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What is a Schonflies Motion?

(SMG video)
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movies/SMG/charlie.wmv
Media File (video/x-ms-wmv)


Objectives

@ Design a parallel manipulator, which outperforms current SMG
(serial and parallel SCARA)
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Objectives

@ Design a parallel manipulator, which outperforms current SMG
(serial and parallel SCARA)

@ Pick and place operations and machining
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Objectives and Specifications

Specifications

@ The robot is expected to beat the record-setting 500-ms cycle time
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@ Kinetostatic robustness
@ ldentical motors fixed to the base
@ Large workspace

@ High stiffness
NoZ
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Manipulator Architecture
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Manipulator Architecture

Prototype
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Animation

(SMG video)
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movies/SMG/scenario_1.mpg
Media File (video/mpeg)


Kinetostatic Design

Kinetostatics

@ Mechanical analysis of rigid-body mechanical systems moving
under static, conservative conditions
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Kinetostatic Design

Kinetostatics
@ Mechanical analysis of rigid-body mechanical systems moving
under static, conservative conditions
@ Relations between the feasible twists—point-velocity and angular
velocity—and the constraint wrenches—force and
moment—pertaining to the various links of a kinematic chain
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Kinetostatic Design

Kinetostatics
@ Mechanical analysis of rigid-body mechanical systems moving
under static, conservative conditions
@ Relations between the feasible twists—point-velocity and angular
velocity—and the constraint wrenches—force and
moment—pertaining to the various links of a kinematic chain

@ Kinetostatic design = dimensioning of the links under kinetostatic
conditions
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____Kinetostatic Design |
Jacobian matrices

At = BO (1)

tis the twist

6 is the vector of active joint rates
A is the forward Jacobian

B is the inverse Jacobian

AE[AI]ERGX4’ Bz[ B, 032]€R6x4 )

O3, By
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____Kinetostatic Design |
Jacobian matrices

e tis the twist

At = BO

e 0 is the vector of active joint rates
e A is the forward Jacobian
e B is the inverse Jacobian

A
A=
[ Ay

]ERGM, BE[

B,
O3

O35
By

:| c R6X4

e Redundancy is introduced to add robustness to the model
and to avoid formulation singularities
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Singularity Analysis

Two types of singularities
@ Rank(A) < 4 = parallel singularity
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Singularity Analysis

Two types of singularities
@ Rank(A) < 4 = parallel singularity
@ Rank(B) < 4 = serial singularity
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Singularity Analysis

Serial singularities

Oo O Ojo O O o O

\ Y
O 9 7 O
O3 O3
P P

J. Angeles (McGill University) McGill SMG September, 2006 12/27



Singularity Analysis

Parallel singularities
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Dimensioning

A
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Trajectory Optimization

B C
300 mm i 25 mm
« >
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Use a combination of 4-5-6-7 polynomials @
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Displacement along X and Y
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Displacement along Z
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Dynamics SMG Model

SMG Model

Orro

DU,

leg 1T

Wy = f)mk‘

1P(A)

J. Angeles (McGill University) McGill SMG

SMG
)

system of five
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massless joints
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2 ezl
Equations of motion

Natural Orthogonal Complement:
1(6)0 +C(0,0)0 =+~ — & (3)

e |: 4 x 4 inertia matrix

e C : 4 x 4 matrix of Coriolis and centrifugal forces

e 0O : the four-dimensional vector of actuated joint variables
e 7 : the four-dimensional vector of actuated joint torques
e ~ : the four-dimensional vector of gravity forces

e 9, the four-dimensional vector of dissipative forces, which are
neglected
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Equations of motion

e Inertia matrix:
I=la+Is+lc (4)

I = TIMT;,i=ABC (5)
A and B being the two elbows and C the end-plate of the manipulator.
e Matrix of Coriolis and centrifugal forces:

C(0,0)0 = TIM T 40 + TEMT30 + TIM:Tc6 (6)

e Gravity forces:
vy= > T/wf

)
i=A,B,C
wé_ | 0 i=A B,C ek
i mi g ] ) ) v
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SMG Model
Pan and Tilt: Velocities and Torques
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Drive Units
Drive Units

Kinematics
Win = J51wout (8)
_ A _ | @
Win = [WB] , Wout = [ wi ]
1 —f6,5
Jy'=—r 1 Is,5
1+ 2/‘6,5
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Drive Units
Drive Units

C ‘
L2l » flsi I ;2 [[ =]
d. g
Dynamics
1 1 1 3 3 de 2
@ Lagrange equations:
doT 0OT
dtog ~ aq Tsr —dpTep, =1, (10a)
s = lpd +JhTce (100) |
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Sun and Ring: Velocities and Torques
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Motor and Gearhead specifications
Motor and Gearhead specifications

Table: Peak requirements

ws [rpm]

Ts [Nm]

wr [rpm]

7R [Nm]

192

72

179

84

Table: Motor and Gearhead specifications
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Gear head ratio | wy [rpm] | 7y [Nm]
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Conclusions

@ A novel parallel robot generator of Schonflies motions was
introduced
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Conclusions

@ A novel parallel robot generator of Schonflies motions was
introduced

@ Link-dimensioning was based on kinetostatic conditions

@ Kinematics modelled using 6 x 4 Jacobian matrices for robustness
against formulation singularities

@ Motor and gearhead selection were based on dynamics model

@ Dynamics model was based on a MBS of five rigid links coupled
by massless joints

@ Dynamics model is a 4-dimensional systems of second-order
ODEs

@ Currently undergoing tests and adjustments to reach a 500 ms (or
shorter) cycle time
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