair of axis and pitch generates the subgroup
of rotations about and translations along the

direction of the same axis, translations and rotations being
related by the pitch in the form , as described when
the screw pair was introduced. Each element of can
thus be characterized either by or by ;

( ) the cylindrical pair of axis generates the subgroup of
independent rotations about and translations along . Each
element of is thus characterized by both the displace-
ment and the rotation ;

( ) the planar pair generates the subgroup of two inde-
pendent translations in the directions of the distinct unit vec-
tors u and v, and one rotation about an axis normal to both
u and v. Each element of is thus characterized by
the two translations , and the rotation ;

( ) the spherical pair generates the subgroup of rotations
about point . Each element of is characterized by
the axis of rotation passing through in the direction of a
unit vector e and through an angle . Alternatively, each
element can be characterized by the independent rotations
about three designated axes, e.g., the well-known Euler an-
gles.

Besides the six foregoing subgroups, we can define six more,
namely,

( ) The identity subgroup , whose single element is the iden-
tity displacement introduced above;

( ) the planar-translation subgroup of translations in
the directions of the two distinct unit vectors u and v. Each
element of this group is thus characterized by two transla-
tions, and ;

( ) the translation subgroup of translations in , each ele-
ment of which is characterized by three independent trans-
lations , , and ;

( ) the subgroup of motions allowed by a screw of pitch
and axis parallel to e undergoing arbitrary translations in a

direction normal to e. Each element of this subgroup is thus
characterized by the two independent translations , of
the axis, and either the rotation about this axis or the trans-
lation along the axis. Faute-de mieux, we shall call this
subgroup the translating-screw group;

( ) the subgroup , resulting of the prod-
uct of the planar subgroup of plane normal to e and the pris-
matic subgroup of direction e. Each element of this sub-
group is thus characterized by the two translations , and
the angle of the planar subgroup plus the translation
in the direction of e. Moreover, note that

. This subgroup is known as the Schönflies sub-
group, and is generated most commonly by what is known as
SCARA systems, for Selective-Compliance Assembly Robot
Arm;

( ) the group itself. Each element of this subgroup is charac-
terized by three independent translations and three indepen-
dent rotations.
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It is thus apparent that each subgroup includes a set of dis-
placements with a specific degree of freedom. We shall need be-
low an extension of the concept of dof, for which reason we term
the dof of each subgroup its dimension, and denote the dimension
of any subgroup by . Thus,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

The foregoing list of displacement subgroups is exhaustive.
The reader may wonder whether displacement products are miss-
ing from the list that might be subgroups. However, any displace-
ment product not appearing in the list is not a subgroup, e.g.,

(a) , with defined as a line normal to the unit
vector e and passing through a point , is not a subgroup.
This set of displacements is characterized by a translation
in the direction of e and a rotation about through an angle
, as depicted in Fig. 1. It should be apparent from this figure

that this set of displacements does not form a group.

(b) is not a subgroup, unless and coincide.
The reason here is that, assuming for example, that these two
axes intersect at a point , the composition is,
in general, equivalent to a new rotation, according to Euler’s
Theorem, about a third axis , different from any of the
first two axes, although still passing through .

PSfrag replacements

Figure 1: An instance of the set of displacements
not constituting a group

4 Kinematic Bonds

Displacement subgroups can be combined to produce new sets of
displacements that may or may not be displacement subgroups

themselves. To combine subgroups, we resort to the group op-
erations of product ( ) and intersection ( ).

Now we recall the concept of kinematic bond, which is a gen-
eralization of kinematic pair, as first proposed by Hervé (1978),
who called this concept liaison cinématique in French. This con-
cept has been termed kinematic liaison (Angeles, 1982) or me-
chanical connection (Hervé, 1997) in English. Since “liaison”
in English is usually applied to human relations, the term “bond”
seems more appropriate, and hence, is adopted here.

We illustrate the concept with an example: Let us assume
three links, numbered from 1 to 3, and coupled by two kinematic
pairs generating the two subgroups and , where these two
subgroups are instanced by specific displacement subgroups be-
low. We then have

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

All of the above examples, except for the third one, amount
to a displacement subgroup. This is why no subgroup symbol is
attached to that set. Instead, we have used the symbol to
denote the kinematic bond between the first and third links of the
chain. In general, a kinematic bond between links and of a
kinematic chain, when no ambiguity is possible, is denoted by

. When the chain connecting these two links is not unique,
such as in a closed chain, where these two links can be regarded as
being connected by two possible paths, a subscript will be used,
e.g., , , etc. A kinematic bond is, thus, a set of
displacements, as stemming from a product of displacement sub-
groups, although the bond itself need not be a subgroup. Obvi-
ously, the 12 subgroups described above are themselves special
cases of kinematic bonds.

The kinematic bond between links and can be concep-
tualized as the product of the various subgroups associated with
the kinematic pairs between the th and the th links. To keep
the discussion general enough, we shall denote the subgroup
associated with the kinematic pair coupling links and as

, with a similar notation for all other kinematic-pair
subgroups, i.e.,

(3)

Thus, in a six-axis serial manipulator, we can set ,
, all six kinematic pairs in-between being revolutes of skew axes

, , , . Then,
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That is, the R manipulator is a generator of the general six-
dimensional group of rigid-body displacements .

As an example of group-intersection, let us consider the Sar-
rus mechanism, which is depicted in Fig. 2.

PSfrag replacements

Figure 2: The Sarrus mechanism

In the Sarrus mechanism, we have six links, coupled by six
revolute pairs. Moreover, the revolute pairs occur in two triplets,
each on one leg of the mechanism. The axes of the three revolute
pairs of each leg are parallel to each other. The bond , ap-
parently, is not unique, for it can be defined by traversing any of
the two legs. Let the leg of links 1, 2, 3 and 4, coupled by revo-
lutes of axes parallel to the unit vector u, be labelled ; the other
leg, of links 4, 5, 6 and 1, coupled by revolutes of axes parallel to
the unit vector v, is labelled . It is apparent that, upon traversing
leg , we obtain

while, upon traversing leg ,

That is, leg is a generator of the planar subgroup of plane nor-
mal to vector u, while leg is that of the subgroup of plane
normal to vector v. Therefore, is the set
of displacements common to the two -subgroups, namely, the
prismatic subgroup of translations in the direction ,
i.e.,

The Sarrus mechanism is thus a revolute realization of the pris-
matic joint.

5 The Joint and Its Generalizations

The foregoing concepts are now applied to the qualitative synthe-
sis of parallel robotic architectures. By qualitative we mean the

determination of the topology of the kinematic chain, not includ-
ing the corresponding dimensions. These dimensions are found at
a later stage, by means of methods of quantitative synthesis. The
full determination of the kinematic chain, including dimensions,
yields what is known as the architecture of the robotic system at
hand. Prior to the discussion of interest, we recall the joint, first
introduced by Hervé and Sparacino (1992).

5.1 The Joint

A four-bar linkage with its opposite links of the same length is
known as a parallelogram. In the standard terminology, and re-
ferring to Fig. 3, the linkage is composed of: a) one fixed link, la-
belled 1; b) one input link, labelled 2; c) one coupler link, labelled
3; and one output link, labelled 4. In a parallelogram, the oppo-
site links move with a relative pure translation, each point of one
link describing a circular trajectory onto the other link. The link-
age, shown in Fig. 3, thus provides a kinematic pair of the coupler
link 3 with respect to the fixed link 1, which Hervé and Sparacino
(1992) termed a joint. Notice that the four R joints of the par-
allelogram linkage can be paired so that each of the two pairs is
either (a) fixed to one single coupled link or (b) fixed to differ-
ent coupled links. In the linkage of Fig. 3, the pairs (R , R ) and
(R , R ) are of the first kind. Correspondingly, (R , R ) and (R ,
R ) are of the second kind. Likewise, we distinguish two kinds
of links, namely, the coupled links 1 and 3, and the coupling links
2 and 4.

PSfrag replacements

Figure 3: The joint, a four-bar parallelogram coupling links
and

Moreover, notice that the joint does not belong to any of
the two classes of lower and higher kinematic pairs. Indeed, it
couples two adjacent links by means of an infinity of circular
cylindrical surfaces of the same radius, but with axes at different
locations normal to the plane of the parallelogram linkage. The
joint is thus characterized by the unit vector e normal to the plane
of the parallelogram and the radius of its family of cylindrical
surfaces. Therefore, is nothing but the common length of the
coupling links. In summary, the joint couples two links while
allowing a relative translation along a circular trajectory.

While the joint is neither a lower nor a higher pair, we can
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associate a kinematic bond to it. When combined with other kine-
matic pairs or other kinematic bonds, the joint can generate
both and Schönflies subgroups, as discussed in Section 6.

Below we introduce some extensions of the joint.

5.2 The R- Joint

Two kinds of joints are possible when a joint is concatenated
with a R joint of axis lying in the plane of the joint. The differ-
ence lies on whether the axis of the new R joint is the common
normal to the axes of two parallelogram joints of the first kind or
is normal to the plane of these joints, as depicted in Figs. 4a and
b, respectively.

PSfrag replacements

Figure 4: The two kinds of R- joints: (a) new R-axis lying along
the common normal to two parallelogram R axes and (b) new R-
axis normal to the plane of the two parallelogram axes of the first
kind

We shall call the composite joints of Figs. 4a and b R-
and R- , respectively. When two links, 0 and 3, are coupled by
means of a R- or a R- joint, their points generate a family of
tori of main axis .

5.3 The Joint

It is apparent that, if the four joints of the parallelogram linkage
of Fig. 3 are replaced by universal (U) joints, then the plane of
the parallelogram undergoes a rotation about axis of Fig. 4a.
We recall here that a universal joint is the concatenation of two
R joints intersecting at right angles. Moreover, by properly con-
straining the motion of link 3 with respect to link 1, it is possible
to have link 3 still move with respect to link 1 with pure transla-
tion. In this case, the points of link 3 describe spheres of identical
radii equal to the length of the coupling links of the parallelo-
gram.

Apparently, the constraint needed to produce the foregoing
motion can be realized by coupling two identical parallelograms
of parallel planes and sharing the same base link 1 and the same
moving link 3. The result is displayed in Fig. 5.

PSfrag replacements

: universal joint

Figure 5: A joint

The joint thus generates two-dof displacements that can
be represented by the bond . Moreover, these displace-
ments are elements of the subgroup characterized by the unit
vector e normal to the plane of the R joints of the first kind of the
given parallelograms. However, does not constitute a
subgroup.

5.4 The Joint

We can go one more step and allow the coupled links of a joint
to undergo an additional pure translation in the direction of its
coupling-link axes, as depicted in Fig. 6. In this figure, the four
coupling links of the joint of Fig. 5 have been replaced by P
joints. By means of a suitable constraint, all four P joints can be
made to undergo identical translations. We call this a joint.

PSfrag replacements

: universal joint

Figure 6: A joint
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The joint thus generates the subgroup of three-dof pure
translations. Notice that a simple means of implementing a
joint is by cascading two joints, upon attaching rigidly the
moving link of one with the fixed link of the second one, as de-
picted in Fig. 7. In this layout, the two joints are coupled by
means of four R joints of parallel axes.

PSfrag replacements

: universal joint

Figure 7: A possible realization of a joint

We illustrate below how the foregoing ideas can be used in
the synthesis of parallel—and serial—manipulators.

6 The Synthesis of Serial and Parallel Robotic Architec-
tures

The first parallel architecture with pairs was proposed by
Clavel (1988), in what he called the Delta Robot. The kinematic
chain of this robot is displayed in Fig. 8. This robot is a genera-
tor of the displacement subgroup. Delta is thus capable of
three-dof translations.

PSfrag replacements

Figure 8: Kinematic chain of the Clavel Delta robot

The kinematic chain of the Delta robot is composed of two
triangular plates, the top ( ) and the bottom ( ) plates. The top
plate supports the three (direct-drive) motors, the bottom plate the
gripper, and hence, constitutes the end-effector (EE) of the robot.
The EE is capable of translating in 3D space with respect to the
upper plate, which is considered fixed. The two plates are cou-
pled by means of three legs, each with a RR R chain.

While Clavel did not cite any group-theoretical reasoning
behind his ingenious design, an analysis in this framework will
readily explain the principle of operation of the Delta robot.

The th leg is a generator of the Schönflies subgroup,
with denoting the unit vector parallel to the axis of the th mo-
tor. That is, the th leg generates a Schönflies subgroup of dis-
placements comprising translations in 3D space and one rotation
about an axis parallel to . The subset of EE displacements is
thus the intersection of the three subgroups , for ,
i.e., the subgroup . Therefore, the EE is capable of pure trans-
lations in 3D space.

PSfrag replacements

Figure 9: The MEL microfinger

One second applications example is the microfinger of
Japan’s Mechanical Engineering Laboratory (MEL) at Tsukuba
(Arai, Hervé and Takinawa, 1996), as displayed in Fig. 9. In the
MEL design, the inventors use a structure consisting of two plates
that translate with respect to each other by means of three legs
coupling the plates. The th leg entails a R R chain, shown in
Fig. 10, that generates the Schönflies subgroup in the direction of
a unit vector , for . The three unit vectors, moreover,
are coplanar and make angles of . The motion of the moving
plate is thus the result of the intersection of these three subgroups,
which is, in turn, the subgroup . Moreover, the kinematic chain
of each leg is made of an elastic material in one single piece, in
order to allow for micrometric displacements.
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Figure 10: The th leg of the MEL microfinger

Yet another example is the Y-Tristar robot, developed at
Ecole Centrale de Paris by Hervé and Sparacino (1992). Inter-
estingly, the above instances of parallel manipulators using R-
joints are capable of generating only the subgroup. However,
they are intended for Schönflies displacements. The inventors of
these architectures have solved the problem of Schönflies-motion
generation by cascading a fourth actuated axis to the parallel ma-
nipulator, thereby obtaining a hybrid parallel-serial one. An ar-
chitecture realizing a Schönflies-motion generator is the linkage
of Fig. 11. The Schönflies displacement subgroup is , with
e parallel to .

PSfrag replacements

Figure 11: kinematic bond generating Schönflies-motions

One more aplication of the same concepts is the serial Schönflies-
motion generator proposed by Angeles, Morozov, and Navarro
(2000). This robot entails a kinematic chain of the R R type,
as displayed in Fig. 12. In fact, the chain is the concatenation of
two pan-tilt generating chains, each constituted by a R- joint,
as displayed in Fig. 4b.

Figure 12: A serial Schönflies-motion generator

To be true, Company, Pierrot, Shibukawa and Koji (2001)
dsiclosed a fully-parallel Schönflies-motion generator in Euro-
pean Patent 1084802. This robot comprises four legs, each be-
ing a Schönflies-displacement generator. Besides this manipula-
tor, no other one is known with the same motion capabilities and
a fully-parallel architecture. Nevertheless, the parallel robot of
EP1084802 does not make proper use of Schönflies-motion gen-
erators. Indeed, this robot is the result of coupling two two-leg
parallel manipulators, each leg being, in turn, the parallel array
of two Schönflies-motion generators identical to those of the legs
of the Delta robot. Such a parrallel array is displayed in Fig. 14,
where it is apparent that two RR R legs generating Schönflies
subgroups and are coupled by means of the end-
effector 42, using the same notation as in the foregoing patent.
Link 42, thus, undergoes the set of motions resulting from the in-
tersection of the two Schönflies subgroups, namely,

Thus, link 42 undergoes pure translations in three-dimen-
sional space. However, the parallel array is supplied with only
two actuators, one per leg, and hence, one translation is left un-
controlled, but this uncontrolled motion is exploited in producing
Schönflies motions, as explained below.

What Company and his co-inventors did in order to produce
the Schönflies subgroup was to couple the end-effectors of two
identical parallel arrays like that displayed in Fig. 13 by means
of revolutes of parallel axes, one normal to the u and v unit vec-
tors, the other normal to the and vectors. Such a coupling is
displayed in Fig. 14. In this coupling, the parallel axes of the rev-
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Figure 13: The coupling of two identical generators

olutes of the end-effector 41 can translate freely in space, while
keeping their parallel orientations. Such a motion is controlled by
the actuators driving each of the two legs. Furthermore, the con-
catenation of one of the two revolutes of 41 with each genera-
tor yields a hybrid parallel-serial generator of the Schönflies sub-
group , where . The coupling of the
two Schönflies-motion generators thus yields a set of displace-
ments lying in the intersection of the two Schönflies subgroups,
i.e.,

That is, the intersection of the two identical Schönflies subgroups
is the same Schönflies subgroup.

PSfrag replacements

Figure 14: A parallel array of two Schönflies-motion generators

7 Conclusions

The use of qualitative reasoning in the synthesis of the topology
of parallel manipulators was highlighted in this paper. The mo-
tivation behind is the design of parallel manipulators with three
and four dof. To this end, the theory of groups, as first proposed
by Hervé in 1978, was used extensively, and the concepts asso-

ciated with kinematic chains in the same context were discussed.
In this vein, various Schönflies-motion generators were recalled,
and new kinematic bonds producing these were proposed. The
concepts were illustrated with various examples.
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