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Schönflies Motion

What is a Schönflies Motion?

(SMG video)
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movies/SMG/charlie.wmv
Media File (video/x-ms-wmv)



 

 

 

 

 

 

 

Objectives and Specifications

Objectives

Design a parallel manipulator, which outperforms current SMG
(serial and parallel SCARA)
Pick and place operations and machining
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Objectives and Specifications

Specifications

The robot is expected to beat the record-setting 500-ms cycle time

A

B C

D

300 mm

25 mm

1

Kinetostatic robustness
Identical motors fixed to the base
Large workspace
High stiffness
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Manipulator Architecture

Manipulator Architecture

2RΠΠR Drive Unit
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Manipulator Architecture

Prototype
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Manipulator Architecture

Animation

(SMG video)
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Kinetostatic Design

Kinetostatic Design

Kinetostatics
Mechanical analysis of rigid-body mechanical systems moving
under static, conservative conditions
Relations between the feasible twists—point-velocity and angular
velocity—and the constraint wrenches—force and
moment—pertaining to the various links of a kinematic chain
Kinetostatic design ≡ dimensioning of the links under kinetostatic
conditions
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Kinetostatic Design

Jacobian matrices

At = Bθ̇ (1)

• t is the twist
• θ̇ is the vector of active joint rates
• A is the forward Jacobian
• B is the inverse Jacobian

A ≡
[

AI
AII

]
∈ R6×4, B ≡

[
BI O32

O32 BII

]
∈ R6×4 (2)

• Redundancy is introduced to add robustness to the model
and to avoid formulation singularities
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Kinetostatic Design

Singularity Analysis

Two types of singularities
Rank(A) < 4 ⇒ parallel singularity
Rank(B) < 4 ⇒ serial singularity
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Kinetostatic Design

Singularity Analysis

Serial singularities
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Kinetostatic Design

Singularity Analysis

Parallel singularities
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Dynamics

Dimensioning
A

B C

D300 mm
25 mm

β, φfactor, φoffset, pathoffset

R, l1, l2, l3, a4, a5, b4, b5, l0
melbow, mEE , Ielbow, IEE

IS, IP , IR, IC , mP , dC , r6,5

Catalogue

Trajectory Planning

SMG Dynamics

Drive Dynamics

Motor and Gear-Head Selection

Updated Trajectory

ωPan, ωT ilt, τPan, τT ilt

ωS, ωR, τS, τR

MA, MB, GH1, GH2

OK?

Yes

No

Optimum Dimensions

1

2

3

4

1
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Dynamics

Trajectory Optimization
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C

300 mm 25 mm

Use a combination of 4-5-6-7 polynomials
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Dynamics

Displacement along X and Y
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Dynamics

Displacement along Z
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Dynamics

Orientation of the end-effector

x or y (pan or normal plane) [mm]
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Dynamics SMG Model

SMG Model

DU1

DU2

OI0

OII0

θ̇I1

θ̇II1

IPI(A)

IPII(B)

ω2 = θ̇I1k

ω4 = θ̇II1k

MP (C)

ω = φk

ċ

ċ2

ċ4

leg I leg II

1

2

3

4

5

1

SMG
m

system of five
rigid bodies
coupled by

massless joints
undergoing
Schönflies

displacements
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Dynamics SMG Model

Equations of motion

Natural Orthogonal Complement:
I(θ)θ̈ + C(θ, θ̇)θ̇ = τ + γ − δ (3)

• I : 4× 4 inertia matrix
• C : 4× 4 matrix of Coriolis and centrifugal forces
• θ : the four-dimensional vector of actuated joint variables
• τ : the four-dimensional vector of actuated joint torques
• γ : the four-dimensional vector of gravity forces
• δ, the four-dimensional vector of dissipative forces, which are

neglected
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Dynamics SMG Model

Equations of motion

• Inertia matrix:
I = IA + IB + IC (4)

Ii = TT
i MiTi , i = A,B, C (5)

A and B being the two elbows and C the end-plate of the manipulator.
• Matrix of Coriolis and centrifugal forces:

C(θ, θ̇)θ̇ = TT
AMAṪAθ̇ + TT

BMBṪBθ̇ + TT
CMCṪC θ̇ (6)

• Gravity forces:

γ =
∑

i=A,B, C
TT

i wG
i (7)

wG
i =

[
03

mi g

]
, i = A, B, C
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Dynamics SMG Model

Pan and Tilt: Velocities and Torques
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(b) TILT velocities
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(c) PAN torques
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(d) TILT torques
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Dynamics Drive Units

Drive Units

Kinematics

ωin = J−1
D ωout (8)

ωin =

[
ωA
ωB

]
, ωout =

[
ωp
ωt

]

J−1
D = −r

 1 −r6,5

1
r6,5

1 + 2r6,5
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Dynamics Drive Units

Drive Units

RR PP S

C

d
c

1

Dynamics

T =
1
2

ISω2
S +

1
2

IRω2
R +

1
2

ICω2
C +

3
2

IPω2
P +

3
2

mP

(
dC

2
ωC

)2

(9)

Lagrange equations:
d
dt

∂T
∂q̇i

− ∂T
∂qi

= τ SR − JT
Dτ CP , i = 1, 2 (10a)

τ SR = IDq̈ + JT
Dτ CP (10b)
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Dynamics Drive Units

Sun and Ring: Velocities and Torques
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(a) SUN Velocities
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(b) RING Velocities

0 0.05 0.1 0.15 0.2 0.25
−30

−20

−10

0

10

20

30

40

50

60

70

t [s]

τsunI
τsunII

S
u
n

to
rq

u
e

[N
m

]

(c) SUN Torques
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(d) RING Torques
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Dynamics Motor and Gearhead specifications

Motor and Gearhead specifications

Table: Peak requirements

ωS [rpm] τS [Nm] ωR [rpm] τR [Nm]
192 72 179 84

Table: Motor and Gearhead specifications

Gear head ratio ωM [rpm] τM [Nm]
20 5000 7.1
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Conclusions

Conclusions

A novel parallel robot generator of Schönflies motions was
introduced
Link-dimensioning was based on kinetostatic conditions
Kinematics modelled using 6× 4 Jacobian matrices for robustness
against formulation singularities
Motor and gearhead selection were based on dynamics model
Dynamics model was based on a MBS of five rigid links coupled
by massless joints
Dynamics model is a 4-dimensional systems of second-order
ODEs
Currently undergoing tests and adjustments to reach a 500 ms (or
shorter) cycle time
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