Chapter 4

Equality-Constrained
Optimization:

The Orthogonal-Decomposition
Algorithm

4.1 Introduction

The numerical solution of equality-constrained problems is the subject of this chap-
ter. In this vein, we focus on methods stemming from nonlinear least-square prob-
lems, that lead to what is known as sequential quadratic programmiong (SQP). SQP
appears to be the most commonly used and reliable method in nonlinear program-
ming, for it is well suited for the solution of nonlinear programming problems, as
reported by Murray (1997) and Lalee, Nocedal and Plantenga (1998). In SQP, the
nonlinear optimization problem is approximated by a sequence of quadratic pro-
grams (QP), each being a sub-quadratic program (sub-QP).

Motivated by nonlinear least-square problems, QP works under the assumption
that the feasible Hessian is positive-definite at each iteration. If this is not the
case at a given iteration, then the Hessian matrix is modified to render it so, a
procedure called Hesstan-stabilization. Then, the sub-QP is solved by means of any
algorithm suitable for QP problems. The procedure is terminated as a criterion is
met with a prescribed tolerance. The solution procedure of SQP thus involves two
phases: the stabilization of the Hessian matrix and the QP solution. The Hessian

matrix can be stabilized by methods such as that proposed by Broyden (1970),

Fletcher (1970), Goldfarb (1970) and Shanno (1970), which is known as the BFGS
method. The BFGS method, implemented in the Matlab Optimization Toolbox, is
thought to be very effective for use in general applications and thus, appears to be
the most popular. In addition, methods for solving QP problems are for example,
the coordinate-ascent method (Bertsekas, 1995) and quasi-Newton methods (Rao,
1996).

The main item introduced in this chapter is the orthogonal decomposition al-
gorithm (ODA), which is derived first in the context of equality-constrained linear
least-square problems; then, it is applied to equality-constrained nonlinear least-
square problems. Several numerical techniques, such as Householder reflections,
Cholesky decomposition, the Newton-Gauss method, etc., are applied in order to
obtain numerical solutions by means of procedures that are both efficient and robust.
What we mean by the former is procedures that use as few floating-point operations
(flops) as possible; by the latter we mean procedures that keep the roundoff error in
the solution as low as possible with respect to that of the data, an item that falls in
the realm of numerical conditioning.

The orthogonal-decomposition algorithm is implemented in a C library of rou-
tines, called ODA, in combination with Gerschgorin stabilization (Teng and Angeles,
2001) for arbitrary objective functions, in the framework of sequential quadratic pro-
gramming (SQP). Gerschgorin stabilization is based on the Gerschgorin Theorem
(Varga, 2000), which provides a region of the complex plane in which the eigenval-
ues of an arbitrary n X n matrix are bound to lie. Moreover, the ODA is applied in
solving the underlying sub-QP.

4.2 Equality-Constrained Linear Least-Square Prob-
lems: The Orthogonal-Decomposition Algo-

rithm

We recall below the linear least-square problem subject to linear equality constraints:
Given the overdetermined system of linear equations

Ax=Db (4.1)

find a vector x that verifies the above system with the least-square error, which is
defined as .
f= §(Ax —b)"W(Ax — b) — min (4.2)

2

subject to the linear constraints
Cx=d (4.3)

Here, x is the n-dimensional vector of design variables, while A and C are ¢ X n
and p X n matrices, while b and d are ¢- and p-dimensional vectors. Moreover, W

is a ¢ x ¢ positive-definite weighting matrix, with ¢, p and n subject to
g>n and p<n (4.4)

Note that the first of the foregoing inequalities excludes the possibility of a unique
solution upon solving for x from eq.(4.1), the second preventing a unique solution
from eq.(4.3).

If A and C are full-rank matrices, then the forgoing problem was shown to have

a unique solution, egs.(3.83a—d), reproduced below for quick reference:
x =PQb+Rd (4.5a)

where P, Q and R are the n X n-, n X ¢- and n x p matrices that follow:

P=1,-RC (4.5b)
Q= (ATWA)'ATW (4.5¢)
R = (A"WA)'CT[C(ATWA)'C™]! (4.5d)

and 1, is the n x n identity matrix.

As pointed out in Subsection 3.4.2, the above expression is unsuitable for nu-
merical implementation. A common alternative approach to obtain the solution
under study consists in partitioning C into a p X p and a p X (n — p) submatrices,
where care should be taken so as to choose a well-conditioned p x p matrix, for safe
inversion. Correspondingly, vector x should be partitioned into a master part Xy,
of n — p components, and a slave part xg of p components. Thus, the constraint
equations would be solved for the slave part in terms of the master part and the
problem would reduce to an unconstrained least-square problem of dimension n — p.
However, an arbitrary partitioning of C may lead to an ill-conditioned p x p block,
even if C itself is well-conditioned. This situation can be prevented if, out of all
N possible partitionings of C, the one with the lowest condition number is chosen.
Note that the number of partitionings is given by

n!

N=_ " _
pl(n —p)!

3

and hence, N can become quite large, even for modest values of n and p. Since
calculating the condition number of a matrix is a computationally costly procedure,
this approach does not seem very attractive.

Alternatively, by introduction of the singular values of C (Strang, 1988), a sub-
system of p equations in p unknowns, which are linear combinations of the compo-
nents of x, can be found that is optimally conditioned. The computation of singular
values, however, similar to that of eigenvalues, is a problem even more difficult
to solve than the one at hand, for it is nonlinear and must be solved iteratively.
Therefore, it is not advisable to follow the singular-value approach either.

One more approach is followed here, which stems from the geometrical inter-
pretation of the solution (4.5a). Indeed, vector Qb of that solution represents the
unconstrained least-square approximation of eq.(4.2). The second term of the right-
hand side of eq.(4.5a) is the minimum-norm solution of the underdetermined system
(4.3), based on the norm defined as

Ix||%4 = xT ATWAx (4.6)

Thus, P is a projector* onto the nullspace of C. Indeed, one can readily prove that
every n-dimensional vector x is mapped by P onto the nullspace of C. Moreover, P?
can be proven to equal P, thereby making apparent that P is, in fact, a projector.
Thus, the range and the nullspace of C appear to play an important role in the
solution of the foregoing problem. Moreover, the range and the nullspace of any
matrix representing a linear transformation of R” are orthogonal subspaces of R",
their direct sum producing all of R"; i.e., every n-dimensional vector x can be
uniquely decomposed into a vector lying in the range of CT and a second one lying
in the nullspace of C. Now let L be an n x (n — p) matrix spanning the nullspace
of C, i.e.,

CL = Opy (4.7)

where O, represents the p X (n — p) zero matrix. Matrix L is known as an or-
thogonal complement of matrix C. Thus, the solution to the above problem can be

decomposed into two parts, namely,

X = Xo + Xy (4.8)

in which x represents the minimum-norm solution to the constraint equation (4.3),

i.e., X lies in the range of CT, while x;; lies in the nullspace of C. Vector x, is com-

INote that P is apparently not symmteric!

puted by means of an orthogonalization method rendering C? in upper-triangular
form, as discussed in Subsection 3.4.1, while vector x;; is computed by means of a
linear least-square problem. We outline below the computation of x.

Let us define a ¢ x ¢ matrix V as the Cholesky factor of the given weighting

matrix W, i.e.,
W =VTvV
| Moreover, with xo known, x;; is found as the least-square approximation of

VAxy = V(b — Ax,) (4.9)

subject to the constraints

Cxy =0 (4.10)

Further, let us represent xy as the image of a (n — p)-dimensional vector under a

transfromation given by an (n — p) X n matrix L, namely,

Xy = Lu (411)

with L defined, in turn, as introduced in eq.(4.7). Equation (4.9) thus becomes
VALu = V(b — Ax,) (4.12)

which is an overdetermined system of n linear equations in n — p unknowns. It is
thus apparent that u can be computed as the unconstrained least-square solution of
eq.(4.12).

However, matrix L, an orthogonal complement of C, is not unique. We have thus
reached a crucial point in the solution of the constrained linear least-square problem
at hand: How to define L. While L can be defined in infinitely-many forms—notice
that, once any L has been found, a multiple of it also satisfies eq.(4.7). We define
here a distinct L such that

HL = [(1)] (4.13)

where 1 is the (n—p) X (n— p) identity matrix and O is the p X (n — p) zero matrix,
while H is defined as the product of Householder reflections rendering C” in upper-

triangular from—see Subsection 3.4.1. From eq.(4.13), one can obtain matrix L

without any additional computations, for

L=H" [?] (4.14)

whence it is apparent that L is isotropic, i.e., its condition number is equal to unity.
This means that the generalized inverse L! can be computed without roundoff-error

amplification. In fact, this inverse reduces to L7, for
@)
L' = (0" 1H'H {) })—1[07’ 1H" =L" (4.15)

Once L is known, equation (4.12) can be solved for u as the least-square approx-
imation of that system. Then, xy is calculated from equation (4.11).

As the reader can readily prove, the two components of x, xy and xj, are
orthogonal. For this reason, the foregoing procedure is known as the Orthogonal-
Decomposition Algorithm (ODA).

4.3 Equality-Constrained Nonlinear Least-Square

Problems

The solution of nonlinear least-square problems by means of the ODA is now straight-
forward: The problem consists in finding the least-square error f of an overdeter-

mined system of nonlinear equations, ¢(x) = 0, i.e.,

f(x):%d)Tqu — min (4.16a)

subject to the nonlinear constraints
h(x) =0 (4.16b)

where ¢ and x are ¢- and n-dimensional vectors, respectively, with ¢ > n, and W
is a g X q positive-definite weighting matrix. Moreover, h is a [-dimensional vector
of nonlinear constraints.

The normality condition of the foregoing constrained problem was derived in
Ch. 3 in its dual form, eq.(3.88), and recalled below for quick reference:

L"®"We¢ =0, (4.17)
with 0, denoting the (n — [)-dimensional zero vector.

6

The solution of the problem at hand is obtained iteratively: From an initial guess
x°, not necessarily feasible, i.e., with h(x%) # 0, the sequence x!, x%, ..., x*, xF*!
is generated as

x" = xF 4 AxF (4.18)

The increment Ax* is computed as the solution of an equality-constrained linear

least-square problem, namely,

. 1 kJT k
min e We (4.19a)
subject to
J(x")AxF = —h(x*) (4.19Db)
with e defined as
e’ = —p(xF) — d(xF)Ax” (4.19c¢)

Now, for compactness, we introduce a few definitions:
h* = h(x"), o' =¢((x"), &, =&Kx"), IJ=IxY (4.20)

while Ly is defined as the isotropic orthogonal complement of J; a la eq.(4.13).
Moreover, ®; and J; will be assumed to be of full rank throughout, the solution
AxF of problem (4.19a—c) thus being expressed as

AxF = AvF 4+ Ly Au” (4.21)

where Av* and Au* are the minimum-norm and the least-square solutions to an

underdetermined and an overdetermined system, namely,

JAvF = —h* (4.22a)
V&, L, Au* = V(—¢" — ®,AvF) (4.22b)

The stopping criteria of the procedure are, then,
|AxF|| < e; and ||h(x")]| < e (4.23)

for prescribed tolerances €; and €3. These criteria are verified when both the nor-
mality condition (4.17) and the constraint (4.16b) are verified within the given tol-

erances. Moreover, from egs.(4.22a) and (4.22b), Ax* can be expressed as

AxF = (M®TW® — 1,)J'h - M®TW¢o (4.24)

where subscripts and superscripts have been dropped from the right-hand side for
compactness, 1, represents the n x n identity matrix, J' is the right Moore-Penrose

generalized inverse of J, and M is the n X n matrix defined as
M = L(L"®"WeL)'L” (4.25)

Upon convergence, the constraint equations (4.16b) are verified, and hence, the first
term of Ax* as given by eq.(4.24), vanishes. Moreover, the normality condition

(4.17) holds, Ax* taking on the form shown below, upon convergence:
AxF = L(LT®"W&L) 'LTJT\ (4.26)
However, L is the n x (n —) isotropic orthogonal complement of J, and hence,
JL = Oy (4.27)

with Oy, defined as the [x (n — [) zero matrix. Therefore, upon convergence,
AxF — 0.
The sequence {Ax*} produces a sequence {f;}, the increment Af between two

consecutive values of the sequence being given by
Af = (VHTAx (4.28)
where V£ is the gradient of f,i.e., Vf = ®' W, and hence,

Af = (@"We) ' Ax
= ¢ WEMP W¢ — " W& (1 - M®"WP)J'h (4.29)
From eq.(4.29), if the current value of x is feasible, i.e., if h = 0, then Af is

negative definite, and the procedure yields an improved value of f. On the other
hand, one can readily verify that

A(hTh) = hk+1 — hk, = —2hTh (430)

which is negative definite. Therefore, the procedure gives a sequence of x values

that approaches the constraints.

Example 4.3.1 (A Quadratic Objective Function with a Quadratic Con-
straint)

We recall Example 3.6.1, which is reproduced below for quick reference:

1
f(x) = 5(9:5% — 8717y +325) — min

T1,T2
subject to
h(x)=ai+25-1=0

While the objective function is quadratic in a linear function of the design-variable
vector, the constraint is nonlinear, which disqualifies this problem from a direct
solution, as found in Section 4.2 for linear least-squares subject to linear constraints.
This problem, due to its simplicity, could be solved exactly in Chapter 3. Here, we
solve this problem numerically, using the ODA. First, note that the objective function

f(x) can be factored as
1
f(X):§¢TW¢
with
19 -4 K
we L] e]

i.e, f(x) is a special case of the f(x) defined in eq.(4.2), with A =1 and b = 0.
We include below a Maple worksheet describing the step-by-step implementation of

the ODA in solving the foregoing problem iteratively.
> restart:with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

> with(plots): with(plottools):
Warning, the name changecoords has been redefined

Warning, the name arrow has been redefined

Example 4.3.1: Linear-least square problem subject to a quadratic

constraint

f(z)=(1/2)(921"2-8 2.1 .2 + 32z.2"2) —> min {z_1, z_2}

subject to

\

h(zl,z2)=21"2+1222-1=0

obj:= proc(x) (1/2)*(9*x[1]1"2 - 8*x[1]1*x[2] + 3*x[2]"2)
end; #procedure to compute the objective function
obj := proc(z) 9/2 * 2,2 — 4 x 11 * x5 + 3/2 * 7,° end proc
constr:= proc(x) x[1]1°2+x[2]°2 - 1 end; #procedure computing the
constraint
constr := proc(z) z,? + x> — 1 end proc
dhdx:= proc(x) matrix([[2*x[1], 2#x[2]]]) end;#procedure computing
the gradient of the constraint
dhdz := proc(z) matrix([[2 *x z1, 2 * 23]]) end proc
alfa:= proc(J) evalf(signum(J[1,1])*sqrt(J[1,11°2 + J[1,2]"2))
end;#procedure computing "alpha" of Householder reflections in
least-square solution at each iteration
alfa := proc(J) evalf (signum(J; 1) * sqrt(Ji,1> + J1,»°)) end proc

W:=matrix([[9, -4], [-4, 3]]);#weighting matrix

1

V:=transpose(cholesky(W)) ;#Maple returns a lower-triangular matrix
with procedure '"cholesky"!

3 —4
V= 13
0 -V11

3
V:= map(evalf, V);

V=

3. —1.333333333
0. 1.105541597
ID:=Matrix(2,2,shape=identity); E:= matrix([[0], [1]]); Phi:= ID;
B:=evalm(V&+*Phi) ;#Defining various auxiliary matrices

ID = 1 O]
01

>

i

B 3. —1.333333333
"] 0. 1.105541597
x:=vector([2, 2]); x0:= evalm(x);#initial guess, x~0, stored as x0

for plotting

x:=12, 2
z0 = [2, 2]
f:= evalf(obj(x));#f_0
f:=8
phi:= evalm(x) ;#phi~0
¢:=[2,2]
h:= constr(x) ;#h~0
h:=17
J:= dhdx(x);#J_0
Jo=[4 4]

alpha:= alfa(J);#local variable

« = 5.656854248
t:=vector([J[1,1] + alpha, J[1,2]]);#u in HHR algorithm, a local

variable
t:=1[9.656854248, 4]
normt2:=evalf (dotprod(t,t)/2) ;#half of Euclidean norm-squared of
a
local variable

normt2 = 54.62741700
H:=evalm(ID - t&*transpose(t)/normt2);#evaluating Householder

reflection

| —-707106781 —.7071067812

_-[—.7071067812 .7071067811]
P:=evalm(H&*transpose (H)) ;#checking whether H is a reflection

p._ | 9999999997 0.
o 0. .9999999999

detH:=det (H) ;
detH := —.9999999998

H is indeed a reflection!

> HJIT:=evalm(H&*transpose(J));

— —5.656854249]
—-.11078
> HJT[2,1]:=0; print(HJT);#setting last entry of HJ"T equal to zero
HJT;,:=0
—5.656854249
)
:= vector ([-h/HJT[1,1], 0]);#w = Hv
w = [1.237436867, 0]
> v:=evalm(H&*w) ;#v~0
v = [—.8749999997, —.8750000000]
> L:= evalm(H&*E); BL:=evalm(B&*L);# L_0 & (BL)_O

— 7071067812
L::[70710678]

\
=

7071067811

- [—3.064129385]
7817359600
> p:=matadd(phi, Phi&*v);#auxiliary variable
p := [1.125000000, 1.125000000]

> r:= evalm(-V&xp) ;#RHS of overdetermined system to compute u in ODA
r:= [—1.875000000, —1.243734297]
> u:= leastsqrs(BL, r); #u"0

u = [.4T72970772]
> Deltax:= matadd(v, L&*u) ;#Deltax~0
Deltax := [—1.212500000, —.5375000001]

First iteration is complete. Update x:

> x:= evalm(x + Deltax); x1:= evalm(x) ;#x"1
x := [.787500000, 1.462500000]
z1 = [.787500000, 1.462500000]

f:=

phi:

o
1]

[
1

evalf(obj(x)); # f_1

£ :=1.392187500

evalm(x); # phi~1

¢ := [.787500000, 1.462500000]

constr(x); # h~1

h :=1.759062500

dhdx(x); # J_1
J = | 1.575000000 2.925000000

alpha:= alfa(J);

o = 3.322085189

t:=vector([J[1,1] + alpha, J[1,2]]);#u in HHR algorithm

t :=[4.897085189, 2.925000000]

normt2:=evalf (dotprod(t,t)/2);

normt2 := 16.26853418

H:=evalm(ID - t&*transpose(t)/normt2);#evaluating Householder

reflection

—.474099823 —.8804710997
—.8804710997 .4740998233

HJT:=evalm(H&*transpose(J));

HIT :=
11078

—3.322085188]

HJT[2,1]:=0; print(HJT);

wi=

HJTZyl =0

[—3.322085188]
0

vector ([-h/HJT[1,1], 0]);#w = Hv

w = [.5295055366, 0]

v:=evalm(H&*w) ; # v~1

L:=

v = [—.2510384812, —.4662143221]
evalm(H&+*E) ; BL:=evalm(V&*Phi&+*L); # L_1 & (BL)_1

| —.8804710997
| 4740998233

5241370758
> p:=matadd(phi, Phi&*v);#auxiliary variable
p = [.5364615188, .9962856779]

—3.27354
Bl [3.9735 6397]

> r:= evalm(-V&*p) ;#RHS of overdetermined system to compute u in ODA
r:=[—.281003652, —1.101435259]
> u:= leastsqrs(BL, r); # u~1

u :=[.03116921755]
Deltax:= matadd(v, L&*u); # deltax"1
Deltax := [—.2784820764, —.4514370016]

%

Second iteration is complete. Update x:

> x:= matadd(x, Deltax); x2:= evalm(x); # x~2
x :=[.5090179236, 1.011062998]
z2 = [.5090179236, 1.011062998|
> f:= obj(x); # £_2

f:=.640722436
> phi:= evalm(x); # phi~2
¢ := [.5090179236, 1.011062998|
constr(x); # h~2

%
=
1]

h = .281347632

%
[
1

dhdx(x); # J_2

J = 1.018035847 2.022125996
> alpha:= alfa(J);
a = 2.263932537
> t:=vector([J[1,1] + alpha, J[1,2]]);#u in HHR algorithm
t:=[3.281968384, 2.022125996]
> mnormt2:=evalf (dotprod(t,t)/2);

normt2 := 7.430155005
> H:=evalm(ID - t&*transpose(t)/normt2) ;#evaluating Householder

> reflection

—.8931918088 .4496758759
> HJT:=evalm(H&*transpose(J));

—2.263932538
—.1210°8

H__[— 449675877 —.8931918088]

HJT =

> HJT[2,1]:=0; print(HJT);

HJTy,:=0

—2.263932538

T
> w:= vector([-h/HJT[1,1], 0]);#w = Hv
w = [.1242738586, 0]
> v:=evalm(H&*w); # v~2
v := [—.05588295635, —.1110003925]

> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L); # L_2 & (BL)_2

| —.8931918088
| 4496758759

4971353860
> p:=matadd(phi, Phi&*v); # auxiliary variable
p := [.4531349672, .9000626055]

r:= evalm(-V&*p); # RHS of overdetermined system to compute u in
ODA

[—3.979143260]

r:=[—.159321428, —.9950566503]
> u:= leastsqrs(BL, r); # u~2
u :=[.002523646038]
> Deltax:= matadd(v, L&+*u); # Deltax"2
Deltax := [—.05813705632, —.1098655698|

Third iteration is complete. Update x:

> x:= matadd(x, Deltax); x3:=evalm(x) ;#x"3

\Y

x := [.4508808673, .9011974282]
z3 = [.4508808673, .9011974282]
f:= obj(x); # £_3
f = .5077254992
phi:= evalm(x); # phi~3
¢ := [.4508808673, .9011974282]
constr(x); # h~3

=
1]

h = .015450361

—
1]

dhdx(x); # J_3

J =1 .9017617346 1.802394856
alpha:= alfa(J);
o = 2.015391139

t:=vector([J[1,1] + alpha, J[1,2]]);#u in HHR algorithm

t:=1[2.917152874, 1.802394856]
normt2:=evalf (dotprod(t,t)/2);
normt2 = 5.879204055

H:=evalm(ID - t&*transpose(t)/normt2);#evaluating Householder

reflection

7. —.447437580 —.8943151635
" | —.8943151635 .4474375804
HJT:=evalm(H&*transpose(J));

—2.0153911
HIT = 015391138
21077

HJT[2,1]:=0; print(HJIT);

HJTy1:=0

—2.015391138

]
vector ([-h/HJT[1,1], 01);#w = Hv
w := [.007666184846, 0]
:=evalm(H&*w) ; # v~3
v := [—.003430139195, —.006855985354]

=
1]

<
1]

-]
1]

evalm(H&+E) ; BL:=evalm(V&*Phi&*L); # L_3 & (BL)_3

I —.8943151635
T | 4474375804

4946608572
> p:=matadd(phi, Phi&#*v);#auxiliary variable
p = [.4474507281, .8943414428]

—3.27952
Bl l 3.2795 8930]

> r:= evalm(-V&+*p) ;#RHS of overdetermined system to compute u in ODA
r:=[—.149896927, —.9887316669)]
> u:= leastsqrs(BL, r); # u"3

u := [.0002276777133]
> Deltax:= matadd(v, L&*u); # Deltax"3
Deltaz := [—.003633754826, —.006754113789]

Fourth iteration is complete. Update x:

> x:= matadd(x, Deltax); x4:=evalm(x);# x"4
x = [.4472471125, .8944433144]
x4 = (4472471125, .8944433144]
> f:= obj(x); # f_4

f:=.5000294132
> phi:= evalm(x); # phi~4
¢ = [.4472471125, .8944433144)]
constr(x); # h~4

Y
=3
1]

h = .000058822

\%
[
1

dhdx(x); # J_4

J = .8944942250 1.788886629
> alpha:= alfa(J);

a = 2.000058822
> t:=vector([J[1,1] + alpha, J[1,2]]);#u in HHR algorithm
t:=[2.894553047, 1.788886629]

> normt2:=evalf (dotprod(t,t)/2);
normt2 := 5.789276355

\Y

H:=evalm(ID - t&*transpose(t)/normt2);#evaluating Householder
> reflection

o —.447233960 —.8944170093
| —.8944170093 .4472339590
> HJIT:=evalm(H&*transpose(J));

HIT — —2.000058823
—.3107°

> HJIT[2,1]:=0; print(HJIT);
HJT;,:=0
—2.000058823
[
> w:= vector([-h/HJT[1,1], 0]);#w = Hv
w := [.00002941013500, 0]
:=evalm(H&*w) ; # v™4
v :=[-.00001315321114, —.00002630492499]
> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L); # L_4 & (BL)_4
_ [— 8944170093]

\
<

4472339590

. [—3.279562973]
4944357453
> p:=matadd(phi, Phi&*v);#auxiliary variable
p = [.4472339593, .8944170095]

> r:= evalm(-V&*p) ;#RHS of overdetermined system to compute u in 0ODA
r:=[—.149145866, —.9888152091]
> u:= leastsqrs(BL, r); # u~4

u := [.00002069770909]
> Deltax:= matadd(v, L&*u); # Deltax~4
Deltax := [—.00003166559420, —.00001704820661]

Fourth iteration is complete. Update x:

> x:= matadd(x, Deltax); =x4:= evalm(x);# x~4
x 1= [.4472154469, .8944262662]

r4 = [.4472154469, .8944262662]
> f:= obj(x); #f_4
f = .5000000006

Given the norm of Deltax, we declare convergence here, and plot the iteration

history in z[1]-z[2] plane:

\

> evalm(x4);
00 :=[2, 2]
01 := [.787500000, 1.462500000]
02 :=[.5090179236, 1.011062998|
03 := [.4508808673, .9011974282]
04 = [.4472154469, .8944262662]

pO:=point(convert(o0,list), symbol=circle, color=blue);
pl:=point(convert(ol,list), symbol=circle, color=blue);
:=point(convert(o2,list), symbol=circle, color=blue);
p3:=point(convert(03,list), symbol=circle, color=blue);
p4:=point(convert(o4,list), symbol=circle, color=blue);

p0 = POINTS([2., 2.], COLOUR(RGB, 0., 0., 1.00000000), SYMBOL(CIRCLE))

vV V. V V V
e
N

p1 := POINTS([.787500000, 1.462500000], COLOUR(RGB, 0., 0., 1.00000000),
SYMBOL(CIRCLE))

p2 := POINTS([.5090179236, 1.011062998], COLOUR(RGB, 0., 0., 1.00000000),
SYMBOL(CIRCLE))

p3 := POINTS([.4508808673, .9011974282], COLOUR(RGB, 0., 0., 1.00000000),
SYMBOL(CIRCLE))

p4 := POINTS([.4472154469, .8944262662], COLOUR(RGB, 0., 0., 1.00000000),
SYMBOL(CIRCLE))

00:= evalm(x0); ol:= evalm(xl); 02:= evalm(x2); 03:= evalm(x3); o4:

11 := arrow(convert(o0,list),convert(ol,list), 10.0, 0.1, .1, arrow,
color=red, thickness=2):

12 := arrow(convert(ol,list),convert(o2,list), 6.0, 0.1, .2, arrow,
color=green, thickness=2):

13 := arrow(convert(o2,list),convert(o3,1list), 6.0, 0.1, .7, arrow,
color=red, thickness=2):

14 := arrow(convert(o3,list),convert(o4,list), 6.0, 0.1, 6.0, arrow,

color=green, thickness=2):

cl := arc([0,0], 1,-Pi/6..4%Pi/6,color=black, thickness=2):

obj_plot:= proc(ax,ay) (1/2)*(9%ax~2 - 8*ax*ay + 3*ay~2)
end:f1l:=implicitplot(obj_plot-3,-0.5..2,-0.5..2.5,numpoints=3000,
linestyle=4,color=blue):
f2:=implicitplot(obj_plot-2,-0.5..2,-0.5..2,numpoints=3000,
linestyle=4,color=blue) : £3:=implicitplot (obj_plot-1,-0.5..2,-0.5..2,nu
mpoints=6000,
linestyle=4,color=blue) :f4:=implicitplot (obj_plot-0.5,-0.5..2,-0.5..2,
numpoints=6000, linestyle=4,color=blue):

vV V V V V V V V V V V V V V V VYV

> display({ci,p0,pl, p2, p3, p4, pil, 11, 12, 13, 14,f1,f2,£3,f4},

> insequence = false, color=red, scaling=constrained);

The plots produced by the plotting commands in the Maple worksheet are repro-
duced in Fig. 4.1.

Figure 4.1: The four iterations leading to the solution of the linear least-square

problem subject to one quadratic constraint

20

A plot of the contours of the objective function and the constraint, showing all
four stationary points, is displayed in Fig. 4.2.

-2.0-15-1.0-05 0 05 1.0 1.5 2.0
Ty

Figure 4.2: The contours of constant f and the constraint A =0

Example 4.3.2 (Finding the Eigenvalues and Eigenvectors of a Symmet-
ric Matrix)

The problem of finding the eigenvalues and corresponding eigenvectors of a symmet-
ric n X n matrix M is solved as a linear least-square problem subject to quadratic
constraints: Fori=1,2,---.n, and k=1,2,---,1, find \; and X; such that

1
A; = min —xiTsz-
xi 2

21

subject to

T —

07 1fk:17 27 ,2—1,
1, if £ =1.
where \; is the ith eigenvalue of matriz M and x; is the corresponding eigenvector.

In order to use the ODA package to solve the problem, we define, fori=1,2,---,n:

g=n and [=1, (4.31)
X = X,
B(x) = x,
h(x)=[x"x -+ xT x xTx-1]",
W =M
where X, for k = 1,2,---,1 — 1, are the previously calculated eigenvectors of M,
and hence, are known. With the above definitions, for i = 1,2,---,n, subroutine

LSSCNL of the ODA package s called n times. After each call, one eigenvalue and
its corresponding eigenvector are obtained. Notice that, in the last call, the number
of constraints is equal to the number of variables, namely, | = n. Matriz M is given

as

<

Il
o= =N
=N RN
N s NN =
NG O N
I e e

We use the initial guess
x*=[01 0.1 01 0.1 0.1]".

The eigenvalues and the eigenvectors computed with the ODA package are listed
in Table 4.1. In that table, the number of iterations that the package took till con-
vergence was reached with ¢, = 0.0001 and e; = 0.0001, is indicated.

4.4 Equality-Constrained Optimization with Ar-
bitrary Objective Function

The problem to be solved is defined as:
f=f(x) — min (4.32)

22

7 1 2 3 4 5

A 1.27738 3.08749 | 9.63513 2.0 4.0
1st comp. of x; 0.26565 | —0.51369 | 0.40689 0.5 0.5
2nd comp. of x; | —0.51853 0.10368 | 0.46944 | —0.5 0.5
3rd comp. of x; 0.56667 | 0.67138 | 0.47764 | 0.0 0.0
4th comp. of x; | —0.51853 0.10368 | 0.46944 | 0.5 | —0.5
5th comp. of x; 0.26565 | —0.51369 | 0.40689 | —0.5 | —0.5
of iterations 12 11 6 38 o4

Table 4.1: Eigenvalues and eigenvectors of M

subject to the nonlinear equality constraints
h(x) =0 (4.33)

where x is the n-dimensional design-variable vector, the objective function f(x)
being a nonlinear function of x, not necessarily quadratic in the sense of Section 4.3,
but with continuous derivatives up to the second order. Moreover, h(x) is a [-
dimensional vector of nonlinear equality constraints, with a continuous gradient.
In the problem defined in eq.(4.32), if the constraints in eq.(4.33) are analytic,
then there exists a feasible manifold F C R", of dimension [/, such that, if u € F.
In this case, under x = x(u),
h(x(u)) =0 (4.34)

In the particular case in which h(x(u)) is linear, then F is a vector space, i.e., the
feasible space of the problem at hand.
At x = x*, we assume that, in general, h(x*) = h* # 0, i.e., the current x is not

feasible, and note that f(x* + Ax*) can be expanded, to a second order, as
1
f(xF 4+ AxP) ~ f(xF) + (V)] AxF + E(Axk)T(VVf)kAxk — Iili}c] (4.35a)

subject to
JyAxF = —h* (4.35b)
We have thus derived a linear least-square problem in Ax* subject to the linear
constraints (4.35b). To find the increment Ax*, we resort to the ODA, as introduced

in Section 4.2. To this end, we decompose the foregoing vector into its two orthogonal
components:

AxF = Axf + LyAu”

23

where

Axt = —J7 (I, IT) " 'hF (4.36)

is the minimum-norm solution of eq.(4.35b), and Lj is the isotropic orthogonal
complement of J; defined in eqs.(4.13) and (4.14), while J; itself is defined as the

k. Moreover, Lj and Au* are

gradient of h with respect to x, evaluated at x = x
found with the procedure described in Section 4.2 for linearly-constrained linear
least-square problems. Furthermore, with Axk given by eq.(4.36), f(x* + Ax*)

becomes a function solely of Au*, i.e.,

f(Au®) = f(Au®) = f(x*) + (V)i (AxG + LyAu®)

1
+§(AX§ + L AU (VV) (AxE + Ly Auf) — gliil

which can be cast in the form
; 1
F(Aub) = S(Au) LY (VVf)Ledut + [LE(VV)dxt + LT (V)] Aut

+ S ()T (VV)l + (V1§ 8 + f(4) — min (4.37)
subject to no constraints, f(Au*) being quadratic in Au*. Function f(AuF) has
a minimum if its Hessian with respect to Au*, Hy, = LI(VVf)iLy, is positive-
definite. Under the assumption that this is the case, then, the minimum Au* of
f (Au*) can be readily computed upon zeroing its gradient with respect to Au*,
which yields

H,Au* = —LI(VV) AxE — LT (Ve

Under the assumption that Hj, is positive-definite, it is invertible, and hence,
Au® = —H Ly (VV) AxG + L (V f)4] (4.38)

We have thus reduced the original problem to a sequence of linear-quadratic
programs. This means that we have solved the problem iteratively. At each iteration,
moreover, we find the correction to the current approximation Ax* by means of
a combination of two linear problems, one being a minimum-norm problem, the
other involving a determined linear system of equations. For this reason, the above
procedure is called sequential quadratic programming.

The foregoing procedure relies on the rather daring assumption that the Hessian
H, is positive-definite. Below we study the more realistic case of a non-positive-
definite Hessian.

24

4.4.1 Sequential Quadratic Programming with Hessian Sta-
bilization

In the presence of a non-positive-definite Hessian Hy, we aim at a perturbation AH,
of the Hessian that will render the perturbed Hessian H, positive-definite, thus

producing

I:Ik = Hk + AHk (439)

How to obtain AH, that is guaranteed to produce a positive-definite-Hessian is the
key issue here. Various methods are available to do this. Most of these methods
aim at producing not a positive-definite Hessian itself, but rather an estimate of its
inverse which is what we actually need. The most favoured method in this respect
is that of Broyden, Fletcher, Goldfarb, and Shanno, known as the BFGS method.
Essentially, this method is applied to the unconstrained minimization of nonlinear
objective functions, based on the system of nonlinear equations derived from the
normality conditions. The Jacobian of this system is nothing but the Hessian of the
objective function.

We describe in the subsection below a method for the determination of AHy
introduced in eq.(4.39). Note that, once the perturbed Hessian, which is most
frequently referred to as the stabilized Hessian, is available, Au* is found from

HyAut = ~LT[(VV)elxE + (V)] (4.40)

The process of finding a positive-definite H,, is termed Hessian stabilization. The
rationale behind Hessian stabilization lies in the property that, if the eigenvalues of
a n X n matrix M are { y }7, then the eigenvalues of matrix M + a1, where « is
a real number and 1 is the n x n identity matrix, are { yx + a }7. Thus, the effect
of adding the isotropic matrix al to M is to shift the eigenvalues of the latter to
the right of the complex plane by an amount « if a > 0; if o < 0, then the same
isotropic matrix shifts the eigenvalues of M to the left of the complex plane by an
amount |«|. If the Hessian of interest is not positive-definite, this means that it has
some negative eigenvalues, Hessian stabilization thus consisting in finding the right
value of « in the foregoing scheme that will shift the Hessian eigenvalues to the right
of the real axis—since the Hessian is necessarily symmetric, its eigenvalues are all
real—so that none of the shifted eigenvalues will lie on the left half of the real axis.
Notice that, if @ > 0 is underestimated, then the associated isotropic matrix will

fail to shift some of the negative Hessian eigenvalues to the right; if overestimated,

25

then all shifted eigenvalues will lie on the right half of the real axis, but the Hessian
will be overly perturbed, and the converegence will slow down.

Obviously, if we know the eigenvalues of the Hessian Hy, then we can find the
right py that will shift all its eigenvalues to the right. However, computing eigen-
values is an iterative process, except for very special cases of simple matrices, and
hence, we cannot relie on knowledge of those eigenvalues. We discuss below how
to estimate the right amount of shift o without having to compute the Hessian
eigenvalues. We do this by means of an estimate of the location of the Hessian

eigenvalues, as provided by the Gerschgorin Theorem.

4.4.2 The Gerschgorin Theorem and Its Application to Hes-

sian Stabilization

The Gerschgorin Theorem establishes a region in the complex plane containing all

the eigenvalues of a n x n matrix A, defined over the complex field C, namely,

ail ai12 ... Qp

Qo1 Q22 ... Q(op
A= . . .

Ap1 QAp2 oo Qpp

According to the Gerschgorin Theorem, all the eigenvalues of A lie within a complex
region S, defined as the union of disks D; centered at a;;, with radius r;, in the
complex plane, for 1 =1, ..., n, r; being given by

n

ri= Y lay|

J=Lji
in which | - | denotes the module of (-). The Gerschgorin Theorem is illustrated in

Fig. 4.3, the region S thus being

If A is symmetric and real, which is so for Hessian matrices, then its eigenvalues

lie in the union of the real intervals
Ii:[aii—n,aii-l—ri], i:1,2,...,n
A lower bound [of the set {);}7 of eigenvalues of A is, thus,

| = min{ay; — r;}] (4.41a)

26

Imj.}

Figure 4.3: The Gerschgorin disks.

the corresponding upper bound being
u = max{a; + r;}7 (4.41D)
(2

If A is positive-definite, all eigenvalues of A must be positive, which means that
the lower bound [should be positive as well. If, on the other hand, A is either

sign-indefinite or positive-definite, but close to singular, then [can be negative.

4.4.3 Hessian Stabilization with the Aid of the Gerschgorin
Theorem

The feasible Hessian matrix L] (VV f)|zLy of the objective function fails to be
positive-definite when the Hessian (VV f)|; fails, in turn, to be positive-definite.
However, it may well happen that the latter fail to be positive-definite and yet the
former be positive-definite. In this light, it appears that we need not stabilize the
Hessian itself, but only its feasible projection. In practice, we have found that sta-
bilizing the Hessian, rather than only its feasible projection, leads to a more robust
procedure. We will thus proceed accordingly.

The stabilizing procedure is applied by introducing a scalar p; > —I[, such that
a new positive-definite matrix Wy, is used to replace (VV)i, with W defined as

Wi = (VV)i + pul (4.42)

W, thus being guaranteed to be positive-definite, for its minimum eigenvalue is a

fortiori greater than zero.

27

The stabilized Hessian thus yields the feasible Hessian
Hy = Ly WLy = L (VV f)|¢Ly + s Li Ly (4.43)
Moreover, since Ly is isotropic, it turns out that
LiL, =1, (4.44)

with 1, denoting the (n — 1) x (n — [) identity matrix. Therefore, the stabilizied
feasible Hessian Hj, reduces to

H;, = LWL, = LI (VVf)|cLi + 1 (4.45)
which is now positive-definite, problem (4.37) thus admitting one minimum Au¥*,
which is computed from eq.(4.40).

Choice of the Gerschgorin Shift

In this subsection we stress the importance of the selection of u. With a proper
selection, the number of iterations can be effectively reduced.
The selection of p is suggested to be slightly greater than the lower bound [of

the eigenvalues, as obtained by the Gerschgorin Theorem, i.e.,

p=—(1+A) (4.46)

where A is a positive number, that is to be chosen as small as possible.
The value of A is related to the bandwidth b of the Hessian eigenvalues, with b
defined as

b=u—-1

Example 4.4.1 (Powell’s Function)
A problem proposed by Powell (1969) is solved here:

. T
f(x) =1 ®2®3%% 5 min, x=[z7 T3 T3 Ty Ts]
X
subject to the nonlinear equality constraints

hy =z} +z5+25+2; +32 —10=0
hg = T9X3 + T4X5 = 0

hs=2}+z5+1=0

28

A word of caution is in order here: while the exponential function e* is convexr—
its second derivative with respect to x is positive everywhere—the bivariate exponen-
tial function €"*? is not convexr everywhere, and neither is so the above objective
function. In fact, the Hessian of the bivariate exponential becomes sign-indefinite
in a region of the x1-xy plane. This statement is illustrated with the plot of this
function displayed in Fig. 4.4. The conclusion of the foregoing discussion is, then,
that the multivariable exponential function, like Powell’s function, has a Hessian
that is sign-indefinite in a region of R°. Optimum solutions were obtained with two
different algorithms, the corresponding results being listed in Table 4.2. Results were
obtained under the same environment, a Silicon Graphics 64-bit Octane SE work-
station, with a 250 MHz R10000 processor, running the IRIX 6.5 operating system.

An initial guess is taken as
xo=[-1 2 —05 1 2]"

with tolerance of 107%. The ODA package requires only 58 iterations, as compared
with 186 required by the Matlab Optimization Toolbox. Moreover, the CPU time
required by the ODA is only 8.9 % of the CPU time consumed by Matlab.

Figure 4.4: The bivariate exponential e*'*?

Example 4.4.2 (The Equilibrium Configuration of an N-link Chain)

Shown in Fig. 4.5a is a chain with N links in its equilibrium configuration, which

29

Table 4.2: A performance comparison based on Powell’s function

Matlab ODA
f 0.05395 | 0.05395
xq —1.7172 | —1.7171
T 1.5957 | 1.5957
T3 1.8272 | —1.8272
x4 0.7636 | —0.7636
T 0.7636 | 0.7636
of iterations 186 55
CPU time (s) 0.2903 | 0.0259

spans a distance d, with each link of length £. Knowing that the chain reaches its
equilibrium configuration when its potential energy attains a minimum value, find
the said equilibrium configuration. This problem, originally proposed by Luenberger
(1984), was solved for the case of two design variable, exactly, in Example 3.3.2.

S

(a)

(b)
Figure 4.5: An N-link chain in: (a) its unknown equilibrium configuration; and (b)
a configuration to be used as an initial guess

Angles 0;, used to define the configuration of the chain, are measured from the

vertical ccw, with 0; corresponding to the angle that the axis of the ith link makes

30

with the vertical, as shown in Fig. 4.6.

Figure 4.6: Definition of 6; for the N-link chain

If V.= plf(61, 05 ..., Ox) denotes the potential energy of the chain, and p is
the mass density of the links per unit length, then minimizing V is equivalent to

minimizing f, which is given by

1 1
f(61,605...,0n) = — [§cosé’1+ (cos 01 + §c0s02) + ...

1
+ (cosby + ...+ cosOy_1 + =cosOy_1) — min
2 {05}y

or, in compact form,

N
1) .
f(91, 02 ceey GN) = —5 Z:EI[Q(N — Z) + 1] COS 91 — {121}1{1\!

subject to two constraints: the two ends (1) must lie at the same height, and (2) are

separated by a distance d, as shown in Fig. 4.6. The constraints are

N
h, = Z cosf; =0
i=1
al d
hQ =Zsin0i— E =0
=1
Under the assumption that the configuration is symmetric, and that N is even, then
M = N/2 is an integer. Thus, only one half of the chain need be considered. The

problem 1is, thus, simplified as

31

F(61, 05 ...

Table 4.3: Luenberger’s chain with M =5

Matlab | The ODA

0, 0.0893 0.0893

05 0.1147 0.1147

03 0.1599 0.1599

04 0.2625 0.2625

05 0.67856 0.6785

Jmin -12.2650 | -12.2650

Iterations 16 7

CPU time (s) || 0.2825 | 0.003261

1 1
, Op) = — [Ecosﬁl—i- (cosby + 500802) +...

1
+(cos01+...+cos€M_1+§cos9M)
| M
=—— E 2(M —1i)+1]cosh; — min

M
2 i1 {cosb; }y

The two constraints then reduce to only one:

h—isin&-—i—o
— 20

This problem, with M =5, i.e., with N = 10, is solved now using the configura-

tion of Fig. 4.5b as an initial quess. The equilibrium configuration of the chain is

giwen in Table 4.3 with a comparison between ODA and Matlab.

With the same tolerance set at 0.0001, the ODA takes less than half the number
of iterations than Matlab; additionally, the CPU time consumed by ODA 1is about
10% of that consumed by Matlab.

It is noteworthy that the convergence of ODA 1is dependent on the choice of ju
in eq.(4.42), for a given value of d/(2l).

Example 4.4.3 (Minimum value of the Rosenbrock Function) We include an

example where the ODA package is used to find the minimum value of the Rosenbrock
function (Rosenbrock, 1960), a.k.a. the banana function, defined as

32

Figure 4.7: The contours of the Rosenbrock (a.k.a. the banana) function

f(x) =100(zy — 22)* + (1 — x1)? (4.47)

The problem can be treated as finding an ”approrimate” solution of the following

system of nonlinear equations

2
b= [3”2 xl} (4.48)
1— T
such that the least-square error f is a minimum, i.e.,
1., .
flx)= §¢ W¢ — min (4.49)
T1,Z2
with
200.0 0
= (4.50)
0 2.0
By taking xo = [0.2 0.2]" as initial guess, we obtained the sequence of values
x!t, x2,... shown in Table 4.4. The optimum was reached after 3 iterations, and
found to be xopr = [I 1]7. The contours of the banana function are plotted in

Fig. 4.7. Now, since ¢ = 0 at X, the normality condition (2.77) is readily verified.

33

Table 4.4: Interations toward the minimum of the Rosenbrock function
) 1 2 3
x* [1.000000, 0.360000]T [1.000000, 1.000000]T [1.000000, 1.000000]T

Example 4.4.4 (The Constrained Minimiation of the Rosenbrock Func-
tion) In this example, we find its equality-constrained minimum of the Rosenbrock
function using SQP via the ODA. We thus have

f(.’L'l, 372) = 100(332 — .’L'%)Q + (1 — 1'1)2 — min

Z1,T2

subject to

h((x1, T3) = 0.75252% — 1.1202z; — 0.85742,7,
+0.6168z5 + 0.2575x5 + 0.4053

The function is notorious for its ill-conditioning, which is apparent from its
contours, as shown in Fig. 4.8, showing elongated valleys. The outcome is that
the quadratic approximation of this function within those valleys is a family of el-
lipses that have one semiazis much greater than the other one, thereby leading to
ill-conditioning. Notice that the constraint is a rather elongated ellipse that con-
tributes to the ill-conditioning of the problem.

Starting from the initial guess x = [1.5 1.5] and damping ratio being 0.025, the

optimum solution is found, in 312 ODA iterations, the results being

0.9176
Xo =
Pt 10.5873

which yields
fmin = 6.6963

4.5 Appendix A: The Damping Factor

This Appendix is included for completeness. It complements rather Ch. 3.
When implementing the Newton-Gauss method, the objective function f may

increase upon correcting x* according to eq.(2.70), i.e.
FxE) > f(x) (4.51)

34

3.0 J
J

- \)
x, i, \ ////

-1.0
-20 -10 0 1.0 c.0

Figure 4.8: The contours of the Rosenbrock (banana) function and its quadratic

constraint (dashed)

This increase gives rise to oscillations and sometimes even leads to divergence. One
way to cope with this situation is by introducing damping. Instead of using the

whole increment Ax*, we use a fraction of it, i.e.

X =xF 4+ aAXF, 0<a<1 (4.52)

where « is known as the damping factor.

4.6 Appendix B: Computer Implementation Us-
ing ODA—A C-Library of Routines for Opti-

mum Design

ODA is a C library of subroutines for optimization problems. The source file of
this package, implemented in C, consists of a number of subroutines designed and
classified based on their application. At the beginning of each subroutine a detailed
description of the purpose and usage of the subroutine is included. Moreover, data
validation has been considered in the software. In order to solve a problem, the user
simply calls one corresponding C subroutine.

Since the solutions for linear problems are direct—as opposed to iterative—the

use of ODA to solve linear problems requires only information on the problem pa-

35

rameters, such as matrices A, C, and W, as well as vectors b and d, as applicable.
For nonlinear problems, the solution is iterative, and hence, the user is required to
provide functions describing ¢(x), h(x), ®(x), J(x), as needed. These functions
are provided via subroutines in forms that can be called by the package. In addition
to this information, the user is also required to provide an initial guess x; of x, so

that the iterative procedure can be started.

1. Unconstrained linear problems: Subroutine MNSLS is used to find the
minimum-norm solution of an underdetermined linear system, while subrou-
tine LSSLS is used to find the least-square approximation of an overdetermined
linear system. LSSLS can also handle determined systems, i.e., systems of as

many equations as unknowns.

2. Unconstrained nonlinear problems: Subroutine LSSNLS is used to solve
this type of problems. Since the nonlinear functions and their associated gra-
dient matrices are problem-dependent, the user is required to provide two

subroutines that are used to evaluate the foregoing items, namely,

e FUNPHI: This subroutine is used to evaluate the ¢-dimensional vector

function ¢(x) in terms of the given n-dimensional vector x.

e DPHIDX: This subroutine is used to evaluate the ¢ x n gradient matrix ®

of the vector-function ¢(x) with respect to x, at the current value of x.

Moreover an initial guess of x is required when calling this subroutine.

3. Constrained linear problems: Subroutine LSSCLS is used to solve this type

of problems.

4. Constrained nonlinear problems: Subroutine LSSCNL is used for solving
this type of problems. Before calling LSSCNL, the user is required to provide
four problem-dependent subroutines: Two of these are FUNPHI and DPHIDX,
already derscribed in item 2 above. The other two are used to evaluate the
left-hand sides of the constraint equations and their gradient matrix, as listed

below:

e FUNH: This subroutine is used to evaluate the [-dimensional constraint

function h in terms of the given n-dimensional vector x.

36

e DHDX: This subroutine is used to evaluate the [x n gradient matrix J of
the vector-function h(x) in terms of the given n-dimensional vector x.

Moreover, an initial guess of x is required when calling LSSCNL.

5. Constrained problems with arbitrary objective function: Subroutine
ARBITRARY is used for solving this type of problems. Before calling ARBITRARY,
the user is required to provide four problem-dependent subroutines: Two of
these are FUNPHI and DPHIDX, as described in item 2 above. The other two
subroutines are used to evaluate the left-hand sides of the constraint equations

and their gradient matrix, as listed below:

e phi: Subroutine used to evaluate the objective function ¢(x) in terms

of the given n-dimensional vector x.

e h: Subroutine used to evaluate the /-dimensional constraint function h
in terms of the given n-dimensional vector x.

e J: Subroutine used to evaluate the [x n gradient matrix J of the vector-
function h(x) at the current value of x.

e gradient: Subroutine used to evaluate the n-dimensional gradient V f

of the objective function f(x) at the current value of vector x.

e Hessian: Subroutine used to evaluate the n x n Hessian matrix VV f of

the objective function f(x) at the current value of vector x. Moreover,

an initial guess of x is required when calling ARBITRARY.

References

Bertsekas, D. P., 1995, Nonlinear Programming, Athena Scientific, Belmont, Mas-

sachusetts.

Broyden, C. G., 1970, “The convergence of a class of double-rank minimization al-
gorithm”, J. Inst. Maths. Applications, Vol. 6, pp. 76-90.

Fletcher, R., 1970, “A new approach to variable metric algorithms”, Computer Jour-
nal, Vol. 13, pp. 317-322.

37

Goldfarb, D., 1970, “A family of variable metric updates derived by variational
means”, Mathematics of Computing, Vol. 24, pp. 23-26.

Lalee, M., Nocedal, J. and Plantenga, 1998, “On the implementation of an algo-
rithm for large-scale equality constrained optimization”, SIAM J. Optim., Vol. 8,
pp. 682-706.

Luenberger, D. G., 1984, Linear and Nonlinear Programming, Second Edition, Addision-
Wesley Publishing Company, Reading, MA.

Murray, W., 1997, “Sequential quadratic programming methods for large problems”,
Comput. Optim. Appl., Vol. 7, pp. 127-142.

Powell, M. J. D., 1969, “A method for Nonlinear Constraints in Minimizing Prob-
lems”, in Fletcher, R. (Ed.), Optmization, Academic Press., N. Y., pp. 283-298.

Rao, S. S., 1996, Engineering Optimization, 3rd. Edition, John Wiley and Sons, Inc.,
New York.

Rosenbrock, H. H., 1960, “An automatic method for finding the greatest or the least
value of a function”, Computer Journal, Vol. 3. No. 3, pp. 175-184.

Shanno, D. F., 1970, “Conditioning of quasi-Newton methods for function mini-
mization”, Mathematics of Computing, Vol. 24, pp. 647-656.

Strang, G., 1988, Linear Algebra, Third Edition, Harcourt Brace Jovanovich College
Publishers, Fort Worth.

Teng, C. P. and Angeles, J., 2001, “A sequential-quadratic-programming algorithm
using orthogonal decomposition with Gerschgorin stabilization”, ASME J. of Me-

chanical Design, Vol. 123, pp. 501-509.

Varga, R. S., 2000, Matriz Iterative Analysis, Prentice-Hall Inc., Englewood Cliffs,
N. J..

38

