
MECH 577 Optimum Design
Project # 2 (Unconstrained Optimization) Optimum Design of a

Quasi-homokinetic Joint

Assigned: October 4, 2010 Due: November 1st, 2010

Background

Homokinetic joints are used to transmit torque and motion between two shafts of intersecting
axes with a 1:1 ratio. Conventional applications of homokinetic joints, e.g., in the automotive
industry, call for both an unlimited rotatability of the two shafts and variations of the angle
that they make. In robotics applications, however, rotatability requirements are confined
to fractions of a full turn and a constant angle between shafts. Unlimited rotatability can
be achieved with double universal joints or other, more compact transmissions, like Rzeppa
joints. Moreover, in robotics applications an exact ratio of 1:1 is only desirable, but not
required. Indeed, small deviations from a constant ratio can be accommodated by means of
computer control.

In the design of what is known as parallel robots, i.e., robots that carry the payload
by means of an assembly of limbs in parallel, all motors can be grounded, which is not
the case in serial robots—robots with the morphology of the human arm, of concatenated
joints. Grounding the motors, however, requires, sometimes, transmitting torque and motion
from a vertical (horizontal) shaft to a horizontal (vertical) shaft, the two axes of the shafts
normally intersecting at 90◦. One common industrial solution to the problem of motion
transmission between two shafts intersecting at right angles, to produce a constant ratio, is
bevel gears. The problem with these is that: a) they are too noisy, unless expensive gears
with spiral teeth are used; b) no matter how expensive, bevel gears always entail Coulomb
friction between meshing teeth; and c) they exhibit backlash, which mars the effectiveness
of the control system. For this reason, an alternative is sought in this project.

Project Statement

As an alternative to bevel gears, Intelligent Robotics Inc. (IRI) would like to use a spher-
ical four-bar linkage, like the one shown in Fig. 1, to produce an approximately constant
transmission ratio of 1:1. As homokineticity is not fully achieved, this linkage is termed
quasihomokinetic. In the same figure, Z1 and Z2 are the axes of the output and the input

shafts, respectively, ψ and φ being, correspondingly, the input and output angles.
From the kinematics of spherical four-bar linkages, it is known that the input and output

angles are related by (Chiang, 1988)

F (ψ, φ) ≡ k1 + k2 cosψ + k3 cosψ cosφ− k4 cosφ+ sinψ sinφ = 0 (1)

which is known as the IO equation, and whose coefficients ki, for i = 1, . . . , 4, are the
Freudenstein parameters (FP) of the linkage, related to the linkage dimensions—arc lengths—
shown in Fig. 1 by

cα1 −k3 = 0, cα4sα1 −k2sα4 = 0, cα2sα1 −k4sα2 = 0, cα1cα2cα4 − cα3 −k1sα2sα4 = 0 (2)
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Figure 1: The kinematic chain of a four-bar spherical linkage

where c( · ) ≡ cos( · ) and s( · ) ≡ sin( · ).
Notice that the IO equation is linear in the four FP, and hence, a spherical four-bar

linkage can be readily synthesized, i.e., its dimensions can be found, if four IO pairs (ψi, φi)
are prescribed. Indeed, if these pairs are substituted into the IO equation, four equations
linear in the FP can be found whose unique solution provides the numerical values required
by the linkage at hand to meet the four prescribed IO relations. With the FP known, the
linkage dimensions can be obtained from eqs.(2), as long as these equations yield real values
for the dimensions sought1. In the case at hand, however, α1 = 90◦, which leads to k3 = 0,
thereby reducing the number of FP to only three. Moreover, a clever IRI engineer has noted
that, since form follows function, as she learned in school, and given the required ratio, the
desired linkage should be symmetric—the input and output shafts can exchange their roles—
which means that α2 = α4, and hence, k4 = k2, thereby reducing the number of independent
FP to only two, k1 and k2.

If m IO pairs {ψi, φi }
m

1
are assigned, then m synthesis equations linear in the 2-

dimensional vector of FP are obtained, that can be cast in the standard form
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(3)

For starters, set m = 2 and compute the linkage parameters thus resulting. Moreover,
plot the output angle φ(ψ) in the range 0 ≤ ψ ≤ 2π/3. To this end, notice that, if what is
known as the tan-half identities, namely,

cosφ ≡
1 − T 2

1 + T 2
, sinφ ≡

2T

1 + T 2
, T ≡ tan

(

φ

2

)

(4)

are introduced in the IO equation (1), then this equation becomes quadratic in T :

D(ψ)T 2 + 2E(ψ)T + F (ψ) = 0 (5a)

1Note that, if, e.g., |k3| > 1.0, then the first of eqs.(2) will yield a complex α1.
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with coefficients that are given below:

D(ψ) ≡ k1 + (k2 − k3) cosψ + k4, E(ψ) ≡ sinψ, F (ψ) ≡ k1 + (k2 + k3) cosψ − k4 (5b)

Now, plotting the output angle φ vs. ψ reduces to solving the quadratic equation for φ, when
the FP and ψ are given. Notice that two branches are possible. Moreover, plot the deviation
e(ψ) from the 1:1 ratio vs. ψ in the same interval: 0 ≤ ψ ≤ 2π/3. The deviation should be
zero at the two prescribed IO values.

The deviation can be reduced further if m > 2 IO pairs are prescribed, but this will
result in an overdetermined system of linear equations (3), which can be satisfied only with
an error e ≡ b− Sk, termed the design-error vector. Solve this system for m = 11 and
m = 101, while recording the weighted Euclidean norm of e, with weighting matrix (1/m)1,
and 1 denoting the m × m identity matrix. This norm is termed the design error e, its
square denoted by f(k), the objective function to be minimized, i.e.,

f(k) ≡
1

m
‖e‖2

2
→ min

k

(6)

In order to validate the design-error vector of minimum weighted Euclidean norm, make
sure that it verifies the first-order normality conditions (FONC), i.e., the gradient of f with
respect to k must vanish.

The same clever engineer pointed out that there is no reason why, for the application
envisaged, the input and output angles be measured from the Z1-Z2 plane. She suggests to
measure these angles from zeros located on the dials of the input and output axes at ψ0 and
φ0, respectively, thereby ending up with new values of IO pairs: {ψ∗

i
, φ∗

i
}m

1
, ψ∗

i
and φ∗

i
being

defined as ψ∗

i
= ψ0 + ψi and φ∗

i
= φ0 + φi, thereby gaining two additional parameters, the

shift angles ψ0 and φ0, that should help the design team reduce further the design error.
Now, in order to find optimum values of the shift angles, two additional FONC must

be verified: the gradient of f with respect to the shift-angle vector l = [ψ0, φ0 ]T must
also vanish. The new vector of design variables, denoted by x, can now be defined as a
four-dimensional array, namely,

x =
[

kT lT
]T

(7)

and the objective function now being f(x), the optimization problem thus reading:

f(x) ≡
1

m
‖e‖2

2
→ min

x

(8)

Again, find optimum values of x that will minimize f , for m = 11, 101 pairs of prescribed
input-output values, and validate the optimum thus obtained.

The project report should include an analysis of the results and a CAD render-
ing of the optimum linkage, preferably with an animation to verify its mobility.
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