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ABSTRACT

Abstract

This thesis reports on the design, analysis and optimization of an accelerometer. This

accelerometer is designed as a monolithic structure along the concept of compliant

mechanisms. An elastodynamic analysis is performed on the compliant mechanism

to asses the performance of the inertial sensor.

This thesis proposes an innovative compliant hinge intended to stiffen the struc-

ture of compliant mechanisms. In addition, a procedure for the optimum design of

this new hinge is discussed. The structural optimization problem is approached by

coupling a finite element model to an optimization algorithm. A procedure is devel-

oped to generate the mesh at each optimization step according to the values of the

design parameters provided by the optimization algorithm. The objective function to

minimize is the stress concentration in a hinge loaded under bending.

The last chapter focuses on the multi-objective optimization of the compliant-

mechanism accelerometer. The Pareto method is used to optimally design the ac-

celerometer. The purpose is to maximize the sensitivity of the accelerometer in its

sensing direction, while minimizing its sensitivity in all other directions. The a poste-

riori multi-objective optimization is formulated. By using the normalized normal

constrained method (NNCM), an even distribution of the Pareto frontier is found.

The work also provides several optimum solutions of the Pareto plot as well as the

CAD model of the selected solution.
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RÉSUMÉ

Résumé

Une large gamme d’accéléromètres est offerte sur le marché. Cependant, la plupart

des architectures de capteurs inertiels offerts par l’industrie sont constituées d’une

masse suspendue par une poutre encastrée. Avec les années, les chercheurs ont mis

au point des architectures parallèles offrant une bien meilleure rigidité qu’une simple

poutre encastrée. Les accéléromètres à architecture parallèle offrent également de

bien meilleures rigidités.

Cette thèse porte sur la conception, l’analyse et l’optimisation d’un accéléromètre

à architecture parallèle. Tout d’abord, l’accéléromètre est réalisé comme structure

monolithique dans le cadre des mécanismes flexibles. Par la suite, une analyse elasto-

dynamique est effectuée sur le mécanisme flexible afin de d’évaluer les performances

du capteur inertiel.

Cette thèse propose également une nouvelle articulation flexible visant à améliorer

la structure des mécanismes flexibles. Une procédure optimisant le profil de cette

nouvelle articulation flexible est également proposée. Le problème d’optimisation

structurelle est abordé en établissant une boucle entre un modèle par éléments finis

et un algorithme d’optimisation. Une procédure a été développée afin de générer le

maillage à chaque étape d’optimisation en fonction des valeurs des paramètres de

conception fournis par l’algorithme d’optimisation. La fonction cible à minimiser

est définie comme la concentration de contrainte générée dans l’articulation flexible

sollicitée en flexion.
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RÉSUMÉ

Le dernier chapitre de la thèse met l’accent sur l’optimisation multi-objectif

du mécanisme flexible de l’accéléromètre. La méthode est utilisée afin d’obtenir la

configuration optimale de l’accéléromètre. Le but est de maximiser la sensibilité de

l’accéléromètre dans la direction de l’axe sensible, tout en réduisant la sensibilité

dans toutes les autres directions. Une formulation de l’optimisation a posteriori des

objectifs est présentée. En utilisant la méthode normalisée contrainte (NNCM), une

répartition uniforme de la frontière de Pareto est produite. Les solutions optimales

de Pareto sont présentées dans un graphique, ainsi que le modèle CAO de la solution

sélectionnée.
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4.1.1. Parameterization of Lamé Curves. . . . . . . . . . . . . . . . . . . 49

4.1.2. Curvature of Lamé Curves. . . . . . . . . . . . . . . . . . . . . . . 49

4.2. Basic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3. Structural Optimization Procedure . . . . . . . . . . . . . . . . . . . . 52

4.3.1. General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2. Objective Function and Constraints . . . . . . . . . . . . . . . . . 54

4.4. Optimum Supercircular Fillet . . . . . . . . . . . . . . . . . . . . . . 56

4.5. Optimum Superelliptical Fillet . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1. Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 5. Optimum Design of a Compliant Uniaxial Accelerometer . . . 63

5.1. The Optimization Methodology . . . . . . . . . . . . . . . . . . . . . 64

5.2. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



TABLE OF CONTENTS

5.3. Multi-objective Formulation . . . . . . . . . . . . . . . . . . . . . . . 69

5.4. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER 6. Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2. Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 82

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix





LIST OF FIGURES

LIST OF FIGURES

1.1 Mass-spring system of an accelerometer . . . . . . . . . . . . . . . . . . . . 2

1.2 Example industrial accelerometers: (a) piezoelectric in shear mode, (b)

piezoelectric in flexure mode; and (c) capacitive . . . . . . . . . . . . . . . 3

1.3 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The simplicial 2ΠΠ uniaxial accelerometer: (a)top view (b) front view . . . 5

1.5 The simplicial 3ΠΠ biaxial accelerometer . . . . . . . . . . . . . . . . . . . 6

1.6 The simplicial 4RΠΠR triaxial accelerometer . . . . . . . . . . . . . . . . 7

2.1 Revolute joint: (a) notched beam joint; and (b) standard mechanical revolute

joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Compliant Hinge: (a) corner-filleted hinge; and (b) elliptic flexural hinge; and

(c) notched-beam flexural hinge . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Revolute compliant hinge subjected to torsional loading . . . . . . . . . . . 14

2.4 Compliant realization of the Π-joint: (a) with a pair of constant cross-section

beams; and (b) with four notched beams . . . . . . . . . . . . . . . . . . . 15

2.5 Compliant realization of the Π-joint in a θ posture . . . . . . . . . . . . . 16

2.6 The complaint realization of the ΠΠ-leg architecture . . . . . . . . . . . . 17

2.7 The Simplicial 2ΠΠ Uniaxial Accelerometer . . . . . . . . . . . . . . . . . 17

2.8 Parametrization of the 2ΠΠ Configuration . . . . . . . . . . . . . . . . . . 18

2.9 The Sy/ρ-E/ρ chart (Ashby, 2005) . . . . . . . . . . . . . . . . . . . . . . 21

xi



LIST OF FIGURES

3.1 The ith compliant link attached to the jth rigid link: (a) layout; (b) detail of

the definition of Si(si) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Notched beam: (a) Mass-spring representation; (b) compliant joint . . . . 31

3.3 Uniaxial accelerometer: (a) front view; and (b) bottom view . . . . . . . . 36

3.4 New layout: (a) CAD model; and (b) deformation along the sensitive axis 40

3.5 New layout of the uniaxial accelerometer: (a) left view; and (b) top view . 41

4.1 Corner filleted hinge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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1.1 GENERAL BACKGROUND

CHAPTER 1

Introduction

Accelerometers are inertial sensors which provide an output proportional to accel-

eration. These sensors can be extensively applied in industry. In addition to the

technical test measurement and modal analysis, accelerometers are now commonly

used in many fields such as the automotive industry, aeronautical and astronautical

industry, military industry, robotics systems and medical instruments, video cam-

eras, free-space pointers, and so on (Macdonald, 1990). For example, accelerometers

are used in automobile crash tests or guidance systems. Guidance systems made of

accelerometers are called Inertial Navigation System (INS).

1.1 General Background

1.1.1 Accelerometer Working Principle. The vast majority of accelerom-

eters function on the principle of the mass-spring system. The mass, referred to as

the proof-mass or seismic mass, is elastically suspended on the accelerometer frame.

The elastic suspension is realized by means of flexible beams or compliant hinges.

Regarding uniaxial accelerometers, the resulting compliant mechanism is designed to

allow the proof-mass to translate exclusively along one direction. This is referred to

as the sensitive direction. Figure 1.1 represents the mass-spring system of a uniax-

ial accelerometer where the sensitive direction is that of the x-axis. The resulting

proof-mass displacement yields a signal that is linearly related to the acceleration

1



CHAPTER 1. INTRODUCTION

k

l0
x

cv

M

Figure 1.1. Mass-spring system of an accelerometer

component in the sensitive direction. It is common practice to refer to the sensitive

direction as the “sensitive axis”.

The bias errors of inertial measurements come from the off-axis sensitivity of

the mechanisms (Senturia, 2001). From a mechanical viewpoint, off-axis sensitivity

corresponds to the parasitic motion when the accelerometer is subjected to angular

acceleration, or when acceleration is not parallel to the sensitive axis. Therefore, in

order to reduce the bias errors, the off-axis stiffness of the proof-mass suspension must

be increased.

Various types of accelerometers offering a wide range of properties are available

on the market. However, most inertial sensor mechanism found in the industry are

made up of a mass suspended by one cantilever beam acting as spring. For example,

the low-frequency accelerometers shown in Figs. 1.2a, b and c are, respectively, a uni-

axial piezoelectric accelerometer in shear mode, a uniaxial piezoelectric accelerom-

eter in flexural mode, and a capacitive accelerometer (Senturia, 2001; Bao, 2000).

Piezoelectric accelerometers are named after the piezoelectric material of their flex-

ural elements. These materials generate an electric potential in response to applied

mechanical stress. On the other hand, capacitive accelerometers sense a change in

2



1.1 GENERAL BACKGROUND

(a) (b)

(c)

Figure 1.2. Example industrial accelerometers: (a) piezoelectric in shear
mode, (b) piezoelectric in flexure mode; and (c) capacitive

electrical capacitance with respect to acceleration. Despite the different technologies,

all three accelerometers have at least one proof-mass suspended by flexural beams.

The frequency range of accelerometers is quite broad, extending from a few Hertz

to several kilohertz. The high-frequency response is limited by the resonance of the

seismic mass of the accelerometer spring-mass system. This resonance produces a

very high peak in response to the natural frequency λn, which is usually somewhere

near 1000 Hz for low frequency accelerometers (Fig. 1.3). Accelerometers are or-

dinarily usable up to about 1/3 of their natural frequency (Senturia, 2001). Data

above this frequency will be accentuated by the resonant response, but may be used

3
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Usable

range

1Hz λn/3 λn
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n
(d

B
)

log(λ)

Figure 1.3. Frequency response

if the effect is taken into consideration. Since the usable frequency range of low-

frequency accelerometers runs from 0 to 600 Hz, the natural frequency should not

exceed 1800 Hz.

Low-frequency accelerometers have the advantage of high sensitivity (Navid et al.,

2003; Suna et al., 2008). Nonetheless, they have very fragile mechanical structures and

high off-axis sensitivity. Consequently, commonly used low frequency accelerometers

have a limited range of acceleration, and an off-axis sensitivity of approximately

5%. To override the low off-axis stiffness of serial architectures, researchers have

developed parallel architectures offering superior properties compared to a simple

cantilever beam.

1.1.2 Simplicial Architecture for Isotropic Multi-axial Accelerometers.

Multi-axis accelerometers currently available on the market are layouts of multiple

uniaxial accelerometers that measure acceleration components in orthogonal direc-

tions of multiple distinct points of a rigid body. Many efforts have been made to meet

the market requirements (Kruglick et al., 1998; Li et al., 2007; Mineta et al., 1996,

Puers and Reyntjens, 1998, Algrain and Quinn, 1993, Navid et al., 2003). However,

the accelerometers found in the literature have anisotropic mechanical architectures,

4
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M

(a)

M

(b)

Figure 1.4. The simplicial 2ΠΠ uniaxial accelerometer: (a)top view (b)
front view

which make them sensitive to parasitic angular acceleration effects. Regarding ac-

celerometers, isotropic mechanical architecture implies that the dynamic properties

of the sensor are the same in all directions.

The simplicial architecture for multi-axial accelerometers, proposed by Cardou

and Angeles (2007) refers to isotropic mechanism architectures proper of parallel-

kinematics machines (PKMs), allowing the measurement of one, two or three accel-

eration components. Here, Cardou and Angeles (2007) characterize the architecture

as simplicial since the proof mass is suspended by n + 1 legs, where n is the number

of acceleration components measured by the accelerometer, with n = 1, 2, 3. The set

of n + 1 legs form the vertices a simplex created by the leg attachment points of the

n-dimensional accelerometer. Recall that in mathematical programming, a simplex is

a polyhedron with the minimum number of vertices embedded in Rn (Kreyszig, 1997).

The polyhedra corresponding to one, two and three dimension are the line, the trian-

gle and the tetrahedron. If the triangle and the tetrahedron are equilateral, then the

5
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M

Figure 1.5. The simplicial 3ΠΠ biaxial accelerometer

accelerometer is equally sensitive in all the sensitive directions, therefore making the

accelerometer isotropic. Furthermore, the accelerometers always have one more leg

then dimension, thereby providing redundancy, which considerably adds robustness

against measurement error.

The Simplicial Uniaxial Accelerometer (SUA) at hand is intended to measure

point-acceleration along one direction (Cardou and Angeles, 2007). To constrain the

mass to move along a single axis, we use a ΠΠ-leg architecture, where a Π joint is a

parallelogram linkage as described in detail in Angeles (2004). A planar translation

mechanism can be obtained by coupling two Π-joints together. The intersection of

the two leg-planes forms the new one-dimensional motion line of the mechanism.

Therefore, suspending the proof-mass to each leg on both vertices (Fig. 1.4) allows

the one-dimensional motion of the proof-mass. In order to eliminate the parasitic

displacement due to gravity, each leg-plane is oriented at 45◦ with respect to the

vertical.

6
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Figure 1.6. The simplicial 4RΠΠR triaxial accelerometer

By laying out three ΠΠ-legs in a common plane, symmetrically distributed as

show in Fig. 1.5, that is, along the three medians of an equilateral triangle, we obtain

the configuration of the Simplicial Biaxial Accelerometer (SBA). This mechanism

allows translation in the common plane, while providing a high stiffness in a direction

normal to the plane.

The Simplicial Triaxial Accelerometer (STA) is a parallel-robot architecture gen-

erating pure translations of the platform with respect to the base. In order to generate

pure translations we replace the ΠΠ-legs of the previews architecture by that of the

legs of the Japan Mechanical Engineering Laboratory (MEL) Micro Finger (Arai

et al., 1996). The architecture shown in Fig. 1.6 is also made of a regular tetrahedron

which plays the role of the moving platform, used here as a proof-mass.

7



CHAPTER 1. INTRODUCTION

1.1.3 Compliant mechanism. Humankind has always been inspired by na-

ture, which is particularly true in engineering. However, human and nature have dif-

ferent design philosophies. For Ananthasuresh and Kota (1995), the crucial difference

between natural and human designs lies in a different design paradigm. Tradition-

ally, human-made mechanisms are designed to be strong and rigid, as opposed to the

strong and compliant designs of nature. The main point is that rigidity and strength

are independent features, and hence, it is possible to make something both compliant

and strong. Indeed, “stiffness is a measure of how much something deflects under a

load, whereas strength is how much load can be endured before failure” (Howell, 2001).

Thus, compliant mechanisms follow nature’s guidelines by using the compliance prop-

erties of materials to store energy and produce work.

Over the years, engineers have learned that assembly plays a major role in pro-

duction cost. To reduce production cost, compliant mechanisms offer part consol-

idation; the parts experiencing relative motion are joined together with compliant

hinges (Lobontiu, 2003). Before the first publication on the stiffness characteriza-

tion of compliant hinges by Paros and Weisbord (1965), compliant mechanisms were

designed by trial and error. Since than, many studies on compliant hinges have

been published (Moon et al., 2002; Lobontiu et al., 2004; Lobontiu and Garcia, 2003;

Lobontiu and Garcia, 2005; Stuart et al., 1997; De Bona and Munteanu, 2005; Yingfei

and Zhaoying, 2002).

1.2 Motivation and Thesis Objectives

In this thesis, we consider the compliant realization of the Simplicial Uniaxial

Accelerometer (SUA). From a fabrication perspective, compliant mechanisms can be

classified into two categories. The first category, micromachined mechanisms, is lim-

ited to planar mechanisms due to the unidirectional nature of the etching process

used in micromachining (Senturia, 2001). The second category comprises the compli-

ant realization of millimeter-scale three-dimensional mechanisms. The complicated

8
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geometry of the SUA makes it difficult to manufacture using existing microfabrication

techniques. Thus, the second category is contemplated for fabrication of the SUA.

We can cite two main advantages of a compliant realization for the design of

accelerometers. First, there is a reduction of the cost as a result of element reduction.

Second, the upgraded performance, due to reduced wear, maintenance and weight

(Howell, 2001). However, compliant mechanisms have four main drawbacks that can

affect the performance of the mechanism: limited sensitivity; off-axis sensitivity; axis

drift; and stress concentration (Moon et al., 2002). The sensitivity of the accelerome-

ter is limited by the joint stiffness, which restrains the proof-mass displacement when

subjected to acceleration parallel to the sensitive axis. On the other hand, the off-axis

sensitivity resulting from the parasitic off-axis bending of the compliant joint should

be minimized if the accelerometer is to be insensitive to parasitic off-axis acceler-

ation. The axis drift is governed by the motion precision of the proof-mass. In a

device subject to axis-drift, the proof-mass may undesirably move out of its axis of

motion. Finally, stress concentration affects the life and the range of motion of the

device. The range of motion can be recorded in dimensionless form, according to the

“mechanical advantage”, which is defined by Lobontiu (2003) as

m.a. =
|uout|
|uin|

(1.1)

where uin and uout are the input and output displacement.

Such observations motivate the design of inertial sensors with high resolution and

low bias error. The thesis objectives are, hence,

(i) The optimum design of a compact compliant uniaxial accelerometer;

(ii) the kinematic analysis of lumped compliant accelerometers;

(iii) selection of the best configuration of the Simplicial Uniaxial Architecture;

(iv) stress analysis of flexible beams; and

(v) establishing a design methodology to optimize the stiffness and strength of

accelerometers.

9
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1.3 Structure of the Thesis

The remainder of this document is organized as follows. Chapter 2 describes the

compliant mechanism design pursued in this project. Chapter 3 provides a detailed

description of the lumped-parameter model, as well as its application to different

layouts of the SUA. Chapter 4 presents the process used to optimize the compliant

hinge. The design process proposed in this work improves the structural properties of

compliant hinges by using Lamé-shaped fillets as opposed to the traditional circular

fillets. Finally, chapter 5 focuses on the multi-objective optimization of the compliant-

mechanism accelerometer. The optimum design of a compact compliant uniaxial

accelerometer proposed in this work is the first attempt to use the Pareto multi-

objective formulation to optimize accelerometers.

10
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CHAPTER 2

Compliant Mechanism Design

A compliant mechanism is defined by Lobontiu (2003) as “a mechanism that is com-

posed of at least one flexible component that is sensibly deformable compared to other

rigid links”. Specifically, a compliant mechanism is a device that generates work by

using compliant hinges instead of conventional rigid joints. Since flexible hinges do

not cause any sliding or rolling, compliant devices are free of backlash and Coulomb

friction; however, they are not friction-free, as they are fabricated out of a viscoelastic

material that generates viscoelastic forces.

2.1 Characteristics of Compliant Mechanisms

Compliant-mechanism components belong to one of two categories (Cardou et al.,

2008). The first category gathers the m compliant links used to transform motion,

force, or energy, where m refers to the number of compliant links of the mechanism.

The second category comprises the n rigid links designed with low compliance in order

to transfer the motion generated by the first category of the components. Here, n

refers to the number of rigid links of the compliant mechanism at hand.

2.1.1 Compliant joint. Almost all typical mechanical joints can be replaced

by compliant joints; however, the conventional revolute joint is the easiest to replace.

A compliant revolute joint, such as those universally described in the works by Paros

and Weisbord (1965), Yingfei and Zhaoying (2002), De Bona and Munteanu (2005),

11
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(a) (b)

Figure 2.1. Revolute joint: (a) notched beam joint; and (b) standard me-
chanical revolute joint

and Stuart et al. (1997), is governed by the bending deflection of its cantilever beams.

In contrast, the revolute joint in conventional mechanisms is governed by the rolling

of bearings or pin joints. A compliant and a standard revolute joint are depicted in

Fig. 2.1a and b. Various types of flexural hinges are available to produce compliant

revolute joints, all of them using a different beam profile. Typically, only three compli-

ant hinge profiles are found in the literature: the corner filleted hinges (Fig. 2.2a), the

elliptic flexural hinge (Fig. 2.2b), and the notched-beam flexural hinges (Fig. 2.2c).

Because notched-beam hinges have a good machinability and high off-axis stiffness,

we choose notched-beam flexural hinges for the design of the SUA.

2.1.2 Advantages and disadvantages of compliant mechanisms. In

general, compliant mechanisms offer several significant advantages compared to con-

ventional mechanisms. In addition to reducing the number of parts to assembly and

manufacture, lowering maintenance and miniaturizing the mechanism size, compli-

ant mechanisms are also free of Coulomb friction and backlash, two drawbacks that

compromise performance and precision. Typical mechanisms that use bearings or

pin-joints always exhibit some degree of parasitic motion and high-frequency noise

caused by Coulomb friction. As opposed to compliant mechanisms, bearings and

gears with low backlash and low friction are expensive and need lubricant in order

to reduce wear between moving parts. Since compliant mechanisms are compact and

12
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l

r t

x

y

(a)

l

t
b

b

x

y

(b)

l

t x

y

(c)

Figure 2.2. Compliant Hinge: (a) corner-filleted hinge; and (b) elliptic
flexural hinge; and (c) notched-beam flexural hinge

free of backlash and Coulomb friction, they are well suited to precision-mechanism

design. Moreover, not needing lubricant, which contributes to their low maintenance,

makes them appropriate for clean-environment application.

The advantages of compliant mechanisms come at a price of several drawbacks

which can affect the performance of the mechanism. As opposed to typical conven-

tional revolute joints, which have infinite ranges of motion, compliant joints have

a limited range of motion that varies depending on the geometry and the material

of the compliant joint. Another drawback is the kinematic deficiencies of compliant

joints, as studied by Lobontiu and Garcia (2003). More specifically, compliant joints

do not have a fixed axis of rotation; rather, their axis of rotation moves along the

neutral axis of the compliant beam as the joint is deformed. For their application in

accelerometers, the most significant drawback of compliant mechanisms is the poor

structural properties manifested when subjected to multi-axis loading. An ideal rev-

olute joint is infinitely rigid in all directions of loading other than that of the axis

of rotation. In contrast, a compliant joint always exhibits a degree of stiffness along

the desired axis of rotation and a parasitic compliance along all the other axes of

loading. For conventional compliant revolute joints, the first parasitic compliance is

torsional, as illustrated in Fig. 2.3. It is up to the designer to select an architecture

that will reduce the influence of the ratio of stiffness between the sensitive axis and

the torsional axis of the compliant joint.

13
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Figure 2.3. Revolute compliant hinge subjected to torsional loading

In the case of the compliant realization of the simplicial accelerometer, three main

drawbacks affect the performance of the SUA: limited sensitivity in the sensitive

direction; off-axis sensitivity; and axis drift. The sensitivity of the accelerometer

is limited by the joint stiffness, which restrains the proof-mass displacement when

subjected to an acceleration parallel to the sensitive axis. On the other hand, the

off-axis sensitivity resulting from the parasitic off-axis bending of the compliant joint

should be minimized if the accelerometer is to be insensitive to parasitic off-axis

acceleration. Finally, the axis drift is related to the motion precision of the proof-

mass. In a device with axis drift problems, the proof-mass may undesirably move out

of the sensitive axis.

2.1.3 Translation Micro Displacement. A compliant prismatic pair can-

not be design by modifying the shape of a flexible beam, as is the case for revolute

joints. In order to realize a prismatic pair, we use Π-joints, whereby two identical

straight flexible beams cast at both ends lie parallel to each other to create a parallel-

guiding mechanism, or parallelogram, as proposed by Derderian et al. (1996) and

depicted in Fig. 2.4a. The resulting mechanism is highly compact but gives only

limited off-axis stiffness. To cope with this problem, Arai et al. (1996) proposed a

different compliant Π-joint (see Fig. 2.4b), which uses notched beams rather than

beams with constant cross-sections. The notched Π-joint brings about higher ratios

between the stiffness in the sensitive direction and the stiffness in the other direc-

tions. The main drawbacks, as pointed out in Moon et al. (2002), are smaller beam

minimum thickness, thereby rendering machining costlier, while giving rise to higher

stress concentration, and leading to limited range of motion.
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(a) (b)

Figure 2.4. Compliant realization of the Π-joint: (a) with a pair of con-
stant cross-section beams; and (b) with four notched beams

As the mechanism is intended to undergo only small amplitude motion, compliant

Π-joints are usually referred to as prismatic joints. In fact, the relative displacement

produced is circular translation, which means that all points of one translating line

move on circular trajectories of equal radius and different centres with respect to its

opposite line. The direction of the equivalent P-joint1 is given by a circle tangent,

the small rotational displacement being considered negligible. By adding an angle θ

with respect to the original posture of the Π-joint, we can change the orientation of

the direction of the equivalent P pair, as illustrated in Fig 2.5.

2.2 The Compliant Realization of the 2ΠΠ Architecture

By coupling two notched Π-joints in series on the same plane, we obtain a com-

pliant version of the ΠΠ-leg. The layout of Fig. 2.6 has been adopted to produce a

two-degree-of-freedom translational system with elastodynamic isotropy, i.e., with its

1P denotes a prismatic joint
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P

θ

Figure 2.5. Compliant realization of the Π-joint in a θ posture

two natural frequencies identical. The resulting ΠΠ-leg is designed with the Π-joint

axes at an angle θ = 45◦ in the unloaded configuration of the elastic hinges. To

create the compliant single-axis simplicial accelerometer, we suspend the proof-mass

on two opposite legs, while orienting them so that their respective planes of motion

are mutually orthogonal. The resulting device, shown in Fig. 2.7, is a monolithic

mechanism that is stiff in the plane normal to the sensitive axis, but compliant in the

direction of the latter. This axis is nothing but the intersection of the two leg-planes,

the proof-mass thus moves in the direction depicted in Fig 2.7. However, in Chapter 3

we will see that the resulting asymmetric layout generates axis drift and also provides

only limited off-axis stiffness. Indeed, as pointed out by Moon et al. (2002), a sym-

metric layout of compliant joints greatly improves the ratio of the off-axis stiffness

to the sensitive-axis stiffness; it also eliminates a major part of the axis drift, which

improves the precision in the measurement of the displacement of the proof-mass.

Here, it is important to notice the difference between the symmetric layout of com-

pliant hinges and the symmetric profile of a compliant hinge. The first refers to axis

of symmetry of compliant mechanism and can be use to ease the kinematic analysis

of the system. The second refers to the axis of symmetries of the geometric profile of

a given compliant hinge.
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P P

θ

Figure 2.6. The complaint realization of the ΠΠ-leg architecture

P

Figure 2.7. The Simplicial 2ΠΠ Uniaxial Accelerometer

Eight quantities are needed to parameterize the structure of the SUA, as shown

in Fig 2.8. Among those quantities, only three of them are actually parameters of the

compliant joints. Parameters l, t, and w are, respectively, the radius, the minimum

thickness, and the depth of the joints. Moreover, w represent also the height of the

rigid links, including the proof-mass. The remaining five quantities, θ, a, h, b, and

e are, respectively, the posture angle of the Π-joint, the length and the height of the

rigid links, the thickness of the rigid link coupling the two Π-joints of the legs, and,
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a
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t
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θ

Figure 2.8. Parametrization of the 2ΠΠ Configuration

finally, the length of the proof-mass. By setting e = w and θ = 45◦ in order to have

an inertially2 isotropic proof-mass and kinetostatically3 isotropic ΠΠ-legs, the vector

x of design variables is defined:

x =
[

a b h w l t
]T

(2.1)

To benefit from the precision of the compliant joint and to avoid axis drift, the

compliant joints of the SUA are constrained to deformation.

2.3 Material Selection for Compliant Accelerometers

An important issue of compliant-mechanism design is material selection. Here,

we consider the compliant joints as springs because the proof mass deflection depends

on the bending of its suspending beam. Therefore, the main criterion for material

selection of the simplicial accelerometer is related to the primary function of springs,

which is to store elastic energy (Ashby, 2005). The elastic energy stored per unit

2An inertially rigid body has its three principal moment of inertial identical.
3A kinetostatically isotropic compliant mechanism is equally flexible in its sensitive directions.
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volume of a spring deformed uniformly under an arbitrary stress σ is

V =
1

2

(σ2

E

)

(2.2)

where E is the material Young Modulus. The spring will be damaged if the stress σ

exceeds the yield stress (Sy). The standard measurement of the spring capacity is the

modulus of resilience Rm, defined as the energy absorbed by a unit cube of material

when loaded in tension to its elastic limits (Juvinall and Marshek, 2000). Thus, Rm

is equal to the area under the elastic portion of the stress-strain curve. For a linear

spring, we have

Rm =
S2

y

2E
(2.3)

The material density should be minimized to reduce the inertia forces produced by

the acceleration of the rigid links. As the inertia forces are the only forces acting on

the flexible links, a material with low density improves the range of acceleration of

the accelerometer. Here, the range of acceleration is defined by the maximum acceler-

ation possible before plastic deformation occurs in the flexible beams. Therefore, we

express the first material criterion for the accelerometer as the ratio of the modulus

of resilience Rm and the density ρ. By dropping the constant, we can express the

material selection criterion as

R1 =
S2

y

ρE
(2.4)

where R1 corresponds to the criterion selection for light spring as expressed in (Ashby,

2005). The choice of material for light springs is based on the Sy/ρ-E/ρ chart of

Fig. 2.9. Candidates of equal performance R1 are identified by family of lines parallel

to the diagonal gray line shown in Fig. 2.9. The materials with highest R1 are the

ones lying at the right of this diagonal gray line. However, since the accelerometer is

a monolithic mechanism, the selected material should also give a high stiffness to the

rigid links. Indeed, the function of a rigid link is to transfer the elastic deflection of

the flexure hinge, without exhibiting any substantial elastic deformation. A material
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with high Young modulus reduces the parasitic flexion of the rigid link, and thus, the

off-axis sensitivity of the accelerometer. Since the material should have a low density

to reduce the inertia forces and the stress on the flexible links, we select the specific

modulus as second material index, stated as

R2 =
E

ρ
(2.5)

where R2 is to be maximized. Candidates of equal R2 values are identified this time

by the horizontal grey line shown in Fig. 2.9. The upper right corner formed by the

two grey lines, shown in Fig. 2.9, isolates the materials with the best suitable prop-

erties. Table 2.1 lists materials typically used in compliant mechanisms. However,

some of these materials are discarded because they do not satisfy all the criteria of

compliant accelerometers. For example, elastomers offer outstanding properties, but,

unfortunately, have the lowest specific modulus of all the materials. Moreover, spring

steel is discarded because of its high density. Therefore, by considering only R1 and

R2 indices, the best choices of materials are carbon fiber reinforced plastic (CFRP),

glass fiber reinforced plastic (GFRP), and titanium alloys. To select one of these

three materials, we consider other material properties which affect the performance

of high-precision instruments. For example, metals have predictable material proper-

ties, low susceptibility to creep, and predictable fatigue life. On the contrary, plastics

and composites have a large variability in their mechanical properties, making their

properties less predictable than those of metals; they are also sensitive to creep and

stress relaxation, which could bring some problems in the presence of a constant ac-

celeration such as gravity. For these reasons, we choose to build the accelerometer

with the best metal alloy of the Sy/ρ-E/ρ chart (Fig. 2.9) that is a titanium alloy

material.

Compliant mechanisms made of titanium alloy may be difficult to manufacture.

To cope with this issue, we recourse to the EOSINT M 270 machine tool for Direct

Metals Laser-Sintering (DMLS). The machine is designed to manufacture complex
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Figure 2.9. The Sy/ρ-E/ρ chart (Ashby, 2005)

three-dimensional devices in multiple types of metal, such as stainless steel, tool

steel, or, for the case of the accelerometers, TiAl6V4, a titanium alloy. The machine

has also an excellent detail resolution of ǫ = 100µm, which corresponds to the laser

focus diameter. With the precision of the DMLS machine, a monolithic titanium

accelerometer can be manufactured in a small size.

21



CHAPTER 2. COMPLIANT MECHANISM DESIGN

Table 2.1. Material

Material R1 =
S2

y

Eρ
Comment

Spring Steel 0.4-0.9 Poor, because of high density
Ti alloys 0.9-2.6 Metal with the best R1 criterion; expensive
CFRP 3.9-6.5 Anisotropic material; expensive
GFRP 1.0-1.8 Anisotropic material; less expensive than CFRP

Polymers 1.5-2.5 Low properties predictability
Nylon 1.3-2.1 With low specific modulus E/ρ
Rubber 18-45 With low specific modulus E/ρ
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CHAPTER 3

Modal Analysis of the Compliant

Accelerometer

The derivations below apply to three-dimensional motion, with a straightforward

adaptation for one- and two-dimensional motions. Since the mechanism studied here

is intended to measure an inertia force with arbitrary orientation in space, we resort

to the general case of three-dimensional beam deflection. Moreover, even if forces and

moments acting on the off-axis direction of the moving mass should have a negligible

effect on its displacement, we will take it into account, in order to estimate the cross-

effects of angular acceleration on the acceleration measurements.

The lumped-parameter model proposed by Cardou et al. (2008) was originally

introduced to compute the natural frequencies and the dynamic responses of micro-

electromechanical-systems (MEMS). The model is formulated under the assumptions

of long Euler-Bernoulli beams and small displacements. However, notched beams do

not necessarily respect these assumptions because its strain stress is concentrated in

a small region around the centre of rotation. Therefore, before performing the modal

analysis of the SUA, we must validate the above mentioned lumped-parameter model,

adopted here, for millimeter-scale compliant mechanisms using notched beams.
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3.1 Lumped-parameter Model

A compliant mechanism is a chain of components, where each component falls

into one of two categories. The first comprises the m compliant links, which are

assumed to have no inertia and a given compliance in all directions. The second

contains the n rigid links, to which a given inertia and no compliance are assigned.

The compliant links are modeled as Euler-Bernoulli beams, and the deformation

of these links is considered to be small. From this last assumption, the mass and

stiffness properties of the links are assumed to be constant, that is, independent from

the mechanism state.

3.1.1 The System State. Let us first define the fixed frame F , and frames

R′
j , j = 1, . . . , n, attached to the jth rigid link. Moreover, we define frame Rj as

the equilibrium pose of the jth rigid body. The origins of frames F , Rj , and R′
j are

labelled O, Rj , and R′
j, j = 1, ..., n, respectively. Points Rj , and R′

j are located at the

centre of mass of the jth rigid-link. The displacement taking F into Rj is described

by the pose array rj ≡ [θT
j ρT

j ], where θj ∈ R3 is the product φjej , with φj and

ej denoting the natural invariants of the associated rotation and ρj ≡ −→
ORj ∈ R3.

The natural invariants of a rotation are the unit-vector ej pointing in the axis of

rotation, and φj is the angle of rotation (Angeles, 2007). Notice that, in the presence

of small-amplitude rotations, the rotation is fully described by only three independent

variables, thereby obviating the need of a four-invariable representation.

Let the displacement of the system frame equilibrium at an arbitrary posture be

described by the array x. We define the pose of the jth rigid link with respect to its

equilibrium array as

xj = [νT
j ζT

j ]T (3.1)

where νj ∈ R3 is the products of the natural invariants φj and ej of the associated

rotation taking Rj into R′
j and ζj ∈ R3 is the vector of the translation displacement.

Under the assumption of small-amplitude rotations, only the vector part of the four

scalar invariants are needed (Angeles, 2007). Since the posture of the mechanism
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is fully described by the poses of all the rigid links, we will regard the pose arrays

xj, j = 1, . . . , n, as the system states. This results in the 6n-dimensional state vector

x = [xT
1 xT

2 . . . xT
n ]T (3.2)

3.1.2 The System Kinetic Energy. Let us first store the mass properties

of the jth rigid link into its associated mass matrix

Mj ≡





Ij 03×3

03×3 mj13×3



 , (3.3)

where Ij, mj , 03×3, and 13×3 are, respectively, the centroidal inertia matrix computed

with respect to point Rj of the jth, the mass of the jth rigid link, the 3 × 3 zero

matrix, and the 3 × 3 identity matrix. Under the assumption of small deformation,

the kinetic energy of the system is expressed as

T =
1

2

n
∑

j=1

ẋT
j Mjẋj =

1

2
ẋT Mẋ, (3.4)

where M is the 6n × 6n mass matrix of the system, namely,

M ≡

















M1 06×6 · · · 06×6

06×6 M2 · · · 06×6

...
...

. . .
...

06×6 06×6 · · · Mn

















, (3.5)

where 06×6 is the 6 × 6 zero matrix.

3.1.3 The System Potential Energy. Consider the ith compliant link that

is clamped, at one end, to the jth rigid link, and, at the other end, to the kth rigid link,

with j < k. From the free-body diagram of the ith compliant link shown in Fig. 3.1, we

see that the wrench vi ∈ R6 applied at the mass centre Rj by the jth rigid link onto the

ith compliant link has to be balanced out by wrench ui(si) ∈ R6 applied at the origin
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si

Si

Si(si)
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Rj

Rj
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Figure 3.1. The ith compliant link attached to the jth rigid link: (a)
layout; (b) detail of the definition of Si(si)

of frame Si(si), Si, where si is a coordinate along the compliant hinge neutral axis.

The positive direction of si is oriented toward the kth rigid link. The wrenches are

defined so that their reciprocal product with the small-displacement screws defined

in eq. (3.1) be dimensionally compatible. Therefore, the first three components of

the wrench represent a moment, whereas the last three represent a force, the latter

applied at the corresponding mass centre, where the wrench is defined. Let us attach

frame Si(si) with axes XS,i, YS,i, and ZS,i, to the beam cross-section at si, as shown

in Fig. 3.1 . Frame Si(si) is defined so as to have its XS,i axis tangent to the beam

neutral axis and pointing in the positive direction of si, its YS,i and ZS,i axes defined

along the principal directions of the cross-section. Let τ (si) be the array of products

of the natural invariants φj and ej of the associated rotation taking frame Rj into

frame Si(si), following the same convention as that used for θ, and σi(si) ∈ R3 be

the vector directed from point Rj to point Si. We group these two arrays in the

cross-section pose array defined as

si(si) ≡ [τ T
i (si) σT

i (si)]
T ∈ R6. (3.6)
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The strain energy in a beam element of length dsi, starting at coordinate si and

ending at coordinate si + dsi, is computed as

dUi(si) = (1/2)[ui(si)]
T
S,iHi(si)[ui(si)]S,idsi, (3.7)

where [ · ]S,i indicates that the quantity (·) is expressed in frame Si(si). Matrix

Hi(si) ∈ R6, in turn, contains the properties of the cross-section. This matrix is

defined according to the strain energy formulas for beams (Roark and Young, 1975):

Hi(si) ≡ diag

(

1

GiJi
,

1

EiIY,i
,

1

EiIZ,i
,

1

EiAi
,

αY,i

GiAi
,

αZ,i

GiAi

)

, (3.8)

where E and G are the Young and the shear modulus; IY,i, IZ,i and Ji are the YS,i

axis moment of inertia, the ZS,i axis moment of inertia and the torsional modulus

of the beam cross section, respectively; Ai is the area of the cross-section; and αY,i

and αZ,i are the shearing effect coefficients for the YS,i and ZS,i directions, respectively.

The adjoint Si(si) of the small-displacement screw si(si) is defined as

Si ≡





eCPM(τi(si)) 03×3

CPM(σ(si))e
CPM(τi(si)) eCPM(τi(si))



 , (3.9)

where CPM( · )1 denotes the cross-product matrix of the three-dimensional vector

( · ). The adjoint Si(si) leads to the following expression of wrench [v]R,j in frame

Si(si),

[ui(si)]S,i = −[vi]S,i = −ST
i [vi]R,j (3.10)

where the first equality was obtained from the equilibrium in the free-body diagram

of Fig. 3.1. Upon substituting eq. (3.10) into eq. (3.7) and integrating over the length

1CPM(a) is defined as ∂(a × x)/∂x, for any a,b ∈ R3

27



CHAPTER 3. MODAL ANALYSIS OF THE COMPLIANT ACCELEROMETER

of the ith compliant link, we obtain the strain energy as

Vi =
1

2
[vi]

T
R,jBi[vi]R,j , where Bi ≡

∫ li

0

Si(si)Hi(si)Si(si)
T dsi, (3.11)

and li is the length of the ith compliant link. To express all the wrenches vi in the

same reference frame F , the adjoint Rj of screw rj is defined as

Ri ≡





eCPM(θi) 03×3

CPM(ρ)eCPM(θi) eCPM(θi)



 , (3.12)

which represents the rigid-body motion taking frame F into frame Rj . Hence, we

have the relation

[vi]R,j = RT
j [vi]F , (3.13)

and the total strain energy of the system becomes (Cardou, 2007)

V =
1

2
[v]T

F
B[v]F , (3.14)

where [v]F ≡ [[v1]
T
F

[v2]
T
F

· · · [vm]T
F

]T , and B is a block-diagonal matrix, its

ith block being the 6 × 6 matrix RjBiR
T
j , with j taking the value of the smallest

index among those of the two rigid links that are connected to the ith compliant link.

According to Cardou et al. (2008), the static equilibrium of the wrenches takes the

form

[w]R = RTA[v]F , (3.15)

where R is a block-diagonal matrix, its jth block being the 6× 6 matrix Rj, while A

is defined as

A ≡

















A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm

















∈ R6n×6m, (3.16)

with
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3.1 LUMPED-PARAMETER MODEL

Aji =























06×6 , if compliant link i is not connected to rigid link j;

16×6 , if compliant link i is connected to rigid links j and k, with j < k;

−16×6 , if compliant link i is connected to rigid links j and k, with j > k.

(3.17)

This allows the introduction of the potential energy of the external wrenches as a

function of the internal wrenches, namely,

Π = −[w]T
R

[x]R = −[v]T
F
ATR[x]R. (3.18)

For a linearly elastic system, the potential energy V and the complementary potential

energy V̄ take the same value, which is the sum of the strain energy and the potential

energy; i.e.,

V̄ = V = U + Π = (1/2)[v]T
F
B[v]F − [v]T

F
ATR[x]R. (3.19)

From eq. (3.19), the problem may now be regarded as that of finding the in-

ternal wrenches v that minimize the complementary potential energy V for a given

displacement x of the rigid links. This follows from the second theorem of Cas-

tigliano (Juvinall and Marshek, 2000). The partial derivative of V̄ with respect to

the internal wrenches yields

∂V̄

∂[v]F
= B[v]F − ATR[x]R (3.20)

whereas the Hessian yields
∂2V̄

∂[v]2
F

= B (3.21)

One may readily verify, from eq. (3.21), that B is symmetric, positive-definite and,

therefore, all stationary points v of V̄ are local minima. Matrix B being nonsingular,

eq. (3.20) admits one single root, namely,

[v]F = B−1ATR[x]R. (3.22)
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CHAPTER 3. MODAL ANALYSIS OF THE COMPLIANT ACCELEROMETER

Upon substituting eq. (3.15) into the foregoing equation, we obtain

[w]R = K[x]R where K = RTAB−1ATR. (3.23)

The potential energy can now be written as a function of the system posture x,

namely,

V =
1

2
xTKx (3.24)

3.1.4 The Mathematical Model of the Compliant Mechanism. The

Lagrangian of the mechanism is readily computed as

L = T − V =
1

2
ẋTMẋ− 1

2
xTKx (3.25)

which leads to the Lagrange equation

d

dt

(

∂L

∂x

)

− ∂L

∂ẋ
= 0n (3.26)

whence,

Mẍ + Kx = 0n (3.27)

As the mass matrix is bound to be symmetric and positive definite, we can express

its Cholesky decomposition as M = LLT . This allows us to rewrite eq. (3.27) through

the change of variable z = LT x, namely,

z̈ + Ω2z = 0 (3.28)

where Ω2 = L−1KL−T and Ω is the system 6n×6n frequency matrix. Let ωi and ωi,

i = 1, . . . , n, be the ith eigenvalue and its corresponding eigenvector of Ω2, and λi and

λi be the ith natural frequency and its corresponding modal vector of the undamped,

non-excited system, i.e.,

λi =
√

ωi, and λi = L−T ωi, i = 1, . . . , n. (3.29)
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Figure 3.2. Notched beam: (a) Mass-spring representation; (b) compliant joint

3.2 Case Study: One-notched Beam System

The one-notched beam system is a compliant version of the spring-mass system

depicted in Fig. 3.2. This system is a simple mechanism whose natural frequencies

can be readily computed using either a mass-spring system or finite element analysis.

Thereupon, this is a good starting point to validate the mathematical model.

The single-degree-of-freedom mechanism acts as a mass-spring system made of

one torsional spring and one rigid body in a serial configuration. The first natural

frequency of the compliant mechanism should be along the degree of freedom of the

mass-spring system. To corroborate this, we analyze the mechanical structure of the

compliant mechanism parameterized in Fig. 3.2b. The dept, w, of the mechanism is

measured in the direction normal to the plane of the figure. The dimensions of the

mechanism studied in this work are recorded in Table 3.1.

Frames F and R1 are defined in Fig. 3.2b, with their X axis along the neutral

axis of the flexible beam, and with their Z axis oriented in the sensitive direction,

which is normal to the plane of the figure. The origins O and R1 of these two frames

are located at the proof-mass centre of mass. Therefore, we have

R = R1 = 16×6. (3.30)

The mechanism is made of a Titanium alloy, which has a Young Modulus of

E = 117 GPa, a Poisson ratio of µ = 0.33 and a density of ρ = 4453 Kg/m3. From
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CHAPTER 3. MODAL ANALYSIS OF THE COMPLIANT ACCELEROMETER

Table 3.1. Dimensions of the one notched beam system

l t w a b
3 mm 250 µm 10 mm 10 mm 5 mm

the selected dimension of Table 3.1, the corresponding inertia matrix and mass were

estimated to be

[I1]R1
= [I1]F = [I2]R2

=











2.3192 0 0

0 3.7108 0

0 0 2.3193











× 10−8 kg · m2, (3.31)

and m1 = 2.2265 × 10−3 kg. The mass matrix M is evaluated directly from these

numerical values and the definition of eq. (3.5).

Calculating the stiffness matrix K of the system requires the definition of the

additional frames S1(s1). This can be done through the definition of its associated

screw s1(s1), which takes frame R1 into frame S1(s1). The screw s1(s1) is evaluated

as

s1 =
[

0T
3 s1 − l − a

2
0 0

]T

. (3.32)

The geometric properties of the beams’ cross-sections are computed from beam

theory (Pilkey, 2005; Roark and Young, 1975). We know from (Paros and Weisbord,

1965) that notched beams can be modelled as Euler-Bernoulli beams when loaded in

bending or tension. However, if we observe the elastostatic properties, we realize that

beam theory is not accurate enough for notched beams with a high ratio w/l. The

accuracy depends on the type and direction of loading. To cope with this inaccuracy,

correction factors were computed in Ansys. Since ti(si), the thickness of the profile

of the ith hinge (Fig. 3.1), is a function of si, the coordinate along the beam neutral
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3.2 CASE STUDY: ONE-NOTCHED BEAM SYSTEM

axis, the properties of the beam cross-section yield

Ji(si) = βJ
1

12
wt3i (si)

[

16

3
− 3.36

ti(si)

w

(

1 − t4i (si)

12w4

)]

with βJ = 37.2, (3.33a)

IZi(si) = βz
w3ti(si)

12
with βz = 0.8, (3.33b)

IY i(si) =
wt3i (si)

12
, Ai(si) = wti(si), αY = αZ = 6/5. (3.33c)

where βJ and βz are the correction factors computed with finite element analysis.

Notice that βJ = 37.2 and βz = 0.8 when t = 250 µm, l = 3 mm, and w = 10 mm.

As there is only one flexible link matrix A is a 6 by 6 identity matrix. From eq. (3.26),

we obtain the stiffness matrix of the system,

[K]F =



























117.61 0 0 0 0 0

0 3951.7 0 0 0 419470

0 0 674.54 0 −103440 0

0 0 0 210020 0 0

0 0 −103440 0 159140 0

0 419470 0 0 0 645340



























. (3.34)

With matrix K and M at hand, the frequency matrix-squared Ω2 can be computed

from its definition, in eq. (3.28). By extracting the eigenvalues and eigenvectors from

matrix Ω2, the natural frequencies and the modal vectors of the system are found and

listed in Table 3.2. Note that the modal vectors show the direction and orientation of

the motion of each rigid link when excited at its natural frequency. From the modal

vectors, it is apparent that the three lower frequencies correspond, respectively, to

an oscillation in the sensitive axis θz, the torsional axis θx, and, finally, the bending

axis θy. The other three frequencies, which are second order effects, are disregarded

in the analysis of the results, since they are much higher than the other frequencies.

Table 3.3 shows the errors in the results of the lumped-parameter model, where the

accurate values of reference were computed with finite element analysis (FEA). With
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CHAPTER 3. MODAL ANALYSIS OF THE COMPLIANT ACCELEROMETER

errors under 5%, the lumped-parameter model gives a reliable approximation of the

natural frequencies of lumped compliant mechanisms.

Table 3.2. Modal analysis of one notched beam system

i 1 2 3 4 5 6
fi (rad/s) 4285.6 71210 86464 190300 30713 357770
fi (Hz) 682 11333 13761 30287 48881 56941

λi

0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 −1.00 0.00 0.00 1.00
−1.00 0.00 0.00 −1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.01 0.00 0.00 0.00

Table 3.3. Natural frequencies

Frequency Orientation Lumped-parameter model FEA Error
λ1 θZ 682 Hz 698 Hz 2.3%
λ2 θX 11333 Hz 11554 Hz 1.9%
λ3 θY 13761 Hz 13238 Hz 3.9%
λ4 θZ 30287 Hz 28796 Hz 4.9%

Considering that we want to use the beams as sensors, we designed them so that

they are particularly sensitive to forces parallel to the sensitive axis of the beam.

Hence, for a notched beam to be a robust sensor, its sensitivity along its sensitive

axis needs to be as high as possible with respect to its sensitivity in other directions.

Therefore, we define the ratios below, which are to be maximized, where Z is to be

the sensitive axis. For the parameter values given in Table 3.1, we obtain:

rθX ,θZ
≡ λ2

λ1

= 16.6, rθY ,θZ
≡ λ3

λ1

= 20.2. (3.35)

These results illustrate that the notched beam hinge has good off-axis stiffness. How-

ever, one flexure hinge cannot produce a translation mechanism. This can be over-

come by using four of them in a parallelogram linkage, as is done in the flexible

realization of the Π-joint introduced in the Chapter 2.
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Table 3.4. Dimensions of the 2ΠΠ system

l t w a b e h θ
3 mm 250 µm 20 mm 15 mm 3 mm 20 mm 6 mm π/4

3.3 Case Study: The Compliant 2ΠΠ System

In this section we analyze the compliant 2ΠΠ mechanical structure of the ac-

celerometer. Figures 2.8 and 3.3 show, respectively, the parameterization of the 2ΠΠ

mechanism and the orientation of the frames. The compliant mechanism is made

of m = 16 identical compliant joints numbered inside balloons, whereas the n = 11

rigid-link labels of the mechanism are included in squares. The largest rigid body

in the middle is the proof-mass and the other 10 rigid links are intermediate rigid

bodies. As we resorted to the general case of three-dimensional beam deflection the-

ory, we consider the six degrees of freedoms of each rigid link. Thus, the compliant

accelerometer is modelled as a mass-spring system of 66 degrees of freedom. The

dimensions of the mechanism layout are recorded in Table 3.4. Here, we see that two

rules apply in the numbering of the rigid links. First, the frames F and R1 must be

fixed at the centre of mass of the proof-mass in order to ease the analysis of the modal

vectors. Second, the rigid links of the parallelogram are numbered successively. Here,

frames F and Rj , j = 1, ..., n, n = 11, are defined as displayed in Fig. 3.3, where the

X axes are oriented in the direction of the sensitive axis of the accelerometer.

3.3.1 Kinetic Energy. Frames Rj, j = 1, ..., n, n = 3, are located so that

screws rj , j = 1, . . . , n, n = 3, take the values

r1 = 0T
6 ,

r2 =
[

0T
3 −l − (acθ + e)/2 (asθ + w − h)/2 0

]T

,

r3 =
[

0T
3 −l − (acθ + e)/2 (asθ − w + h)/2 0

]T

,

r4 =
[

0T
3 −2l − acθ − (e + b)/2 asθ 0

]T

,

r5 =
[

0T
3 −3l − b − (3acθ + e)/2 (asθ + w − h)/2 0

]T

,
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Figure 3.3. Uniaxial accelerometer: (a) front view; and (b) bottom view

r6 =
[

0T
3 −3l − b − (3acθ + e)/2 (asθ − w + h)/2 0

]T

,

r7 =
[

π/2 0 0 l + (acθ + e)/2 0 (asθ + w − h)/2
]T

,

r8 =
[

π/2 0 0 l + (acθ + e)/2 0 (asθ − w + h)/2
]T

,

r9 =
[

π/2 0 0 2l + acθ + (e + b)/2 0 asθ
]T

,

r10 =
[

π/2 0 0 3l + b + (3acθ + e)/2 (asθ + w − h)/2 0
]T

,

r11 =
[

π/2 0 0 −3l − b − (3acθ + e)/2 (asθ − w + h)/2 0
]T

,

where

cθ = cos θ sθ = sin θ (3.36)
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The mass properties of the rigid links yield

m1 = ρew2, m4 = m9 = ρbw2

mk = ρahwcθ, k = 2, 3, 5, 6, 7, 8, 10, 11

[I1]R1
= [I1]F =











2w2 0 0

0 e2 + w2 0

0 0 e2 + w2











ρew2

12

[Ii]Ri
=











(asθ)2 + h2 + w2 −a2cθsθ 0

−a2cθsθ (acθ)2 + w2 0

0 0 (acθ)2 + (asθ)2 + a2











ρhw2acθ

12
, i = 2, 3, 10, 11

[Ii]Ri
=











(asθ)2 + h2 + w2 0 −a2cθsθ

0 (acθ)2 + (asθ)2 + a2 0

−a2cθsθ 0 (acθ)2 + w2











ρhw2acθ

12
, i = 5, 6, 7, 8

[I4]R4
= [I9]R9

=











2w2 0 0

0 b2 + w2 0

0 0 b2 + w2











ρbw2

12
,

The mass matrix is evaluated directly from these numerical values and the defi-

nitions of eq. (3.11).

3.3.2 Potential Energy. Upon defining the lengths L = e+2b+8l+4a cos θ,

screws si, i = 1, . . . , m, m = 16, are evaluated as

[s1]R1
=

[

0 π 0 −e/2 − s1 (w − t − l)/2 0
]T

,
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[s2]R1
=

[

0 π 0 −e/2 − s2 (−w + t + l)/2 0
]T

,

[s3]R2
=

[

0 π 0 −acθ/2 − s3 (asθ + h − l − t)/2 0
]T

,

[s4]R3
=

[

0 π 0 −acθ/2 − s4 (asθ − h + l + t)/2 0
]T

,

[s5]R4
=

[

0 π 0 −b/2 − s5 (w − t − l)/2 0
]T

,

[s6]R4
=

[

0 π 0 −b/2 − s6 (−w + t + l)/2 0
]T

,

[s7]F =
[

0T
3 −L/2 + s7, (w − t − l)/2 0

]T

,

[s8]F =
[

0T
3 −L/2 + s8, (−w + t + l)/2 0

]T

,

[s9]R1
=

[

π/2 0 0 e/2 + s9 0 (w − t − l)/2
]T

,

[s10]R1
=

[

π/2 0 0 e/2 + s10 0 (−w + t + l)/2
]T

,

[s11]R7
=

[

0T
3 acθ/2 + s11 (asθ + h − l − t)/2 0

]T

,

[s12]R8
=

[

0T
3 acθ/2 + s12 (asθ − h + l + t)/2 0

]T

,

[s13]R9
=

[

0T
3 b/2 + s13 (w − t − l)/2 0

]T

,

[s14]R9
=

[

0T
3 b/2 + s14 (−w + t + l)/2 0

]T

,

[s15]F =
[

0
√

2π/2
√

2π/2 L/2 − s15 0 (w − t − l)/2
]T

,

[s16]F =
[

0
√

2π/2
√

2π/2 L/2 − s16 0 (−w + t + l)/2
]T

.

As the notched beams have the same layout as the revolute joint studied in section

3.2, their cross-section have the properties given in eq.(3.33). From the dimensions

listed in Table 3.4, we can compute the stiffness matrix K of the system.

3.3.3 Mathematical Model. We derived the natural frequencies of the

system from the eigenvalues of matrix Ω2. The four lowest frequencies and their

corresponding normalized modal vectors are listed in Table 3.5. As expected, the

first natural frequency, λ1 = 290 Hz, corresponds to an oscillation of the proof-mass

in the X direction. The second and third natural frequencies, λ2 = 1013 Hz and

λ3 = 1066 Hz, are almost equal due to the isotropic stiffness, while the gap between

the two frequencies results in the axis drift. The axis drift also causes the proof-mass
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to move out of the sensitive axis when subjected to accelerations parallel to the sen-

sitive axis. The parasitic motion generated by the axis drift, which is shown by the

modal vector λ1,1, is a combining parasitic rotation around the X, Y and Z axes. To

analyze the off-axis sensitivity, we can once more compute the ratios of sensitivity,

yielding

rθZ ,X ≡ λ2

λ1

= 3.49 , rθY ,X ≡ λ3

λ1

= 3.67 , rθX ,X ≡ λ4

λ1

= 7.33 (3.37)

The loss of off-axis stiffness compared with the notched beam of Section 3.2 comes

from the serial configuration of the accelerometer, and from the asymmetric config-

uration of the ΠΠ-legs. Undoubtedly, as Moon et al. (2002) point out, a symmetric

configuration of compliant joints greatly improves the ratio of off-axis stiffness to

sensitive-axis stiffness; furthermore it eliminates a major part of the axis drift, im-

proving the precision in the measurement of displacement of the proof-mass. As long

as we want to have at least one order of magnitude between λ2 and λ1, a new topology

for the simplicial uniaxial accelerometer is required.

3.4 Alternative Layout

There are two ways to improve the ratio of the off-axis stiffness to sensitive-axis

stiffness and the axis-drift of the compliant realization of the SUA. The first consists

of adding extra ΠΠ-legs to each side of the proof-mass. This solution requires more

space, thereby penalizing the compactness of the accelerometer. The second and best

way, consists in merging the two intermediate rigid links connecting the two Π-joints

of the ΠΠ-legs with the proof-mass and in fixing each Π-joint to the frame of the

accelerometer. The new layout of the mechanism, as shown in Fig. 3.4a, is the most

compact form of the SUA because it is the layout with the lowest number of rigid

and flexible links. Moreover, the Π-joints of the new layout is made of uniform cross-

section beams, which are more compact than the notched beams Π-joints used in the

original layout. The new layout is not only the most compact form of the SUA, but

it also offers an excellent ratio of the off-axis stiffness to sensitive-axis stiffness. By
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Figure 3.4. New layout: (a) CAD model; and (b) deformation along the
sensitive axis

using straight flexible beams rather than circular hinges to create the approximation

of Π-joints we eliminate all intermediate rigid links likely to bring parasitic inertia

forces by acting as seismic masses. Figure 3.4b illustrates the behaviour of the new

layout mechanism subjected to acceleration along the sensitive-axis direction. The

mechanism works on the principle of large-displacement compliant joint developed

by Moon et al. (2002). The dimensions of the mechanism studied in this work are

recorded in Table 3.6.

Frames F and R1 are defined as displayed in Fig. 3.5, with their X axes along

the direction of the sensitive axis. Moreover, the origins O and R1 of these two frames

are located at the proof-mass centroid. Since frames F and R1 are coincident, we

have

R1 = 16×6. (3.38)

The mass matrix M of the mechanism is the mass matrix of the proof mass as

defined in eq. (3.5). The beam cross-section remains constant in all the compliant

links, and hence,

Ji =
1

12
wt3

[

16

3
− 3.36

t

w

(

1 − t4

12w4

)]

, (3.39a)

IY i =
wt3

12
, IZi =

w3t

12
, Ai = wt, αY = αZ = 6/5. (3.39b)

The screws si, i = 1, ..., m, m = 8, are evaluated as
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Figure 3.5. New layout of the uniaxial accelerometer: (a) left view; and
(b) top view

[s1]F =
[

0 π/2 0 e/2 0 w/2 + l − s1

]T

,

[s2]F =
[

0 π/2 0 −e/2 0 w/2 + l − s2

]T

,

[s3]F =
[

0 −π/2 0 e/2 0 −w/2 − l + s3

]T

,

[s4]F =
[

0 −π/2 0 e/2 0 −w/2 − l + s4

]T

,

[s5]F =
[

0 0 −π/2 e/2 w/2 + l − s5 0
]T

,

[s6]F =
[

0 0 −π/2 −e/2 w/2 + l − s6 0
]T

,

[s7]F =
[

0 0 π/2 e/2 −w/2 − l + s7 0
]T

,

[s8]F =
[

0 0 π/2 −e/2 −w/2 − l + s8 0
]T

.
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Once again, we find the natural frequencies of the system from the eigenvalues

of matrix Ω2 The four lowest frequencies and their corresponding modal vectors are

listed in Table 3.7. The first natural frequency, λ1 = 490.6 Hz, remains in the sensitive

axis, but the mechanism uses the second order deformation of the flexible beam to

allow the translation of the proof-mass. The plane normal to the sensitive axis is

isotropically rigid, in that the second and third frequencies are equal. Moreover, the

mechanism is not subjected to axis drift since the components of vector λ1 are at

zero, with the exception of the component corresponding to translation along the X

direction. The sensitivity ratios of the new layout,

rθZ ,X ≡ λ2

λ1
= 7.98, rθY ,X ≡ λ3

λ1
= 8.05 (3.40)

We notice here that the sensitivity ratio reveal almost one order of magnitude of

difference between λ2 and λ1. In addition, the sensitive off-axis plane is isotropic,

since rθY ,X ≈ rθZ ,X . The new layout is less sensitive than its original 2ΠΠ counterpart,

because the former uses the second order deformation of the flexible beams to allow

the translation of the proof-mass. However, λ1 does not exceed the maximum natural

frequency, 1800 Hz, of low-frequency accelerometers (see Chapter 1). Moreover, it is

possible to improve the accelerometer properties by optimizing the new layout.
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3.4 ALTERNATIVE LAYOUT

Table 3.5. Modal frequencies and modal vectors of the compliant 2ΠΠ
mechanism

i 1 2 3 4 i 1 2 3 4
fi (Hz) 290 1013 1066 2128 fi (Hz) 290 1013 1066 2128

λi,1

0.301 −0.032 0.076 0.931

λi,7

0.000 −0.524 −0.423 −0.982
0.197 −0.697 0.726 0.244 0.000 0.121 0.175 0.118
−0.181 0.716 0.678 0.212 −1.000 −0.843 0.889 0.148
−0.915 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 −0.063 0.000 0.000 0.000 0.000 0.000
0.000 0.000 −0.068 0.000 0.000 0.000 0.000 0.000

λi,2

0.000 −0.489 0.505 0.980

λi,8

0.000 −0.745 −0.488 −0.920
0.000 −0.107 0.201 0.114 0.000 0.115 0.199 0.320
−1.000 −0.866 −0.839 −0.160 −1.000 −0.657 0.850 0.228
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λi,3

0.000 −0.720 0.601 0.924

λi,9

0.199 −0.898 0.156 −0.977
0.000 −0.104 0.224 0.296 −0.143 0.375 0.794 0.131
−1.000 −0.686 −0.767 −0.241 −0.105 0.228 −0.581 −0.167
0.000 0.000 0.000 0.000 −0.593 0.000 0.000 0.000
0.000 0.000 0.000 0.000 −0.760 0.000 −0.060 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λi,4

0.187 −0.904 0.000 0.978

λi,10

0.000 0.230 0.613 −0.999
0.157 −0.344 0.840 0.124 0.000 0.162 0.094 0.000
−0.093 0.252 0.535 0.169 1.000 −0.960 0.784 0.051
−0.594 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.761 0.000 −0.059 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λi,5

0.000 0.133 −0.622 0.999

λi,11

0.000 0.706 0.517 −0.950
0.000 −0.135 0.100 0.000 0.000 0.111 0.084 0.000
1.000 −0.982 −0.776 0.000 1.000 −0.699 0.852 0.308
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λi,6

0.000 0.643 −0.551 0.951
0.000 −0.100 0.090 0.000
1.000 −0.759 −0.829 −0.306
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
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CHAPTER 3. MODAL ANALYSIS OF THE COMPLIANT ACCELEROMETER

Table 3.6. Dimensions of the new layout

l t w e
10 mm 250 µm 5 mm 5 mm

Table 3.7. Modal analysis of the new layout

i 1 2 3 4
fi (Hz) 1679 13407 13511 13820

λi

0.00 0.14 0.17 0.23
0.00 0.82 0.11 0.43
0.00 0.23 0.85 0.34
1.00 0.01 0.04 0.45
0.00 0.03 0.01 0.32
0.00 0.02 0.03 0.45
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CHAPTER 4. SHAPE OPTIMIZATION OF A CORNER-FILLETED HINGE

CHAPTER 4

Shape Optimization of a Corner-filleted

Hinge

In Chapter 3 the compliant devices were designed based on the stiffness properties

of its flexible elements. However, kinematic synthesis does not consider all the char-

acteristics of compliant mechanisms. As stated by Moon et al. (2002) and De Bona

and Munteanu (2005), one of the main drawbacks of a compliant hinge is the high

stress concentration leading to low fatigue strength. The stress concentration de-

pends on the stress flow which is controlled by the change of curvature in the beam.

Accordingly, designers of a compliant mechanism must take into account not only the

stiffness requirement, but also the strength requirement. For this reason, we choose

to optimize the shape of the flexible-link profile in terms of the stress-concentration

factor.

Straight flexible beams used for compliant mechanisms are integrated within a

monolithic structure by adding a radius at the interface between the beam and the

rigid link. Thus, the resulting flexible beam is said to be a corner-filleted hinge.

However, the circular profile of the fillets, which is the most common shaped found in

the literature (Stuart et al., 1997; Yingfei and Zhaoying, 2002), is not optimal with

respect to stress concentration because circular fillets give rise to G2-discontinuities,

i.e. discontinuities in the curvature of a geometric curve. We know from Williams
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Y

X

l

t
r

G2-discontinuities

Figure 4.1. Corner filleted hinge

(1952), Dunn et al. (1997), and Pedersen (2007) that curvature discontinuities in the

structure profile generate stress concentrations. The stress concentration resulting

from the discontinuities of the corner filleted hinge profile depicted in Fig 4.1 can

drastically accelerate fatigue failure and reduce the life of the compliant mechanism.

What is proposed in this work is to optimize the fillet profile of the flexible beam by

designing their shape with Lamé curves. By controlling the curvature of the fillet,

the stress flow might be smoothed, to decrease the stress values.

De Bona and Munteanu (2005) proposed an optimum compliant hinge using a

cubic-spline curve to find the best profile which will maximize the flexibility of a

compliant revolute joint (Fig. 2.1a). In this thesis, we choose Lamé curves as opposed

to other families of curves, e.g. splines, because of their simplicity. The true optimum

shape can be obtained by resorting to calculus of variations, whereby the dimension

of the design space is infinite. Lamé curves are defined, on the contrary, on a two-

dimensional space, as a Lamé curve is defined by two independent parameters, as

explained below.
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4.1 LAMÉ CURVES
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Figure 4.2. Lamé curves for: (a) η = 2; (b) η = 3; and (c) η = 4

4.1 Lamé Curves

Lamé curves are η-order curves defined by the equation

(

x

bx

)η

+

(

y

by

)η

= 1 (4.1)

where η can be any rational number, while bx and by correspond to the intersections

of the curve with x and y axes. There are nine different types of Lamé curves based

on the form of the exponent η (Loria, 1902). For our study, we resort to η > 2. From

eq. (4.1), it is apparent that Lamé curves are analytic everywhere and, as shown in

Fig. 4.2, even-integer-powered curves are closed and doubly symmetric. For η = 2,

the curve results in a circle and, as η tends to infinity, the curve approaches a square.

In the case of odd-integer-powered Lamé curves, as depicted in Fig. 4.2b, they are

open and extend infinitely toward an asymptote crossing the second and the four

quadrants and passing through the origin. Fractional-powered Lamé curves are also

open and analytic in the first quadrant, but in the other quadrants, eq. (4.1) leads to

complex numbers.

In order to obtain a closed curve for any rational power η, eq. (4.1) is modified

to read
∣

∣

∣

∣

x

bx

∣

∣

∣

∣

η

+

∣

∣

∣

∣

y

by

∣

∣

∣

∣

η

= 1 (4.2)

Figure 4.3 shows the curves obtained using eq. (4.2), for η = 2, 3.5, 5, 8, and 30.

Absolute-value bars are essential for all the rational-powered curves, but can be
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Figure 4.3. Lamé curves of eq. (4.2)

deleted for even-integer-powered curves. Absolute values, however, introduce dis-

continuities in the curvature because the absolute value function is not differentiable

at the origin.

As the curves shown in Fig. 4.3 have double symmetry, it is sufficient to study

only the first quadrant of the curves for the generation of the fillets. Therefore, the

curves that generate the fillets take the form:

f(x, y) =

(

x

bx

)η

+

(

y

by

)η

− 1 = 0; 2 < η ∈ Q, x, y ∈ R+ (4.3)

where Q is the set of rational numbers and bx and by are scaling parameters. Appar-

ently, Lamé curves have two independent parameters, the ratio by/bx and η.
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Figure 4.4. Lamé curves polar coordinate for η = 4

4.1.1 Parameterization of Lamé Curves. With regard to eq. (4.3), the x

and y coordinates can be defined explicitly in terms of θ as:

x(θ) =
1

(1 + tan θη)
1

η

, y(θ) =
tan θ

(1 + tan θη)
1

η

(4.4)

where the angle θ ∈ [0, π/2] is the polar coordinate of one point of the curve, measured

with respect to the x-coordinate axis, and is defined positive counterclockwise. To

generate the shape of the fillets, affine transformations are used to scale the coordinate

x1 and y1 by means of parameters bx and by, namely,

x1(θ) =
bx

(1 + tan θη)1/η
, y1(θ) =

by tan θ

(1 + tan θη)1/η
(4.5)

If bx = by = b, the Lamé curve has a super circular layout; otherwise (bx 6= by), the

Lamé curve has a super elliptical layout. Thus, Lamé curves can create two types of

fillet: the supercircular fillet and the superelliptical fillet.

4.1.2 Curvature of Lamé Curves. The advantage of this family of curves

is that for η > 2 their curvature vanishes at the intersections with the coordinate

axes. The curvature κ(s) is defined as

κ(s) ≡ dφ

ds
(4.6)
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where φ is the angle made by the tangent with a fixed line and s is the curve length,

as shown in Fig. 4.4. From its definition, curvature has units of inverse length. If

the Lamé curve is given by the parametric form of eq. (4.4), then the curvature κ(θ)

takes the form

κ(θ) =
x′(θ)y′′(θ) − y′(θ)x′′(θ)

(x′(θ)2 + y′(θ)2)3/2
(4.7)

Notice that for η > 2, κ(θ) becomes undefined at θ = 0 and π/2, but the continuity of

the curvature at points (1, 0) and (0, 1) can be shown to be preserved by computing

the limit of κ(θ) as θ approaches 0 or π/2.

lim
θ→0
η>2

κ(θ) = lim
θ→π/2

η>2

κ(θ) = 0 (4.8)

The curvature can be expressed in a more robust form, namely, implicit (Gray,

1993):

κ(x, y) =
2fxyfxfy − fxxf

2
y − fyyf

2
x

(f 2
x + f 2

y )3/2
(4.9)

where fx and fxx are the first-and second-order partial derivatives of f(x, y) = 0 with

respect to x, fy and fyy being defined likewise, and fxy is the mixed second-order

partial derivative of f(x, y) = 0. For the curve f(x, y) of eq.(4.3) the curvature takes

the form (Khan, 2007)

κ(x, y) =
(η − 1)(xy)η−2(xη + yη)

(x2η−2 + y2η−2)3/2
(4.10)

whence, apparently the curvature of rational-powered Lamé curves vanishes at the

intersection with the coordinate axes.

The three different profiles of the flexible beam studied in this thesis, are the

profiles made of circular fillets, supercircular fillets, and superelliptical fillets, as rep-

resented, respectively, in Figs. 4.5a, c, and e. Their corresponding curvature distri-

butions in terms of s are illustrated in Figs. 4.5b, d, and f. Each profile has singular

points A and B at the blending points of the curve and the straight line. For the case

of the circular fillet, the curvature attains unbounded values at the singular points A,
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Figure 4.5. Flexible beam profiles and their corresponding curvature dis-
tributions: (a) (b) circular fillets; (c) (d) supercircular fillets; and (e) (f)
superelliptical fillets

B and C. The curvature at the singular points is thus indicated with an arrow, to

indicate the presence of a Dirac function. On the other hand, the curvature of the su-

percircular and the superelliptical profiles depicted in Figs. 4.5d and f are continuous

everywhere, which shows that their corresponding flexible beams are G2-continuous

everywhere.

4.2 Basic Problem

In this work, we consider the supercircular and the superelliptical fillets of Figs. 4.6a

and b, the former becoming a circular fillet for η = 2. However, a circular fillet is

not a good profile because it is G2-discontinuous. Here, our goal is to search for the

power (η > 2) of the Lamé curve that minimizes the stress concentration without

compromising the compliance of the joint.
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Figure 4.6. Geometry of a Lamé-filleted hinge: (a) supercircular filleted
hinge; (b) superelliptical filleted hinge; (c) top view of both hinges

4.3 Structural Optimization Procedure

4.3.1 General Scheme. Flexibility along the sensitive axis is the main re-

quirement that has to be fulfilled when designing a flexural beam. Therefore, the

reduction of stress concentration must not decrease the flexibility of the beam along

the sensitive axis. It follows that the design problem can be solved by referring to
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Figure 4.7. Structural model: (a) front view, (b) top view

a classical optimization procedure, where the minimum stress concentration is the

objective function with a constraint on the joint flexibility. Objective function and

constraint must be computed by a Finite Element (FE) solver because closed-form

solutions of stresses are not possible for arbitrary shapes. Moreover, only FE analysis

with a fine mesh can determine local stress peaks generated by G2-discontinuities. A

procedure was set-up for the automatic generation of the FE mesh at each optimiza-

tion step according to the values of the design variables provided by the optimization

algorithm.

By exploiting the layout symmetry, we can simplify the structural model of the

hinge to only a quarter of the original structure. Figures 4.6a, b, and c show the

axis of symmetry for the analysis. A symmetry condition applies to problems in

which the geometry, loading, and boundary conditions are symmetric about an axis,

while, an anti-symmetry condition applies when only the geometry is symmetric with

respect to an axis (Moaveni, 2003). In the anti-symmetry case, the loading and the

boundary conditions are not symmetrically spread on each side of the anti-symmetric

axis. Figure 4.7 shows the model used for the structural analysis and the planes

subject to the symmetric and anti-symmetric conditions. The displacements of the

flexible beam left end were set to zero, as is the case for a cantilever beam, while, at
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the other end, a vertical load F is applied. The optimization procedure is introduced

in a dimensionless form similar to the parameterization proposed by De Bona and

Munteanu, (2005). The dimensionless design parameters of the corner-filleted hinge

take the form:

β =
r

l
, λ =

t

l
, and ω =

w

l
: geometric parameters

µ =
F l

σadmt2w
: load parameter

ν =
umaxEwt2

l2F
: flexibility parameter

where r, l, t, and w are the geometric parameters of the corner-filleted hinge with

circular fillets and where σadm, and umax are, respectively, the maximum yield strength

of the selected material, and the maximum deflection of the hinge. In this case study,

the geometric parameters are set to β = 0.02, λ = 0.02, and ω = 0.02, and the

load parameter is set to µ = 0.0134. Figures 4.8a and b show, respectively, the

mesh of the flexural beam and the refined meshing of one of the fillets where stress

concentration occurs. The meshing was built with eight-node brick elements, which

allow to capture the whole regime of stresses. Finally, the deformed position of the

hinge, umax, resulting from the application of the load F , is depicted in Fig. 4.7a

4.3.2 Objective Function and Constraints. The objective of the opti-

mization procedure is to minimize the stress concentration at the transition between

the fillet and the straight beam. A reference nominal stress is computed for a straight

beam in pure bending. Since the beam has a constant rectangular cross-section of

w × t, the reference stress is not influenced by any change of curvature. When con-

sidering the case of pure bending as defined by Juvinall and Marshek (2000), the

resulting stress is given by the equation:

σ̄ =
Mc

I
(4.11)
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(a)

(b)

Figure 4.8. Meshing of the flexible beam: (a) front view; and (b) zoom-in
on the fillet

where I is the moment of inertia of the cross section with respect to the neutral axis,

and c is the distance from the neutral axis. For consistency with the location of the

stress concentration, the nominal stress, represented by σ̄, is computed with c = t/2

and M = F l, which yields:

σ̄ =
6F l

wt2
(4.12)

Thus, at the lower surface we have the reference stress state

σ̄1 = σ̄, σ̄vM = σ̄ (4.13)

where σ̄1 is the reference principal stress and σ̄vM is the reference von Mises stress.

The stress factors c1 and cvM are determined as relative to the nominal values, i.e.,

c1 =
σ1

σ̄1
, cvM =

σvM

σ̄vM
(4.14)
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Table 4.1. Initial corner-filleted hinge

Profile β τ ω η ν cvM c1

1 0.02 0.02 0.02 2.00 1743 4.42 4.61

where σ1 and σvM are, respectively, the first principal and von Mises stress of the FE

analysis of the flexible beam.

As the goal of a compliant hinge is to allow flexibility in the sensitive axis, the

optimization of the stress concentration is obviously constrained by the stiffness of

the flexible beam. If the flexible parameter ν classifies the characteristics of each

hinge, the compliance constraint is defined by the expression

g(x) = ν − νadm > 0 (4.15)

where νadm is the deflection of the reference corner-filleted hinge. The flexibility

constraint enables the optimization algorithm to discard solutions that are too stiff.

Table 4.1 includes the properties of the initial corner-filleted hinge made of circular

fillets.

4.4 Optimum Supercircular Fillet

The simplest shaped design that fulfils the G2-continuity is a quarter of a super

circular curve. Figure 4.6a shows the parameterization of the supercircular filleted

hinge, where the five parameters, l, t, w, b, η are, respectively, the length, the thickness

and the depth of the hinge, the height and power of the Lamé curve defined in eq. (4.5).

It is noteworthy that the circular fillet is a specific case of the super circular fillet

and, therefore, it has the same parameterization, with r = b and η = 2.

The optimization problem consists in finding the power η that minimizes the

stress concentration without decreasing the hinge compliance. Thus, the supercircular

fillet problem is a single-variable optimization, where η is the design variable. The

optimization problem is solved by minimizing the equation:

f(η) = (cvM )max =
(σvM )max

σ̄vM
→ min

η
(4.16)
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Figure 4.9. Stress concentration factor as a function of power η of a Lamé
curve for supercircular fillet

subject the design constraint:

g(η) = ν − νadm > 0 (4.17)

and to the boundary constraint:

2 < η (4.18)

The FE analysis of the hinge with a supercircular fillet was conducted for different

values of η. The resulting parametric study reveals the convex shape of the function

describing the maximum stress concentration factor c as a function ofη. Thus, the

minimum stress concentration is located at η = 3.2, as depicted in Fig. 4.9. The

optimum design, for a minimax von Mises stress, is obtained for η = 3.2, which

corresponds to a value of ν = 1797, (cvm)max = 4.227, and (c1)max = 4.357. To

evaluate the influence of η on the stress concentration, we complete the parametric

study with one digit of resolution. The resolution of the design variable η is limited by
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(a)

(b)

(c)

Figure 4.10. Von Mises stress distribution with (a) no fillet; (b) circular
fillet; and (b) optimum supercircular fillet with η = 3.2

the accuracy of the FEA which depends on the mesh resolution. Therefore, to obtain

a representative function f(η), the size of the elements needs to be small enough to

capture the small local change in geometry. Here, the element size has been refined

to obtain the convex curves shown in Fig. 4.9.
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4.5 OPTIMUM SUPERELLIPTICAL FILLET

Figures 4.10a, b, and c illustrate the stress fields of the rectangular, the circular,

and the optimum supercircular hinge. Note that a square corner can be represented by

a Lamé curve of infinite exponent (η → ∞). Obviously, square corners are not good

designs; traditionally, compliant hinges have been improved by mean of circular fillets.

By removing material from the circular fillet, the maximum stress condition located

around the fillets decreases with a stress concentration factor of (cvM )max = 4.421

to (cvM )max = 4.227, allowing an improvement of 4.4%. In addition, the flexibility

parameter increases from νadm = 1743 to ν = 1797. This optimization demonstrates

the improvement in the original shape of the corner-filleted hinge. Nevertheless, the

supercircular fillet still has a limited shape domain for maximum stresses. This can

be resolved by extending this domain further.

4.5 Optimum Superelliptical Fillet

A superelliptical fillet shape as an alternative to the supercircular fillet may be

worthwhile because the new design improves even more the stress flow around the

fillet of the compliant joint. However, an extra parameter is necessary to describe

the elliptical shape of the new fillets. Figure 4.6b shows the parameterization of

the superelliptic filleted hinge, bx and by being the two scaling factors of eq. (4.5).

The new optimization problem consists in minimizing the stress concentration of the

superelliptical fillet, where the vector of design variables is expressed:

x = [bx by η]T (4.19)

The optimum superelliptical fillet is found as a solution of the problem:

f(x) = (cvM)max =
(σvM )max

σ̄vM
→ min

x

(4.20)

subject to the compliance constraint:

g(x) = ν − νadm > 0 (4.21)
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and to the boundary constraints:

0 6 x1 6 l/2, 0 6 x2, 2 < x3, (4.22)

which are set to respect the limitations of the geometry.

4.5.1 Optimization Algorithm. Problem (4.20) is of the constrained non

linear type. Additionally, the objective function at hand is the maximum von Mises

stress throughout the whole structural element, which is a non-analytic function of the

design variables. This feature prevents the use of any gradient algorithm. To handle

the non-analyticity of the objective function, we selected the Nelder-Mead simplex

algorithm (Nelder and Mead, 1965). However, the original simplex algorithm does not

handle constraints; therefore we use the simplex algorithm with a penalty function to

handle the constraint. The modified simplex algorithm, outlined in Rahman (2006),

is implemented in Matlab’s Optimization toolbox. This implementation is used here.

To generate the FE model at each optimization step according to inputs of the

simplex algorithm, a Matlab procedure was implemented, using Ansys as the simula-

tion toolbox. This is feasible, since Matlab can execute any program without inter-

rupting its processing. The procedure linking both softwares is depicted in Fig 4.11.

First, Matlab most prepare the input file written in ANSYS parametric design lan-

guage. Once the input file is created, ANSYS can be launched from Matlab using

the “dos” command. Finally, by loading the FE analysis results to Matlab, Ansys is

completely implemented in the optimization loop. Furthermore, Ansys automatically

generates the mesh of the hinge at each optimization step.

4.5.2 Results. The results are recorded in dimensionless form, according to

the notation:

βx =
bx

l
, βy =

by

l
, η: design parameters
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Figure 4.11. Link between Matlab and Ansys

The optimum superelliptical fillet for a flexible beam was found at a maximum stress

concentration of (cvM )max = 3.656, which is a substantive reduction, as opposed to

the one provided by circular fillets. The correlating design parameters of the optimum

superelliptical fillet correspond to βx = 0.5, βy = 0.01, and η = 12.33. The significant

reduction in the stress concentration results from the improvement of the stress flow

inside the flexible beam depicted in Fig. 4.12. In contrast to the circular fillets, where

the stress is concentrated in a small area at the transition between the fillet and the

straight line, the maximum von Mises stress of the superelliptical fillet is distributed

along the flexible beam. The corresponding stress concentration distribution,cvM ,

around the optimum fillet of the elliptical profile is shown in Fig. 4.12.
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Figure 4.12. Von Mises stress concentration distribution of the optimum
super elliptical fillet

Table 4.2. Summary of results

Profile βx βy η cvM ν Improvement
0. No fillet n.a. n.a. ∞ 5.217 1806 n.a.
1. Circular fillet 0.020 0.020 2.00 4.421 1688 n.a.
2. Optimum supercircular fillet 0.020 0.020 3.20 4.227 1762 4.4%
3. Optimum superelliptical fillet 0.500 0.010 12.33 3.656 1688 20.9%

4.6 Summary and Discussion

The suggested beam profiles are summarized in Table 4.2. The improvements in

stress concentration of the two new profiles were computed in relation to the stress

concentration of the original corner-filleted hinge profile. It is not surprising that

profile 3 shows the greatest improvement. What is surprising is that profile 3 has an

improvement of 20.9%, which is substantial in comparison with profile 2 improvement

of 4.4%. Throughout the optimization, the design variable bx converges to its upper

boundary condition, causing the fillets of the hinge to merge, the straight portion of

the beam thus vanishing. Therefore, the profile of the hinge is defined with a single

formula. The optimum profile is also analytic everywhere.

The low stress concentration of profile 3 is obtained at the expense of a large

power η that results in high curvature changes and, therefore, higher complexity

(Khan, 2007). On the other hand, profile 2 has a higher stress concentration but

much lower power η. Thus, the designer can make a compromise between stress

concentration and complexity by selecting profile 2.
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CHAPTER 5

Optimum Design of a Compliant Uniaxial

Accelerometer

Optimization techniques are used in the design of compliant mechanisms. A popular

technique is topology optimization, which can find the distribution of a given amount

of material that maximizes the stiffness of the structure (Frecker et al., 1997; Bernar-

doni et al., 2004; Mankame and Ananthasuresh, 2004; Werme, 2007 ; Mechkour1

et al., 2007). The technique was originally developed to generate the architecture of

optimum planar mechanisms. The problem with the resulting mechanism is that it

does not consider the sensitivity to out-of-plane forces. Furthermore, this optimiza-

tion technique cannot be used to find the optimum shape of a desired layout, since it

generates its own layout.

The design technique introduced in this thesis does not generate optimum lay-

outs, but optimizes the dimensions of a given layout. Thus, the designer is free to

optimize any preselected three-dimensional compliant mechanism layout. Moreover,

the technique minimizes the parasitic compliance in all off-axis directions. To do so,

the a posteriori multi-objective algorithm is used to find the best trade-off between

conflicting objective criteria of compliant mechanisms. Among the multi-objective op-

timization techniques, we have chosen the Normalized Normal Constraint algorithm

to obtain an evenly distributed Pareto frontier (Messac et al., 2003).
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The method is applied to the cross-configuration of the uniaxial simplicial archi-

tecture proposed by Cardou and Angeles (2007). We start with a general formulation

of the optimization methodology; then, the method is applied to the uniaxial ac-

celerometer of the foregoing reference.

5.1 The Optimization Methodology

This section describes the method used to find an optimum accelerometer ar-

chitecture that minimizes the error of the measured acceleration. This error can

be minimized by optimizing the sensitivity and natural frequencies of the compliant

mechanism. The mechanical sensitivity evaluates the input-to-output amplification.

In the field of compliant mechanisms, the input-to-output amplification ratio is called

the “mechanical advantage” and it is defined by Lobontiu (2003) as:

m.a. =
|uout|
|uin|

(5.1)

where uin and uout are the input and output linear or angular displacement. Regarding

accelerometers, the output displacement is not generated by an input displacement

but with an input acceleration (ain). Hence, we define here the mechanical sensitivity

of an accelerometer as

Υ(x) =
|uout(x)|
|ain|

, (5.2)

where |ain| is the amplitude of a step input and |uout(x)| is the steady-state value of

the displacement response. On the other hand, a minimum parasitic compliance in

the plane normal to the sensitive axis, which is inversely proportional to the second

natural frequency λs, can be obtained by minimizing the ratio between the first and

the second natural frequencies. Finally, the axis drift needs to be taken into account

only when the stiffness of the plane orthogonal to the sensitive axis is not isotropic.

In the case of anisotropic stiffness, the resulting inertia forces acting on the system

will not be balanced and will make the proof-mass deflect outside its translation

trajectory. Designers need to ensure elastic isotropy in the normal plane by suitably

specifying the layout of the accelerometer. Thus, the optimization problem can be
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described as:

f(x) ≡





1/|Υ(x)|
λl(x)/λs(x)



 → min
x

(5.3)

subject to boundary constraints

xl
j 6 xj 6 xh

j (5.4)

and the design constraints

g1(x) 6 0, g2(x) 6 0 (5.5)

where

x = [x1, x2, . . . , xj, . . . , xN ] (5.6)

The boundary constraints limit the geometric variables to acceptable values defined

by the manufacturing process. On the other hand, the design constraints deal with

the maximum design space and the strength requirement of the mechanism. The

first constraint is a limit to the volume L2H defined by the length and width of the

mechanism. The second constraint restricts the stress in the flexible element of the

accelerometer to fall in a range of ±1000 g of measurable acceleration. Within this

range, the mechanism strain is prevented from plastic deformation. To compute the

natural frequencies at every optimization step, a finite element solver was coupled

with the optimization algorithm. Thus, before conducting the multi-objective opti-

mization, the model analysis must first be performed as shown in Fig. 5.1, where the

steps of the optimization procedure are embedded within the design process.

5.2 Problem Formulation

The parameters depicted in Fig. 5.2 describe the structure of the accelerometer.

To optimize the layout of the accelerometer, seven parameters of the layout adopted
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b
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b
b

4. Choice of
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5. Accelerometers Properties
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Figure 5.1. Methodology flow chart

are considered as design variables and arrayed in the design vector x:

x = [w e t l bx by η]T (5.7)

where w, e, t, l, bx, by, and η represent, respectively, the width and length of the

proof-mass, the thickness and length of the compliant joint, and the height, length,

and degree of the Lamé curves describing the fillets of the compliant hinges.
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t
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by
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X

Y R

Figure 5.2. Parameterization of the cross-configuration mechanism

The symmetric configuration of the accelerometer rules out the axis-drift of the

compliant mechanism. Therefore, we have a bi-objective optimization, the objectives

being the sensitive-axis and the off-axis stiffness. The optimization problem is defined

as:

f(x) =





f1(x)

f2(x)



 ≡





1/Υ(x)

λl(x)/λs(x)



 → min
x

(5.8)

subject to the boundary constraints:

0 6 x1, (4b + 2t) 6 x2 (5.9a)

ǫ 6 x3, 0 6 x4 (5.9b)

0 6 x5 6 l/2 (5.9c)

2ǫ 6 x6, 2 < x7 (5.9d)

and the design constraints:

g1(x) =
(2l + w)2e

L2H
− 1 6 0, g2(x) = max (σvM − σadm) 6 0 (5.10)

where λl(x), λs(x), σvM , and σadm are, respectively, the first and second natural
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frequency, the von Mises stress and the admissible stress for the maximum acceleration

of 1000 g.

The optimization problem is subjected to the boundary constraints imposed by

the physical dimensioning of the compliance mechanism, except for x3 and x6, which

are limited by the Direct Metals Laser-Sintering (DMLS) machine tool resolution

(Chapter 2). Indeed, the joint thickness t cannot be smaller than the smallest focus

diameter, ǫ = 100 µm. On the other hand, g1(x) describes the compactness, which is

subject to an inequality constraint to limit the design space. This limit is identified

by a box with volume L2H = 103mm3. Finally, to compute the stress constraint

g2(x) and the natural frequencies of the device, a Matlab routine was implemented

to call the FEA solver at each optimization step. Figure 5.3 shows the mesh of the

accelerometer for the modal analysis. In the case of the stress constraint g2(x), we

use a different mesh which considers the symmetries of the accelerometer. Since the

compliant joints are all equally loaded, we computed the stress in only one hinge.

The structural model can be simplified even more with an symmetric analysis of the

compliant joint. Figure 5.4 shows the model used for the structural analysis and

the plane subjected to the anti-symmetric condition. Recall that an anti-symmetry

condition applies when only the geometry is symmetric with respect to an axis. The

displacements of the flexible beam left end were set to zero, while, at the other end,

the rotations and displacement in the neutral axis direction where set to zero in order

to respect the layout of the accelerometer. The load case is also depicted in Fig. 5.4

where the bending load is set to

F = ain
mp

n
=

1000gw2eρ

8
(5.11)

where ain, mp, n, g, and ρ are, respectively, the maximum acceleration input, the

mass of the proof-mass, the number of compliant links, the gravity constant, and the

density of the titanium alloy.
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Sensitive axis

Figure 5.3. FE model of the accelerometer

F

x

y Symmetry axis

(a)

Figure 5.4. Structural model

5.3 Multi-objective Formulation

The non-analytical nature of the modal analysis prevents us from using gradient-

based methods. To overcome this issue, we use a direct method. In the field of

optimization, the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) is a well-

known effective method for direct-search optimization. Recall that a simplex is a

set of (n + 1) affinely independent points in Rn (Kreyszig, 1997). The Nelder-Mead

simplex algorithm is also the basis of the intelligent moving object optimization al-

gorithm (INTEMOB), proposed by Rahman (2006), due to its capability to handle

non-differentiable, discontinuous, and non-analytical functions. The original simplex
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f1

f2

g1(x)

g2(x)

Pareto
optimal

Feasible
region

Figure 5.5. Bi-objective design space

algorithm, however, does not handle constraints. On the other hand, the Rahman’s

algorithm handles constraints.

Bearing in mind that INTEMOB is able to operate only on a single objective

function for minimization, we resort to multi-objective optimization, which is the

process of simultaneously optimizing two or more conflicting objectives subject to

certain constraints. As we have a bi-objective case, the feasible region of the design

space is represented in a plot where the coordinate axes are the two objective func-

tions, as depicted in the Fig 5.5. Multi-objective problems are known to have not one

but many solutions, which form the Pareto optimal set or Pareto frontier. A Pareto

solution is one where any improvement in one objective can only occur by worsening

one or many other objectives. For the bi-objective optimization, the Pareto optimal

set forms a curve of optimum compromise, as show in Fig 5.5.

We selected the Normalized Normal constraint method, proposed by Messac et al.

(2003), to generate the Pareto frontier over the high number of multi-objective al-

gorithm (Marler and Arora, 2004). The Normalized Normal Constraint Method

(NNCM) is a significant advancement in the field of multi-objective optimization

because it generates a set of evenly spaced solutions on a normalized Pareto frontier.

The method for the bi-objective case comprises seven steps.
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Figure 5.6. Pareto frontier

Step 1: ANCHOR POINTS. To normalize the two-dimensional Pareto frontier,

we first need to find the two anchor points, µ1⋆ and µ2⋆, which are the solutions

minimizing both objectives independently. The line joining the two anchor points is

called the Utopia line. The anchor points are obtained by solving problem PU1 and

PU2, defined below, with the INTEMOB algorithm:

Problem PUi (i = 1, 2)

fi(x) → min
x

(5.12)

subject to the boundary constraints

xlj 6 xj 6 xuj (j = 1, 2, . . . , N) (5.13a)
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Figure 5.7. Normalized pareto frontier

and the design constraints

g1(x) 6 0, g2(x) 6 0 (5.14)

with f1(x) and f2(x) defined, respectively, as the first and the second objective func-

tions of eq. (5.3).

Step 2: OBJECTIVE MAPPING. To avoid scaling deficiencies, the optimization

takes place in the normalized design objective space. Utopia point µu of Fig. 5.6 is

defined as

µu = {f1(x
1⋆) f2(x

2⋆)} (5.15)

and the distances l1 and l2 of Fig. 5.6 as

l1 = f1(x
2⋆) − f1(x

1⋆) (5.16)

l2 = f2(x
1⋆) − f2(x

2⋆) (5.17)
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If f̄ is the normalized form of f , the normalized design space displayed in Fig. 5.7

can be evaluated as

f̄(x) =

[

f1(x) − f1(x
1⋆)

l1

f2(x) − f2(x
2⋆)

l2

]T

(5.18)

Step 3: UTOPIA LINE VECTOR. Define n̄u as the vector directed from f̄(x1⋆)

to f̄(x2⋆), yielding

n̄u = f̄(x2⋆) − f̄(x1⋆) (5.19)

Step 4: NORMALIZED INCREMENTS. Compute a normalized increment δ

along the direction n̄u for a prescribed number of solutions, m1, as

δ =
1

m1 − 1
(5.20)

Step 5: GENERATE UTOPIA LINE POINTS. Evaluate a set of vectors x̄pk

which define X̄pk, the set of evenly distributed points on the Utopia line (Fig. 5.7).

x̄pk = ι1k f̄(x
1⋆) + ι2k f̄(x

2⋆) (5.21)

where

ι1k + ι2k = 1 0 ≤ ι1k ≤ 1 (5.22)

Note that ιik is incremented by δ between 0 and 1 for k ∈ {1, 2, ..., m1}.

Step 6: PARETO POINT GENERATION. Based on the new normalization we

find the other m1 − 2 Pareto solutions using the set of evenly distributed points on

the Utopia line. For each point generated on the Utopia line, we solve
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Problem Pk (for k = 2, 3, 4, ..., m1 − 1)

f2(x) → min
x

(5.23)

subject to the boundary constraints

xlj 6 xj 6 xuj , j = 1, 2, . . . , N (5.24a)

the design constraints

g1(x) 6 0, g2(x) 6 0, (5.25)

and the new multi-objective constraint

n̄T
u (f̄(x) − x̄pk) ≤ 0. (5.26)

Step 7: PARETO DESIGN. Finally, the design solution that corresponds to each

Pareto point can be evaluated in the design space by the relation

f(xk) = [l1f̄1(xk) + f1(x
1⋆) l2f̄2(xk) + f2(x

2⋆)]T (5.27)

5.4 RESULTS

To define the normalized Pareto optimal set, the two anchor points, µ1⋆ and

µ2⋆, were obtained by solving problems PU1 and PU2 with the INTEMOB algo-

rithm. At the optimum points, x1⋆ = [2.7 2.3 0.1 9.2 0.2 80/9]T and x2⋆ =

[4.5 5.9 0.1 4.5 0.2 43/9]T , we found the two anchor points µ1⋆ = {2.50 ×
107 0.1378} and µ2⋆ = {9.17 × 107 0.0452}. Thus, the Utopia point results to be

µu = {2.50 × 107 0.0452}.
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Table 5.1. Pareto solutions

k ι1k ι2k Υ λl(x)
λl(x)

λs(x)
w e t l bx by η

(nm/g) (Hz) (mm) (mm) (mm) (mm) (mm) (mm)
1 1.00 0.00 40.12 834.7 0.1378 2.71 2.31 0.10 9.12 4.12 0.20 80/9
2 0.83 0.17 35.61 914.3 0.1056 4.57 2.62 0.10 7.45 3.37 0.20 7
3 0.67 0.33 27.92 1029 0.0840 5.62 2.75 0.10 6.70 3.01 0.20 67/11
4 0.50 0.50 21.94 1145 0.0713 5.51 3.21 0.10 6.01 2.71 0.20 23/4
5 0.33 0.67 16.72 1301 0.0623 5.23 4.11 0.10 5.18 2.32 0.20 16/3
6 0.17 0.83 13.25 1526 0.0540 4.91 4.92 0.10 4.82 2.19 0.20 5
7 0.00 1.00 10.97 1855 0.0424 4.49 5.87 0.10 4.51 2.02 0.20 43/9

ProblemPU1 : f(x) = 1/|Υ| → min
x

(5.28)

subject to eqs. (5.9) and (5.10)

ProblemPU2 : f(x) =
λl

λs

→ min
x

(5.29)

subject to eqs. (5.9) and (5.10)

In addition to the anchor points, we need to find five additional solutions of

the Pareto frontier to determine a total of seven points. Consequently, the interval

distance on the Utopia line is equal to δ = 0.1666. The Pareto optimum solutions

are listed in Table 5.1; Fig. 5.8 depicts the corresponding Pareto frontier. Note that

each solution satisfies all the optimization constraints.

The Pareto frontier gives freedom to select a design layout to meet specific con-

ditions of the accelerometer. At one extreme, i.e. point 1, of the Pareto frontier, the
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Figure 5.8. Pareto frontier

fundamental frequency is the lowest and corresponds to the most sensitive accelerom-

eter. At the other extreme, point 7, the frequency ratio λl(x)/λs(x) is a minimum.

The structural parameters that correspond to this point are the most appropriate for

low parasitic-sensitivity accelerometers.

All the other points are intermediate optimum solutions that also satisfied the

the optimization constraints. The seven Pareto solutions correspond to optimum

accelerometers with different specifications. They are selected with respect to the

weight factor related to the application of the accelerometer. As stated in section 1.1,

we aim at a general case where the accelerometer should have a natural frequency

slightly higher than 1000 Hz and a ratio lower than 1/10. We pick solution 4 of

Fig. 5.8 as it is the first point that meets the two conditions. The fundamental

frequency and the frequency ratio correspond, respectively, to 1145 Hz and 0.0727.

Figures 5.9 and 5.10 depict, respectively the accelerometer layout and stress flow of

solution 4.

To verify the relative sensitivity of the accelerometer in the three orthogonal

axes, we resort to FEA to calculate the deflection of the proof mass in the principal
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Sensitive axis

Figure 5.9. Optimum accelerometer

Table 5.2. Sensitivity of the accelerometer

Proof mass deflection (nm)
acceleration

X axis Y axis Z axis
ax = 1g 22 7.4 × 10−4 5.5 × 10−4

ay = 1g 4.8 × 10−4 3.5 × 10−2 3.0 × 10−4

az = 1g 2.6 × 10−4 2.7 × 10−4 3.9 × 10−2

ay = az = 0.707g 5.1 × 10−3 9.7 × 10−3 9.7 × 10−3

130075

.232E+08

.463E+08

.694E+08

.925E+08

.116E+09

.139E+09

.162E+09

.185E+09

.208E+09

Figure 5.10. Von Mises stress distribution

direction. The results are listed in Table 5.2 and show that the accelerometer is 103

times more compliant in the sensitive axis than in the other directions.
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5.5 DISCUSSION

The NNCM algorithm determines a good approximation of the Pareto frontier

with a small number of optimum solutions; this is a considerable advantage for me-

chanical systems with high computational complexity. In the problem at hand, only

seven solutions were obtained to approximate well the Pareto frontier. The solutions

are equally distributed along the Utopia line, as opposed to a priori multi-objective

optimization methods, which need a larger number of points to represent the Pareto

frontier.

The Pareto frontier helps the designer select the best compromise among a set

of optimum designs. In our case, we choose solution 4 as the resulting accelerom-

eter met the general characteristics of a low-frequency accelerometer with a usable

frequency range that goes from 0 to 600 Hz. Low-frequency accelerometers have the

advantage of a high sensitivity and good compactness; however, they have the dis-

advantages of a very fragile mechanical structure and high off-axis sensitivity. Thus,

commonly used low-frequency accelerometers have a limited range of acceleration be-

tween 1 g and 50 g and high off-axis sensitivity of around 5%. To overcome these

problems, the accelerometer layout was optimized by considering these four charac-

teristics. The first objective of the multi-objective optimization is to maximize the

mechanical sensitivity (Υ) of the accelerometer. However, by minimizing 1/Υ and

the ratio of frequency λf/λs , the optimization also affects the accelerometer usable

frequency range, which cannot exceed 1/3 of its natural frequency. Since the optimum

accelerometer has a natural frequency of 1145 Hz, its usable frequency ranges from 0

to 381 Hz. Moreover, the proposed compliant mechanism exhibits a low mechanical

off-axis sensitivity through the minimization of the second objective. The resulting

compliant mechanism is at least 1000 times more sensitive in its sensitive axis than

in the other directions, which is a significant improvement. Finally, the optimization

constraints allow the mechanism to fit in a box of 17.5×17.5×3.2 mm3, and prevent

failure of the compliant mechanism under ±1000 g.
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The optimization requires several runs before converging toward a global mini-

mum. In order to converge, the algorithm requires a good compromise between the

mesh resolution and the convergence criterion. A high mesh resolution needs larger

computation time, while a coarse mesh will not represent the objective function cor-

rectly. The convergence criterion is to be set to the required degree of accuracy of

the FEA. The overall CPU cost of the algorithm is very large because the objective

functions are computed with a high resolution meshing. Several hours were necessary

to compute only one Pareto solution.
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CHAPTER 6

Closing Remarks

6.1 Conclusions

The optimum design of a compliant simplicial uniaxial accelerometer (SUA) was

reported in this thesis.

First, in Chapter 2, we described in detail the characteristics of compliant mech-

anisms and the compliant realization of the original layout of the SUA. We selected

the material with properties maximizing the inertial sensor performance.

The advantages and shortcomings of compliant mechanisms were highlighted in

Chapter 3 by conducting the kinematic analysis of three different systems. A lumped-

parameter model was first tested to solve a simple system made of one notched beam

and one mass. Afterwards, the lumped-parameter model was used to highlight the

deficiencies of the original layout of the SUA. To cope with the low off-axis stiffness

and the axis-drift of the SUA, we came up with an new alternative layout.

One of the drawbacks affecting compliant mechanisms is the stress concentration

which limits the range of motion and life cycle of the mechanism. In Chapter 4,

we proposed a new compliant hinge design to decrease the stress concentration. We

called this new hinge Lamé-shaped hinge as we used Lamé curves to produce the

profile of the hinge. The advantages of Lamé curves were demonstrated by studying

the curvature of the profile of compliant hinges and mostly by optimizing the profile

of the Lamé-shaped hinge. In this particular optimization problem, the objective
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function was defined as the maximum stress concentration subject to a flexibility

constraint. We found an improvement of up to 20% over the original corner-filleted

hinge of equal compliance.

The Normalized Normal Constraint Method, which is a multi-objective algorithm,

was applied in Chapter 5 to accelerometer design. Although only two objective func-

tions were considered, the method can readily be extended to multiple objective

functions. The method was applied to optimize the new layout of the simplicial uni-

axial accelerometer. The solution found gives an accelerometer with excellent stiffness

and strength properties compared to the initial mechanism (Chapter 2). The stress

flow is improved by using a superelliptical fillet, and the overall volume of the device

is now 1/3 of the initial layout. In addition, the first natural frequency went from

1679 Hz to 1145 Hz, improving the sensitivity of the accelerometer. Therefore, the

usable frequency range of the final accelerometer goes from 0 Hz to 380 Hz. Finally,

the ratio of frequency went from 0.125 to 0.0727; thus, there is now more than one

order of magnitude between the two lowest frequencies. We have thus reached our

design objectives.

6.2 Recommendations for Future Work

As an extension to the work reported here, several issues remain to be further

explored:

(i) The Bode diagrams and the complex frequency responses in the three or-

thogonal axis of the proof mass need to be computed;

(ii) The fabrication process of the accelerometer is to be conducted;

(iii) Compute the mounted frequency of the accelerometer by including the rigid-

ity of the accelerometer frame;

(iv) The compliant realization of the Simplicial Triaxial Accelerometer is to be

designed by adding a notched beam at each end of the compliant ΠΠ-legs

layout proposed in Chapter 2.
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