Chapter 5

Inequality-Constrained

Optimization

5.1 Introduction

The constraints under which a design problem is formulated involve, more often than
not, inequalities constraints, in addition to equalities. In fact, inequality constraints
arise naturally in design because the resources available to accomplish a design job
are finite. For example, a designed object must: fit into a designated region; be
realizable within a given budget; and be delivered by a certain date.

In this chapter we address two issues around inequality-constrained problems:
the normality conditions and the methods of solution. As to the former, we will not
dwell into their rigorous derivation, which are elusive to a simple analysis with the
tools of linear algebra; rather, we will introduce the first-order normality conditions
without derivation, and illustrate their validity with examples. The second-order
normality conditions will be derived using a pragmatic approach, more so than a
mathematical formulation.

The reason why linear algebra is no longer sufficient to derive the normality
conditions of inequality-constrained problems lies in the nature of inequalities, which
define regions of R” that are neither vector spaces nor manifolds, as we encountered
when studying equality-constrained problems. Now we will speak, more generally,
of the feasible region, which can have sharp edges and vertices, not occurring in
manifolds. For this reason, a simple transformation of the form x(u) is not sufficient,
in general, to guarantee the fulfilment of the inequality constraints.

Regarding the methods of solution of inequality-constrained design problems, we



will proceed as usual: we will transform these problems into equality-constrained
problems, which we know how to handle. The outcome is that we can apply the
whole apparatus developed for equality-constrained problems when dealing with
their inequality-constrained counterparts. That is, the ODA package can be applied
successfully to the solution of inequality-constrained problems as well, if with the

applicable provisions, as described here.

5.2 The Karush-Kuhn-Tucker Conditions

The first-order normality conditions of equality-constrained problems are classical
results, first proposed by Joseph Louis de Lagrange, brilliant mathematician born
in Turin in 1736 and dead in Paris in 1813. Lagrange founded in Turin a society
that would become the Academy of Sciences; then, Lagrange went to Berlin, to
the Academy of Friedrich II, to succeed Euler. Rather late in his life, in 1787, did
Lagrange move to Paris, invited by Louis XVI to teach at Ecole normale. Appointed
senator and made count by Napoleon, Lagrange became one of the first professors
at Fcole polytechnique.

The first-order normality conditions for inequality-constrained problems had to
wait until well into the XX century. These conditions were disclosed first by W.
Karush in his M.S. thesis in the Department of Mathematics at the University of
Chicago (Karush, 1939). Apparently, these results were never published in the
archival literature, for which reason they remained unknown. Twelve years later,
they were published in the Proc. Second Berkeley Symposium by H-W. Kuhn and
A.W. Tucker (1951). The credit of these normality conditions has gone mostly to
Kuhn and Tucker, but given their history, these conditions should be referred to as
the Karush-Kuhn-Tucker conditions.

The problem at hand is formulated as

f(x) — min (5.1a)

subject to
g(x) <0, (5.1b)
h(x) =0, (5.1c)

where inequality (5.1b) is to be taken with a grain of salt: Arrays not forming ordered

sets, this relation has no verbatim meaning. It is to be interpreted as shorthand for



a set of m inequalities, namely,

91(x) = g1(x1, T2, -+ -, Tp) <0
92(x) = ga(x1, T2y - ., Ty) <0
gm(x) = gm(xl, Ty ey xn) S 0

To formulate the normality conditions, we proceed as before, namely, by defining a
Lagrangian upon adjoining the equality and the inequality constraints to the objec-
tive function, namely,
F(x, A u)= f09 + A'h(o) + p'B()  —  min (5.2)
X, 7IJ-’
While the normality conditions cannot be derived by simply making the gradient
of the foregoing Lagrangian equal to zero, these conditions look very much like those

associated with equality-constrained problems. Indeed, xq is a stationary point if

h(xg) =0, g(x) <0, (5.3a)
Ve, +IGA+Gip =0, (5.3b)
A£0, p>0, p'gx) =0 (530
where oh 5
JO = J(Xo) = a—x x:xo, GO = G’(Xo) = a—x - (53d)
i.e., J and G are, respectively, [ X n and m X n matrices. Moreover,
(V)" (V)"
Vgy)T Vhy)T
G= ( 92) , J= ( :2) (5.4)
(Vgm)" (Vh)"

Hence, the KKT condition (5.3b) can be expressed alternatively as

Vi + M Vh|

+ 11V

+ A2 Vhs|
+ 112V gs|

g F o MR
o Vgl

X=Xq X=Xq X=X0

=0, (5.5)

X=X( X=X X=X(

Relations (5.3a—c) are known as the Karush-Kuhn-Tucker (KKT) conditions.
Remark: In the absence of inequality constraints, eq.(5.3a) reduces to the FONC
of equality-constrained problems, eq.(3.23a).
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Figure 5.1: A heavy ball inside a box inclined with respect to the vertical

In the third row of the KKT, egs.(5.3c), the third of these relations is sometimes

referred to as the transversality condition. Upon expansion, this condition states

p191(X0) + p2g2(Xo) + -+ + tmGm(Xe) = 0 (5.6)

In light of the inequalities (5.1b) and the second relation of (5.3c), the ith transver-
sality condition states that, at a stationary point, for i = 1,2,...,m, either py; =0
or g;(x9) = 0. When, at a stationary point, the ith constraint of (5.1b) holds with
the equality sign, this constraint is said to be active. Thus, at a stationary point, the
components of p associated with active constraints are positive, all other components
vanishing. As a consequence, if a of the m inequality constraints are active, we can

partition vector g(xg), very likely after a reshuffling of the components of vector g,

g(xo) = [ o }

m!
where g, and g, are a- and (m—a)-dimensional vectors, respectively. Now, eq.(5.5)

in the form

can be restated as

Vi + A\ Vhy|

+ 1 Va|

+ M Vha| o+ + MV
+ 12 Vgs|

X=X X=X X=X0

X=X0 X=X +ooet ,Ulavga‘x:x() = 0"’ Bm' = Om' (57)

The theoretical bases of the KKT conditions are to be found in the Farkas Lemma

(Brousse, 1988). For the sake of conciseness, we do not elaborate on these issues.
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To illustrate their validity, we give in Fig. 5.1 a mechanical interpretation of these
conditions: A heavy ball of weight w is constrained to lie in a box, under the action
of the gravity field g, as depicted in Fig. 5.1a; the ball is shown in its equilibrium
position in Fig. 5.1b; in Fig. 5.1c¢, the weight of the ball, equal to —VV, where V
is the potential energy of the ball, is decomposed into the two forces normal to the
box walls. Notice that these two components push the walls, but cannot pull them,

which is the reason why p; > 0, for 1 =1, 2.

Example 5.2.1

Consider the problem
Lo, 2 : \Y%
f==({+23;) — min 9o
2 1,22 1
. ~ =~ ~N
subject to .7 10 N
/ \
1+ 23 > 10 / VA
/ -7 \
zg 20 \ \\ _7 10 \
\ N /
.. . \ /
The objective function and the con- \ 7 Vo
N
straints are illustrated in Fig. 5.2. So P
For starters, we must express the 1
inequality constraints in the standard
form adopted at the outset, i.e., as
gi(x) < 0, whence, Figure 5.2: A quadratic objective function

subject to linear inequality constraints
91 = —21—22+10<0, go=-2,<0, g3=-1,<0

Apparently, the minimum is found at xo = [5, 5]7. We evaluate then the items

entering in the KKT conditions at this point Xq:

e[ 2] s3] o]

V= H o Ve = [5]

ZT9 5

Apparently, only the first constraint is active, and hence,



The KKT condition (5.7) thus reduces to

Vf‘ + :u’lv-gl‘x:xo =0

X=X

or
,LLIVgl‘x:xO = - Vf‘x:xo

which states that, at the SP xqo given above, the two gradients, Vf \x:xo and

Vgl‘x:xo’
tem of two equations in one single unknown, uy, admits one solution that verifies

the two equations. Upon solving this system, in fact, we obtain p; =5 > 0, thereby

are linearly-dependent. As a consequence, the above overdetermined sys-

verifying the second relation of conditions (5.3¢c).

Example 5.2.2

oTN
A Y
i
f=822—8r1,+325 — min L2 o ':
X ¢
]
1
subject to 7’\\
[}
U
z1 >3 /
To < ; ! ‘

The objective—function—

and the constraints of this

example are depicted in
Fig. 5.2.2
Again, we start by re-

stating the inequalities in

our standard form:

3
G1=3-21<0, =12

7
]
’
1}
I
1
I
)
!
]
1y

2
Therefore, Al
Vo, = [—1] Vg, = [0} Figure 5.3: One more quadratic objective function sub-
! o] 1] ject to linear inequality constraints

condition (5.3b) thus leading to
lu’lv‘gl‘x:xo + IU‘Qng‘x:xo = _vf‘x:xo
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where, apparently,

3 16z, — 8
g v
3/2 —8$1+6.’L‘2

36
= |15]

Hence,

The above normality condition thus leading to

-1 N 0] [—36
Plo ™17 [ 15
which, in this case, turns out to be a determined system of two equations in two

unknowns, its solution being
w=36>0, p=15>0
thereby verifying all KKT conditions.

Example 5.2.3 (A Linear Program)
A class of optimization problems finding a number of applications involves a linear
objective function subject to linear equality and inequality constraints. This class is
studied within the realm of linear programming. These problems cannot be solved
with the tools described so far, for we have focused on least-square problems, with
an extension to more general objective functions and equality constraints. By the
same token, linear programs arise seldom in mechanical design. To be true, a family
of design problems in structural engineering, known as limit design, pertain to the
design of structural elements, beams, columns and plates, for minimum weight, in
such a way that all modes of plastic failure are avoided. Problems in limit design
lead to linear programs.

Linear programming is a first instance of application of the KKT conditions. We
illustrate the concept with the problem below.

f=2x1 —23 — min
T1,T2

subject to



1 Vg3

T3

X0 K3V gs ii Vf
91=0 p1, 3 >0

Vf

Figure 5.4: A linear program

The objective function and the constraints of this problem are illustrated in Fig. 5.4.

In this case,

The KKT conditions lead to

BRI

Apparently, g1 and g3 are active, and hence,

M1, /’1’3>07 :LLQ:O

thereby ending up with a system of two equations in two unknowns, 1 and pus. Upon

solving this system, we obtain, successively,
pus=1>0, pu=3>0

thereby verifying the KKT conditions.



5.3 Second-Order Normality Conditions

The simplest way of stating the sufficient conditions for a minimum, i.e., the second-
order normality conditions, is by imposing the condition that, at a stationary point,
any feasible move will produce an increment in the objective function, i.e., if we let

Axyp be a feasible move, then

Af = f(X() + AXF) — f(X()) >0 (58)

Ah = h(xp + Axp) — h(xg) =0, 5.9)

Ag = g(x¢ + Axr) — g(x¢) < 0y (5.10)
Note that eq.(5.9) constrains Axp to lie in the nullspace of J, i.e.,

and, if we resort to the isotropic orthogonal complement of J introduced in eq.(3.33),

then a move that verifies the above condition is defined as
Axp = LAu (5.12)
condition (5.8) then leading to
L'Vvf| _. L>0 (5.13)

which states that the feasible Hessian must be positive-definite. However, in this
case, contrary to that of Ch. 3, Au is not free; it is constrained to obey conditions
(5.10), i.e.,

G'LAu <0, (5.14)

If we let
Av = LAu (5.15)

then, the above condition can be stated as
(Av1)Vg + (Av2)Vgy + -+ - + (Avp) Vg < 0, (5.16)

Now, if we assume that only a of the m inequality constraints are active, the fore-

going condition leads to
(Av1)Vg1 + (Avy)Vgs + - - - + (Avy,) Vg, <0, (5.17)
where a reshuffling of the inequalities may have been needed.
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5.4 Methods of Solution

Two classes of methods are available to solve inequality-constrained problems: a)
direct methods, which handle the inequalities as such, and b) indirect methods, which
transform the problem into one of the equality-constrained type. We will discuss
only the latter.

Inequality-constrained problems can be solved using the approach introduced for
either unconstrained or equality-constrained problems, upon converting the problem
at hand into an unconstrained or, correspondingly, an equality constrained problem.
This can be done by various methods: slack variables; interior or exterior penalty
functions; etc. In this section, the methods of slack variables and interior penalty

functions are outlined.

5.4.1 Slack Variables

Upon introducing the slack variables s1, sz, - - -, Sy into inequalities (5.1b), we con-

vert these inequalities into equality constraints, namely,

[ + S% el S1
gy + 52 x s

h(x,s) = S - 0, x= :2 , S= :2 (5.18)
a1 + S?n Tp Sm

Notice that the slack variables being unknown, they have to be treated as additional
design variables, the dimension of the design space being correspondingly increased.

In consequence, the design vector is now of dimension n + m, i.e.,

S

¢ = [X} (5.19)

Now, the gradient of the objective function with respect to the new design-
variable vector takes the form

\Y
Vef = [VSJ;] (5.20a)
h
o vi=zd =% _y (5.20D)
ox’ " T o9s ™ '

the second relation following because the slack variable do not appear explicitly in
the objective function.
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Likewise, the Hessian w.r.t. the new design-variable vector £ takes the form

VVf 0% f | 0x0s }
VVef = 5.21
¢f [(82 £/oxds)"  VV.f (5.21a)
with the notation
VVs = 82_]” (5.21b)
® 7 Os? |
However, since V4 = 0,,, the above Hessian expression reduces to
VVf Oun
Vng = [ or o, ] (5.22)

That is, the Hessian of the objective function w.r.t. the new design-variable vector &
is singular. In case VV f is positive-definite, VV ¢ f is positive-semidefinite. Hence,
in applying the method of slack variables to solve inequality-constrained problems,
Hessian stabilization will always be needed.

Example 5.4.1 (Minimization of the Design Error of a Four-Bar Linkage
with an Input Crank)
Determine the link-lengths of the four-bar linkage shown in Fig. 5.5, that will produce
the set of input-output pairs {1;, ¢;}¥ shown in Table 5.1, where 1) and ¢ denote the
input and output angles.

Table 5.1: The input-output pairs of {t;, @;}1°
1 1 2 3 4 5
;| 123.8668° | 130.5335° | 137.2001° | 143.8668° | 150.5335°
¢; | 91.7157° | 91.9935° | 92.8268° | 94.21570 | 96.1601°
1 6 7 8 9 10
;| 157.2001° | 163.8668° | 170.5335° | 177.2001° | 183.8668°
¢; | 98.6601° | 101.7157° | 105.3268° | 109.4935° | 114.2157°

The link-lengths are obtained via the Freudenstein parameters ki, ko and ks,
defined as

2 2 _ 9 2
b — al +aj —al + a4’ ey = ﬂ’ ky = it (5.23a)
2a904 a9 Q4
with the inverse relations
aq \/k% + k% + k%k; - 2k1k2k3 aq
a2 kl ) as ‘kgkg‘ ’ a4 k3 ( )
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Figure 5.5: A four-bar linkage

for a given value of a1. The synthesis equations for the planar four-bar linkage can
be written in the form (Liu and Angeles, 1993):
Sk=b (5.24)

where S is the synthesis matrix, and k s the vector of linkage parameters. Moreover,
S, k and b are defined as

1 cos¢; —cos P cos(¢1 — 1)
1
S 1 coS: o2 — C(?S Wy K — {I@} b= COS(%: — ¢) (5.25)
1 cos¢, —cosiy s cos(1g — ¢q)

The design error is defined as
d=b - Sk (5.26)

the purpose of the optimization exrercise being to minimize the FEuclidean norm of
the design error, while ensuring that its input link is a crank. The conditions for
full mobility of the input crank are (Liu and Angeles, 1992)
1(x) = (k1 +k3)® — (1 +k2)> <0
gz(X) = (kl - k3)2 — (1 — kg)z <0
By introducing two slack-variables s, and sy, the inequality constraints are converted
into equality constraints, i.e.,
hl(X) = (kl + k3)2 - (1 + k'Q)Z + S% =0 (5273)
hQ(X) = (kl - k3)2 — (1 — k2)2 + Sg =0 (527b)
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The design vector &€ thus becomes &€ = [ky ky k3 s1 s3|7. From the initial guess
€, =1[0.28 0.74 0.12 1.69 1.2|", the solution was found to be €, = [0.3248 0.5875
—0.009725 1.556 0.2415]7, and the corresponding link lengths are a; = 1, ay = 1.702,
az = 103.4 and ags = 102.8. The FEuclidean norm of the minimum design error is
5x 1072

The problem with this design is that it leads to a quite disproportionate linkage:
two of its links have lengths two orders of magnitude bigger than those of the other

two!

5.4.2 Interior Penalty Functions

The idea behind penalty-function methods is to approach the optimum solution
asymptotically, by extrapolation of a sequence of optimum solutions to unconstrained
problems. There are two possibilities: the solution is approached either within the
feasible region or from without, the penalty function being correspondingly referred
to as interior or exterior. It is noteworthy that exterior penalty-function methods
are applicable only to problems whereby the optimum finds itself at the boundary
of the feasible region, but misses interior optima. Hence, we focus here on interior
penalty functions.

Given an objective function f(x) subject to inequality constraints, as defined in

eq.(5.1b), a sequence of interior penalty functions {¢y}} is constructed as

_ = 1 .
oe(x;mE) = f(x) + rkizzl ) k=1,2,---, v (5.28)

where all r’s are positive and observe a decreasing order, i.e.,
TL> Ty > T3 >T, (5.29)

Now, a sequence of unconstrained optimization problems is defined:

— min, k=1,2 -+, v (5.30)

2

-, ..., X2 be the sequence of corresponding unconstrained optima. Next,

1
Let x,, x

these optima are interpolated to a vector function x,(r):
v—1
Xo(r) = ¢ + ch‘kﬁ (5.31)
1
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thereby obtaining a system of vn equations in vn unknowns, the n components of
the v unknown vector coefficients { ¢y }({)Vfl}. Note that the foregoing equations are
all linear in the unknowns, and hence, they can be solved for the unknowns using

Gaussian elimination, as described below.

First, eq.(5.31) is written for r =r;, withi=1, 2, ..., v:
Xo(1i) = o + e + eor? + oo ey (5.32)
or
1
i
X,(ri) =[co ¢ -+ ¢, 1] ! , i=1,2, ..., v
nguq)/z

In the next step, we regroup all v vector equations above to produce a matrix

equation. To this end, we define the matrices

1 1 . 1
R Y
R= : : . : (5.33a)
LI G LN
X, = [x0(r1) Xo(r9) %o(7))] (5.33b)
C=[cy ¢ -+ Cy_1] (5.33c)

Thus, the v vector equations (5.32) become, in matrix form,
CR = X, (5.34a)
whence,
C=XR" (5.34b)

or, if eq.(5.34a) is written in the usual form, with the unknown matrix C to the left
of its matrix coefficient, the foregoing equation should first be transposed, the result
then being

C'=R7"X7 (5.34c)

with exponent —T indicating the inverse of the transpose or, equivalently, the trans-
pose of the inverse. Once the v vector coefficients sought are available, the optimum

of the inequality-constrained problem, x,p¢, is calculated as
Xopt = 1im Xopt (7)
r—0
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ie.,

Xopt = Co

(5.35)

In computing the above value, note that cg is the first column of the unknown

matrix C or, equivalently, the first row of its transpose. In either case, it is not

possible to obtain ¢y as the solution of one single vector equation. A matrix equation

must be solved in order to obtain cg.

Example 5.4.2 (A Two-dimensional Optimization Problem Subject to In-

equality Constraints) Consider an optimization problem with an objective func-

tion defined as

subject to inequality constraints

Figure 5.6: Isocontours of the penalty function with = 0.1

f=2*+2y> — min

Z,Y

glz—x<0
g=-y<0

I

g3=1-2—-y<0

$=3.0
$=2.25
$=2.0

(5.36)

(5.37a)
(5.37b)
(5.37c)

From a sketch of the constraints and the contours of the objective function in the x-y

plane, it should be apparent that the minimum of f is attained at a point where the

gradient V f is parallel to the normal to the line gs(x, y) = 0. The optimum values

of x and y are, then

2 1
Topt = ga Yopt = g

15



Figure 5.7: Isocontours of the penalty function with ro = 0.01

Figure 5.8: Isocontours of the penalty function with r3 = 0.001

16



We demonstrate below the application of penalty functions to obtain the foregoing

optimum. We have
5 5 1 1 1 )
=" +2y"+1 | - +—-—+———), k=1,...,3 — min

r y xz+y—1

subject to no constraints, for
1 :01, T9 :001, T3 = 0.001

The penalty-function isocontours for different ry values are shown in Figs. 5.6—
5.8. In those figures, the isocontour of the objective function f that corresponds to
the constrained minimum s indicated with a dashed curve.

I

The optima X,(1t) = [2o(7k), Yo(rk) " for the three given values of ry were found

by the ODA as

0.7941 0.7140 0.6836
o) =10 ar0a| XU = |o3703] 0 X8 =1 3434 (5.38)

We now fit the values of {x,(rt)}? to the function
x,(r) = co + 172 + cyr
We thus have
1 1 1

R = [0.3163 0.1000 0.03163 |, Xo:[
0.1000 0.0100 0.00100

0.7941 0.7140 0.6836

(5.39)
0.4704 0.3703 0.3434

The coefficient matriz C is thus found to be

0.6687 0.4790 —0.2605
C=X-R'= (5.40)
0.3317 0.3612 0.2443
Therefore,
0.6687 (5.41)
Xopt = Cop = )
P 03317

which yields the optimum with two significant digits of accuracy.
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