Chapter 3

Equality-Constrained
Optimization: Normality

Conditions

3.1 Introduction

This chapter deals with the simplest class of constrained-optimization problems,
those subject to equality constraints. The problem statement at hand is

f(x) — mxin (3.1a)

subject to
h(x) = 0, (3.1b)

where h is a smooth l-dimensional vector function' of the n-dimensional vector
argument x, 0; denoting the /-dimensional zero vector. Moreover, [ < n, for an
n-dimensional design vector x.

In the sequel, we will resort to concepts of linear transformations of vector spaces,
such as rotations, reflections and projections. We start with an outline of these
concepts.

The main outcome is the derivation of the normality conditions of the problems
at hand. We derive these in two forms: the direct form, in terms of the gradients of
the objective function f(x) to be minimized and of the constraints (3.1b), and the

dual form, in terms of an orthogonal complement of the gradient of h w.r.t. x.

1Smoothness implies that h(x) is continuous and has a continuous gradient w.r.t. x.



As a special case, that lends itself to a closed-form solution, we study minimum-
norm problems, whereby a weighted Euclidean norm of the design vector is to be
minimized subject to [ linear equality constraints. In this vein, we introduce the

right Moore-Penrose generalized inverse.

3.2 Background on Linear Transformations

The general form of a linear transformation mapping a vector space U of dimension

n into an m-dimensional vector space V is
v =Lu (3.2)

where u and v are n- and m-dimensional vectors, respectively, with u € U and
v € V. Apparently, L is a m x n matrix.

We distinguish two vector subspaces associated with L, namely,

The range of L, denoted by R(L): the set of vectors v that are images of L
under transformation (3.2). Notice that, if the n columns of L are not linearly
independent, then R(L) is not all of V, but only a proper subspace of it, of
dimension m' < n, i.e., R(L) C V. The dimension of R(L) is denoted by

p(L).

The nullspace or kernel of L, denoted by N (L): the set of all nonzero vectors
u of U that are mapped by L into 0,,, the zero of V. The dimension of N is
termed the nullity of L, and is denoted by v(L). Obviously, v < n, with v =n

occurring only when L = O,,,, O,,, denoting the m X n zero matrix.
A fundamental result of linear algebra follows:
p(L) +v(L) =n (3.3)

The most frequent linear transformations used in optimum design are studied in

the balance of this section. They all pertain to square matrices.

3.2.1 Rotations

A rotation Q is an orthogonal transformation of U into itself whose determinant is
positive. Orthogonality requires that the inverse of Q be its transpose, i.e.,

QQ'=Q'Q=1 (3.4)
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where 1 denotes the n x n identity matrix. Hence, taking the determinant of both

sides of the above equation,

det(QQ") = det(Q" Q) = det(Q)"det(Q) = [det(Q)]* = 1

whence

det(Q) = £1

A proper orthogonal matrix Q is one whose determinant is positive, and hence,
det(Q) = +1 (3.5)

Proper orthogonal transformations of U into itself represent rotations about the
origin of U.
The best-known rotations are those in two and three dimensions. Thus, for two

dimensions, the 2 x 2 matrix Q rotating vectors through an angle ¢ ccw takes the

form 5 o
cos¢ —sin
= 3.6
Q [ sing  cos ¢ } (3.6a)
which can be expressed alternatively as
Q = (cos¢)1 + (sing)E (3.6b)

with 1 defined as the 2 x 2 identity matrix and E as a skew-symmetric matrix,

E= [0 _1} (3.6¢)

namely,

1 0

In three dimensions, the rotation matrix takes the form
Q = ee” + cos¢(1 — ee”) + sin ¢E (3.7a)

where e is the unit vector indicating the direction of the axis about which the
rotation takes place. Moreover, E is now defined as the cross-product matriz (CPM)

of vector e, expressed as
E = CPM(e) (3.7b)

and should not be confused with its two-dimensional counterpart, which is also
skew-symmetric.

The cross-product matrix is defined only for three-dimensional vectors. Let a
and v be two arbitrary three-dimensional vectors. We define
d(a xv)

CPM(a) = =

=A (3.8)



Because of the relation a x v = —v x a, the CPM is skew-symmetric.
Rotations in higher dimensions can be defined as well, but then, the axis and

the angle of rotation are not unique.

3.2.2 Reflections

An instance of reflections, namely, n x n Householder reflections H;, was introduced
in terms of an n-dimensional vector u; in eq.(2.49). The geometric interpretation
of this transformation is straightforward: H; reflects vectors in n-dimensional space
about a plane II; of unit normal u;/||u;|| passing through the origin; all vectors
normal to u; remain immutable under H;.

In two dimensions, a reflection R about a line passing through the origin normal

to the unit vector e maps vectors p into p’ in the form

p'=p—2(pTe)e
=(1-2ee")p=Rp

and hence, the reflection R sought is given by
R =1—2ee” (3.9)

In three dimensions, the reflection about a plane passing through the origin,
of unit normal e, takes exactly the same form as R in the two-dimensional case,
eq.(3.9). As a matter of fact, H; of eq.(2.49) takes the same form as R of eq.(3.9),
if we replace u;/||u;|| by e.

In all foregoing instances, the reflections are represented by symmetric matrices,
and are hence termed pure reflections. However, this need not always be the case,
for reflections can combine with rotations, thereby yielding a new reflection—mnotice
that the product of a rotation by a pure reflection is a reflection!—but this time,
the matrix representing the reflection is no longer symmetric. A rotation can be
distinguished from a reflection by the sign of its determinant. Indeed, for any n x n

reflection R, we have
det(R) = —1 (3.10)

3.2.3 Projections

Henceforth, a projection P means an orthogonal projection onto a plane in n di-

mensions, which we call the projection plane. When n = 2, the “projection plane”
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becomes a line in the plane.
Let us consider a plane IT in an n-dimensional space, of unit normal n. Any point
P in this space is given by its n-dimensional position vector p. Let the projection

of P onto IT be P’, which is given by its position vector p’, namely,

!

p'=p—(n'p)n=(1-nn")p=Pp (3.11)

where P was obviously defined as

P=1-nn" (3.12)

Matrix P is also called a projector. A projector P is represented by a symmetric,
singular, idempotent matrix. Symmetry is obvious; singularity is less so, but rather
straightforward. To prove that P is singular, all we have to do is prove that its
nullspace is non-empty. However, this is so because all vectors r of the form an, for

a scalar «, are mapped by P onto the zero vector. Indeed,
Pr=oPn=c(1l-nn")n=a(n—-n)=0

A matrix is idempotent of degree k£ when it equals its kth power, but is differ-
ent from any lower power. When k£ = 1, the degree is self-understood. To prove

idempotency, let is calculate

P?=(1-nn")(1 —nn’)=1—-2nn" + nn"nn”

=1

thereby completing the proof.

The foregoing projection has a nullity of 1, its nullspace being spanned by vector
n. In three-dimensional space, we can have projections onto a subspace of dimension
1, namely, a line £ passing through the origin and parallel to the unit vector e. In

this case, the projection P’ of P onto L is given by
p'=(p'e)e =e(e’p) = (ee’)p
whence the projection P sought takes the form:
P =ee’ (3.13)

Notice that this projection is symmetric, singular and idempotent as well, its nullspace

being of dimension two. Indeed, we can find two mutually-orthogonal unit vectors



f and g, lying in a plane normal to e, which are mapped by P onto the zero vector.
These two linearly-independent vectors lie in the nullspace of P. For n dimensions,
the projection “plane” can in fact be a subspace of dimension v < n — 1.

Also notice that the projection of eq.(3.11) maps vectors in three-dimensional
space onto the nullspace of the rank-one matriz nn”, while that of eq.(3.13) does
so onto the range of the rank-one matrix ee’. Now, the range of this matrix is the

nullspace of a matrix A defined as

A= [;] (3.14)

where f and g are mutually orthogonal unit vectors normal to e. Then, we can

define a projector P in the form
P=1-ATA=1— (" +gg") (3.15)

This projector maps three-dimensional vectors onto the nullspace of A, which is
vector e, as the reader can readily verify.

In general, if we have a full-rank m X n matrix A, with m < n, then, rank(A) =
min{m, n} = m. This means that the m n-dimensional rows of A are linearly
independent. By virtue of the basic relation (3.3), then, v = n — m. A projector

that maps n-dimensional vectors onto the nullspace of A is defined below:
P=1-AT(AAT)'A (3.16)

Note that, by virtue of the definition of f and g, matrix A of eq.(3.14) produces
AAT =1.

Exercise 3.2.1 Prove that P, as given by eq.(3.16), is a projection; then prove that

this projection maps n-dimensional vectors onto the nullspace of A.

A:101::31{
0 1 —1]  [af

The nullspace of A is spanned by a unit vector u that can be found as

b
u=_—, b=al xaj

Ibll”

The projector P mapping vectors in three-dimensional space onto the nullspace of

Example 3.2.1 Let

A, spanned by u, is given by
1 -1 -1
P=1-AT(AAT)'A = % -1 1 1
-1 1 1



In this case, .
N
b=11, =
L)

Notice that the image of any vector p = [z, y, z

[
L)

under P can be expressed as the

| S

]T

product of a scalar times u:

T—Yy—=z -1
1 1
szg —Tz+y+z :g(—x—f—y-i-z) 1
—r+y+=z 1
3
:g(—x-l—y-i-z)u

3.3 Equality-Constrained Minimization

3.3.1 First-Order Normality Conditions

We now derive the normality conditions of problem (3.1a). To this end, we resort
to Lagrange multipliers A1, g, ..., A, one for each scalar constraint h;(x) = 0,
and group them in the /-dimensional array A. Upon adjoining the [ constraints
to the objective function f(x), we obtain the Lagrangian F(x; A) that we aim at
minimizing under no constraints, while choosing A in such a way that the [ equality
constraints are satisfied. That is,

Fx;A)=fx)+A'™h — mi>1\1 (3.17)
subject to no constraints. We thus have transformed the equality-constrained min-
imization problem into an unconstrained one. We derive now the normality condi-
tions of the problem at hand by recalling those of Chapter 2, requiring that a) the
gradient of the objective function w.r.t. the design variables vanish and b) the Hes-
sian of the objective function w.r.t. the same variables be positive-definite. However,
note that we now have [ additional variables besides the original n design variables.
We thus have to augment the design-variable vector correspondingly, which we do

by defining an augmented (n + [)-dimensional design vector y:

y = [ﬂ (3.18)



Therefore, the unconstrained minimization problem (3.17) can be formulated in

a more compact form, namely,
F(y) — min (3.19)
y

subject to no constraints. The first-order normality conditions of the above problem

are, thus,

OF {SF/GX] ~0,., (3.20a)

dy  |OF/oA
where 0,,.; denotes the (n + [)-dimensional zero vector. Upon expansion, the above

equation yields

oF

- = 2
S =0, (3.20b)
oF

To gain insight into the geometric significance of the foregoing normality condi-

tions, we expand the left-hand side of eq.(3.20b) componentwise:

OF _ Of dhy . Oh, Ohy
A A A =
8%1 6:51 + 1a$1 + 28(E1 T la.Tl 0
8F af 8h1 8h2 ahl
= A + A + A =0
8332 8362 + 16 L9 26 T9 la T9
OF _ of _ oh Ohy oh;
5o = om, Mo, TN, T T Mgy, =0
~—~
vf

(3.21)

where the the first term of the ith equation can be readily identified as the ith
component of Vf = 0f/0x. The remaining terms of the same equation can be

identified as the ¢th component of an inner product p; defined as

A1

Ao

pi =[0h,/0x; Ohy/Ox; --- Ohy/Ox;] | .

Al

Therefore,
8h1/8x1 ahg/al‘l e 8hl/ax1 )\1
0h,/0 Ohy /0 <.+ Ohy/0
p— 1{ T2 2{ T2 i} l/: T )\:2 (3.22)
Ohy/0x, Ohy/0x, --- Oh;/0x, Al
. -~ JW—/

(VR)T: nxl A
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which can be readily identified, in turn, as the product (Vh)”A. The first n nor-
mality conditions displayed in eq.(3.20b) thus amount to

Vi+I'A=0, (3.23a)

where J = Vh is the gradient of h with respect to x. The remaining / normality
conditions, displayed in eq.(3.20c), yield nothing but the constraints themselves,
namely

h(x) = 0, (3.23b)

Equation (3.23a) is the vector representation of the first-order normality conditions
(FONC) sought.
What eq.(3.23a) represents has a geometric significance that will be made ap-

parent upon rewriting it in the alternative form
J'A=-Vyf (3.24)

The foregoing equation states that, at a stationary point xo, —V f, or V f for that
matter, lies in the range of the transpose of the gradient of the constraints. Notice
that the range J' of J is a subspace of the n-dimensional space of design variables.
In fact, dim[R(J’)] = | < n, for this subspace is spanned by [ linearly-independent
vectors, the columns of J7, or the n-dimensional rows of J.

Algebraically, what eq.(3.24) represents is an overdetermined system of n linear
equations in the [ < n unknowns { A; }{. The normality condition then states that
the least-square approximation of this overdetermined system yields a zero error.
That is, at a stationary point, the n (> [) equations (3.24) become all consistent.
Note that the least-square approximation Ay of the foregoing equations can be ex-

pressed in terms of the left Moore-Penrose generalized inverse of J7, namely,
Ao = —(JI)1IVS (3.25)
The least-square error ey of this approximation is thus

eo =3 — (=Vf)=-IJTIINIVSf+ VS
=[1-J7(3I") "IV f (3.26)
with 1 denoting the n X n identity matrix.
We can now express the first-order normality condition (3.24) in yet one more

alternative form:
1-J53IN I vf=0, (3.27)
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The matrix inside the brackets in the foregoing equation can be readily identified
as a projector. This projector maps vectors in R" onto the nullspace of J. In
other words, at a stationary point Py the gradient of the objective function need not
vanish; only its projection onto the nullspace of the gradient of the constraints must
vanish, which is an alternative form of stating the first-order normality condition.
Sometimes the product V£, defined as

Vi=[1-J'JIN)JVf e R (3.28)

is referred to as the constrained gradient. The FONC (3.27) can then be simply
stated as: At a stationary of the equality-constrained problem (3.1a & b), the con-

strained gradient vanishes.

Exercise 3.3.1
Prove that
P=1-J7JJ")1J (3.29)

indeed maps vectors in R” onto the nullspace of J and that P is a projector.

Dual Form of the FONC

One more form of the FONC of the problem at hand is now derived in what we
can term dual form. To this end, we realize that the solution sought x, must lie
in a subset of the space R" of design variables, of reduced dimension n — I, which
contains all design vectors x satisfying the constraints. Now, this set need not be a
vector space, and in general it is not. Indeed, if the constraints are nonlinear, then
the sum of two distinct vectors x; and x, will most likely not satisfy the constraints,
even if these two designs do so independently. Neither does the zero vector satisfy
the constraints, which thus disqualify the set from being a subspace of R*. What we
have as a feasible subset of the design space is a manifold F, i.e., a smooth surface
embedded in R®. We shall term this subset the feasible manifold.

Finding F may be a tremendous task when the constraints are nonlinear and
algebraically complicated. The good news is that we do not actually need the feasible
manifold to obtain a feasible solution. What we really need is a feasible subspace
tangent to the said manifold at a feasible point. We discuss below how to obtain

this subspace. Assume that we have a feasible point Pg, of position vector xp, i.e.,

h(xr) = 0, (3.30)
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An arbitrary “move” Ax from xz will most likely take Pr away from the constraints
h(x) = 0,. What we would like to find is a feasible move, i.e., a vector Axp such

that xp + Axp still verifies the constraints, i.e.,

where HOT stands for “higher-order terms”. Since we assumed at the outset that
xp is feasible, eq.(3.30), we have, from the foregoing equation and to a first-order
approximation, i.e., neglecting HOT,

Moreover, J is of [ x n, with [ < n, and hence, it is possible to find n — [ linearly
independent vectors of R" lying in N (J(xr)), i.e., in the nullspace of J(xr). These
vectors can be produced in many ways. We will not dwell, for the time being, in the
pertinent computing methods, but rather on the concepts behind the production

of those n — [ vectors. Let us thus assume that we have found such n — [ linearly

independent vectors, arrayed in the n x n' matrix L, with n’ = n — [, and hence,
JL =0y (3.33)

matrix L being termed an orthogonal complement of J and Oy,, denoting the [ x n'
zero matrix.
Now, if we define
Axp = LAu (3.34a)

for arbitrary Au € R* | we will have
JAxpr = JLAu =0, (3.34b)

the “move” Axp thus verifying the constraints to a first degree. Now, the first-order

normality condition of the problem at hand can be cast in the form
Af=(VH Axp = (V)TLAu= (L'Vf)TAu=0 V Au
Hence, the alternative form of the FONC is
L'Vf =0, (3.35)

That is, at a stationary point, the gradient of f need not vanish; it must lie in the
nullspace of LT, i.e., in the range of L. We can thus call LTV f the feasible gradient,
and represent it by V, f, i.e.,

V.f=LTVf (3.36)

11



which is a (n — [)-dimensional vector. Notice that, from eq.(3.34a), L has the

differential interpretation

ox
L=— 3.37
5a (3.37)
and hence, the FONC (3.35) can be restated as
ox\" (of\ _ of B

That is, the FONC (3.38) states that, at a stationary point of problem (3.1a & b),
the gradient of f(x) w.r.t. the vector of independent design variables u vanishes.
Remark: When comparing the two forms of the FONC, eqs.(3.27) and (3.35), the
simplicity of the latter with respect to the former is apparent. This simplicity, how-
ever, is more than formal, for eq.(3.27) involves n scalar equations, while eq.(3.35)

involves only n — [ scalar equations.

3.3.2 Second-Order Normality Conditions

The second-order normality conditions of the problem at hand require that the
Hessian of the Lagrangian F'(x; A) with respect to the (n+1)-dimensional augmented
design-variable vector £ = [x” AT ]7 be positive-definite. The said Hessian takes

the form
82F_ VVF+0(IT™X)/ox IT

0t J 0,
where, as usual, VV f represents the Hessian of f(x) with respect to x, and O,

(3.39)

denotes the | x | zero matrix. Notice that computing the above Hessian requires
the computation of VV f and 9(J”)/0x, which involves the second derivatives of
h(x) with respect to x. Moreover, in order to verify the second-order normality
conditions, the n + [ eigenvalues of 9>F/0¢ must be computed. Thus, the second-
order normality conditions in this form are extremely costly to verify.

Alternatively, we resort to the form (3.34a) of Axr and assume that we have
found a stationary point verifying eq.(3.35). Upon expansion of f(xr + Axp) to
second order, we obtain

AXF

T=Xq

AJ = f(xr + 8xr) = f(cr) & (Vfl, ) B + 5 (Axp) VY f

which must be positive if the current value x¢ is a minimum. Thus, upon substituting

eq.(3.34a) into the above expression, we obtain

1
Af ~ (VS| TLAu+ §AuTLTVVf LAu >0

z‘:xo)

I=XQ
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Now, since we have assumed that the FONC holds at the stationary point xg,
eq.(3.35) holds, and hence,

(Vf\z:xo)TLAu =0
the second-order normality condition (SONC) thus becoming
AUW'L'VVf| _ LAu>0 V Au (3.40)

We term the product LTVVf‘w:xO L the feasible Hessian of f. That is, a stationary
point Xq is a local minimum if its feasible Hessian is positive-definite. As a conse-
quence, then, at a minimum, the Hessian itself need not be positive-definite, but its
feasible component must be.

We can now represent the (n — 1) x (n — [) feasible Hessian as

V.V.f = L'VV/L = (8—X>T(VVf)a—x (3.41)
wrul ou ou '

the SONC thus lending themselves to a more straightforward interpretation:

A stationary point xo of problem (3.1a & b) is a minimum iff the Hessian of
f(x) w.r.t. the independent design-variable vector u is positive-definite.
Remark: At a minimum, the Hessian of f w.r.t. x need not be positive-definite.
However, if VV f is positive-definite, then V,V, f is necessarily positive-definite as

well.

Example 3.3.1 (The Design of a Manipulator for a Given Reach)
In designing the manipulator of Fig. 3.1 (Angeles, 2002), we want to find the value
of the length a that will produce the reach of a Puma 560 robot, namely, 0.8772 m.

It is apparent that the maximum reach is independent of 01, the angle of rotation
of the first joint, for motions about the first joint do not affect the reach. So, we lock
the first joint and, in the posture of Fig. 3.1, rotate the third joint through one full
turn, point C' thus describing a circle C of radius a lying in the Y1-Z1 plane, with
centre at point Of of coordinates (0, a, —a). Next, upon performing a full rotation
of the second joint, the circle describes a toroid of axis Zsy, the problem now reducing
to one of finding the point of the surface of the toroid lying the farthest from the Z;
axis. Figure 3.2 includes side views of circle C.

Let the trace of the toroid with the Xy-Z5 plane be the contour T of Fig. 3.3.
It is most convenient to represent this contour with the aid of the non-dimensional

variables u and v, which are defined as

u= ﬂ, v=22 (3.42)
a a
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Figure 3.1: Manipulator configuration for C(0, a, 0).

In terms of these new variables, the equation of T becomes
T: h(u,v) = u* 4 2u?v? + v* — duv — 40® —du? + 4 +4 =0 (3.43)

The contour T defined by the implicit function h(u,v) = 0 is displayed in Fig. 8.3.
Now, the mazimum distance ryr of O to T can be found as the solution of the
optimization problem defined below:

f(u,v) = %[(u +1)?4+9?] — max (3.44)

u,v
subject to eq.(3.43). We thus have an equality-constrained mazimization problem.
In order to find the normality conditions of this problem, we resort to Lagrange
multipliers, thus defining a new, unconstrained, maximization problem:

F(u,v,\)= f+Ah — max (3.45)

UV,
The normality conditions of the foregoing problem are, thus,

oF
Gy = U + 1+ A(4du® + 4uv? — 8uv — 8u) =0 (3.46a)
u
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Figure 3.2: Side views of circle C: (a) and (b) at the posture of Fig. 3.1; and (c) at
an arbitrary posture for a given value of 0,
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Figure 3.3: Contour of the trace 7 of the toroid on the u-v plane
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oF

So =V M4vv + 40° — 4u? — 120% + 8v) = 0 (3.46Db)
v

oF

a5 = ut + 200 + vt — duPv — 40P — 4P+ 4P+ 4 =0 (3.46¢)

the last equation being just a restatement of the constraint, eq.(3.43). Now we elim-
inate A, the Lagrange multiplier, dialytically (Salmon, 1964) from eqs.(3.46a & b).
We do this by rewriting these two equations in linear homogeneous form in the

“variables” X\ and 1, namely,

[ 4u? + duv? — 8uv — 8u u—|—1} {/\} _ [0]

= 3.47a
4uv + 4v3 — 4u? — 120% + 8v v 1 0 ( )

Obuiously, the foregoing equation requires a nontrivial solution—note that one com-
ponent of the vector of “unknowns” is unity!—which in turn requires that the coef-

ficient matriz be singular, i.e.,

4u® + 4uv? — 8uv — 8u u+1
det =0 3.47b
([4uzv+4v3—4u2—12v2+8v v }) ( )
Upon ezxpansion,
4(u® + uv? — 2uv — 2u)v — 4(uv +v* —u’ — 302 + 20)(u+1) =0
or
S: v —viv+uw’—vP+u—duw+ 30 —20=0 (3.47¢)

Now, the mazximum reach is found via the solution of the system of polynomial
equations (3.483) and (3.47c). The former is a quartic equation, the latter being
cubic. The Bezout number? of the foregoing system of equations is defined as the
product of the degrees of those equations, i.e., 4 x 3 = 12, which gives an upper
bound of 12 for the number of solutions, both real and imaginary, of the problem at
hand. One graphical means of obtaining estimates of the real solutions of this system
consists in plotting the two corresponding contours in the u-v plane, as shown in
Fig. 8.4. The mazimum reach occurs apparently, at point A, of coordinates (2.2, 1.4)

estimated by inspection, which leads to a visual estimate of ryr, namely,

rm ~ 3.5a (3.48)

2To define the Bezout number of a system of p polynomial equations in p variables i, 2,
.., Tp, we look first at the ith equation: A typical term of this equation involves the product
afigpds .. g% The degree d; of this equation is the maximum of di; + da; + ... + dpi, for
i=1,...,N;, where N; denotes the number of terms of the ith equation. The Bezout number Npg

of this system is defined as Np = dids .. .d,.
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The four intersections of these two curves correspond to the four stationary values
of the distance from a point in the trace T to the point O in the u-v plane. Of these
four intersections, two are local mazxima and two local minima. The normality of
V f, which in this case is identical to the vector from O1 to T at the intersection
points, is to be highlighted.

The foregoing system is solved more precisely using computer algebra, thus ob-

taining the four real solutions given below:

(u)a = 2132242,  (v)4 = 1.148990
(u)p = —1.578095, (v)p = 1.975316
(u)e = —1.132242,  (v)¢ = 0.116796
(u)p = 1.025308,  (v)p = 0.366325

which lead to reach values of
ra = 3.459606a, 7rp =2.058171a, rc =0.176435a, 7rp = 2.058171a
for a global mazimum reach of
ry = 3.459606a
The value of a that will yield the foregoing maximum reach is thus found as
3.460a = 0.8772 = a=0.2535m

thereby completing the solution.
The verification of the first- and second-order normality conditions is left as an

exercise.

Example 3.3.2 (The Equilibrium Configuration of a Four-Link Chain)
We consider here the problem of determining the equilibrium configuration of a chain
composed of four identical links of length L each, suspended at two points located at
the same level, a distance d apart. This problem was proposed by Luenberger (1984)
to wllustrate methods of nonlinear programming. Here, we use a simplified version
of this problem with the purpose of obtaining a solution by simple equation-solving.
At the outset, we exploit the symmetry of the problem, which enables us to reduce
the number of design variables to only two, namely, the inclination of the two links
on the left half of the chain. Let 0;, for 1 = 1,2, denote the angle made by the aris

of the ith link from the vertical and p denote the mass distribution per unit length,
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Figure 3.4: Plots of the two contours, S and T
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while g represent the gravity acceleration. The potential energy V' of the whole chain

is, thus, for an arbitrary configuration of the chain,

1 1
V(61,05) = —2ugL (5 cos 0, + cos 0; + 5 €8 02>

which is a minimum at an equilibrium configuration. However, notice that the two
design variables are not independent, for their horizontal span must be exactly d/2,
i.e.,

L(sin 0, + sinfy) — g =0

The optimum design problem at hand now has the form

1%
f(61,05) = ug—L = —3cosf; —cosf, — ?111913
subject to
d
h(#:,6;) =sinf; +sinfy —p=0, p= 9T

The Lagrangian of the problem is to be minimized, i.e.,

F(61,09) = —3cosf; —cosfy + A(sinfy +sinfy —p) — arr}gin)\

subject to no constraints. The normality conditions of the unconstrained problem

are, thus
oF .
20, = 3sin#; + Acost, =0
F
3—91 =sinfy + Acosfy =0
oF . .
BN =sinf; +sinfy —p =20

The problem has thus been reduced to solving the foregoing system of three nonlinear
equations in three unknowns, 0, 0y and X. While this nonlinear system can be
solved using the Newton-Raphson method, the simplicity of the equations lends itself
to a more comprehensive approach. Indeed, the Newton-Raphson method yields one
single solution at a time, the user never knowing whether any other solutions exist.
Moreover, there is no guarantee that the solution found is a minimum and not a
mazimum or a saddle point.

For starters, we can eliminate A from the above equations, for it appears linearly

in the first two of those. We thus rewrite those two equations in the form

AX:OQ
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with 0y denoting the two-dimensional zero vector, while A and x are defined as

cosf; 3sint, A
A= = 0
|:C0802 sin 6, } X [1} 7 02

Since the solution sought cannot be zero, the above homogeneous system must admit

a nontrivial solution, which calls for A to be singular, i.e.,
A(61,60;) = det(A) =0
Upon expansion,
A(61,0;) = cos by sinfy — 3sinf; cosfy =0

which we shall call the reduced normality condition. We thus have eliminated A
dialytically (Salmon, 1964), the problem thus reducing to a system of two equations
in two unknowns, h(6,0s) = 0 and A(01,6,) = 0. We can further reduce the
same system to one single equation in one single unknown, which can be done by
dialytic elimination as well. However, notice that dialytic elimination is applicable to
systems of polynomial equations, while the two equations at hand are not polynomial;
they are trigonometric. Nevertheless, by application of the well-known trigonometric
“half-tan” identities:
12, 2T

577 sinx = 1377 T = tan (§>

COST =

the two equations can be transformed into polynomial equations. We will not pursue
here this elimination procedure. Instead, we plot the two foregoing functions in
the 0,-0y plane, the solutions sought being found visually at the intersection of the
corresponding contours. In order to plot the contours, however, we must assign a
numerical value to parameter p. By assuming d = 1.25 m and L = 0.5 m, we obtain
p = 1.25. These contours are plotted in Fig. 3.5.

The contours apparently intersect at two points, of coordinates estimated visually
at

6 =0.45, 6, =1.00 and 6, =2.70, 6y =2.20

These values are quite rough. Better values can be obtained by means of Newton-
Raphson’s method applied to the two nonlinear equations, using the foregoing esti-
mates as initial quesses. Alternatively, the two equations can be solved dialytically by
means of computer algebra. For example, upon invoking Maple’s “solve” procedure,

the real roots below were reported:
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Figure 3.5: The reduced normality condition and the equality constraint (dashed
contour)

61 = 0.4449420670, 6, = 0.9607027573 and 6 = 2.696650587, 6 = 2.180889896
Translated into degrees, the foregoing angles read:
61 = 25.49330256°, 6, = 55.04421335° and #; = 154.5066974°, 6 = 124.9557866°

The first solution corresponds, apparently, to a minimum, the second to a maximum.
If this is the case, then the sum of the corresponding roots for the two solutions should
be 7, which s the case. In fact, upon evaluation of the objective function at the two

solutions, we obtain

£(0.4449420670, 0.9607027573) = —1.640425478
£(2.696650587, 2.180889896) = 1.640425479

Notice the symmetry of the objective function at the two foregoing extrema.
The first- and second-order normality conditions should be verified numerically.

The chain at its equilibrium configuration is displayed in Fig. 3.6.
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‘ 1.25

Figure 3.6: The equilibrium configuration of a four-link chain

3.4 Linear-Quadratic Problems

3.4.1 The Minimum-Norm Solution of Underdetermined Sys-

tems
We start by recalling a concept of paramount importance in optimization:

Definition 3.4.1 (Convex set) A set of points C is convex if, given any two dis-
tinct points Py and P of the set, then any point P of C comprised between Py and

P also belongs to the set. Otherwise, the set is nonconvex.

More formally, if x; denotes the position vector of P;, for 1 = 1,2, and x that
of P, then, for any scalar o comprised in the interval [0, 1], we can express the

position vector of P as a convex combination of those of P, and P,, namely,
x = ax; + (1 — a)x, (3.49)
We can thus rephrase the definition of convex set as

Definition 3.4.2 (Convex set—An alternative definition) A set of points C
is convex if, given any two distinct points of position vectors X; and X, then the

point whose position vector is a conver combination of X1 and Xy also belongs to C.
Germane to the concept of convex set is that defined below:

Definition 3.4.3 (convex function) A function f(x) is convez if, for any x; and
Xs, and a x defined as a convex combination of X; and X3, and given, e.g., as in
eq.(3.49),

f(x) < af(x) + (1 — ) f(x2) (3.50)
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Now we study the underdetermined system of linear equations
Cx=d (3.51)

where C is a p X n matrix with p < n, all equations being assumed linearly indepen-
dent. Apparently, the system admits infinitely-many solutions. Notice that the set
of solutions of this equation does not form a vector space. Indeed, since 0 is not a
solution, the solution set does not include the origin, which disqualifies the set from

being a vector space. However, the same set has a quite interesting property:
Fact 3.4.1 The set of solutions of the system (3.51) is convex.

Proof: Assume that x; and x, are two distinct solutions of eq.(3.51), i.e.,

Cx; =d (3.52a)
Cx, =d (3.52b)

Now, for a real a such that 0 < o < 1, we have

C(ax;) = ad (3.53a)
Cl[(1—-a)xs]=(1-a)d (3.53b)

Upon adding sidewise egs.(3.53a & b), we obtain
Clax; + (1 — a)xy] =d (3.54)

thereby completing the proof.

Geometrically, eq.(3.51) represents a plane embedded in n-dimensional space,
offset from the origin. Each point of the plane thus has a position vector that is a
solution. Out of the infinity of solutions satisfying the equation, then, there is one
that lies closest to the origin. This is the minimum-norm solution of eq.(3.51). We

derive below this solution upon solving the problem below:

f(x)E%HxHQ —  min (3.55)

subject to eq.(3.51). As before, we transform the above constrained problem into

an unconstrained one. We do this by means of Lagrange multipliers:

F(x)=f(x)+AT(Cx—-d) — mi}l\l (3.56)

24



subject to no constraints. The normality conditions of this problem are, thus,

g—iEVf—}-CT)\:X—i-CT)\:On (3.57a)
OF
9y =Cx—d=0, (3.57b)

the second set of the above equations thus being just a restatement of the system
of underdetermined equations (3.51). Solving for x from eq.(3.57a) yields

x =—-C'\ (3.58a)
which, when substituted into eq.(3.57b), leads to
~-CC'x-d=0, (3.58b)

Since we assumed at the outset that the given eqs.(3.51) are linearly-independent,
C is of full rank, and hence, the p X p symmetric matrix is nonsingular. As a result,
this matrix is, in fact, positive-definite, the outcome being that eq.(3.58b) can be
solved for x by means of the Cholesky decomposition. The result is, symbolically,

the minimum-norm solution x, sought:

xo = Cid (3.59a)

where
ct=c’cc’)™ (3.59b)

which is the right Moore-Penrose generalized inverse of the rectangular matrix C.
One can see that the straightforward evaluation of C' by its definition, eq. (3.59a),
involves the inversion of a matrix product, which is computationally costly and
prone to ill conditioning, similar to the case of the right Moore-Penrose generalized
inverse of eq.(2.38b). Moreover, the solution of eq. (3.59a) does not hold when C is
rank-deficient.

An efficient and robust alternative to computing explicitly the right Moore-
Penrose generalized inverse relies in Householder reflections, as explained below:
First, a set of n x n Householder reflections Hy, Hy, ..., H, is defined, such that
the product H = H,,- - - HoH; transforms CT into upper-triangular form, thereby
obtaining

HCT = [ij] (3.60)

where U is a p X p upper-triangular matrix, which is nonsingular because we have

assumed that C is of full rank, while O,,, is the n’ X p zero matrix, with n’ = n —p.
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Further, we rewrite eq.(3.51) in the form
CH'Hx=d (3.61)

which does not alter the original equation (3.51) because H is orthogonal. Letting
y = Hx, from egs. (3.60) and (3.61), one can realize that x and y have the same
Euclidean norm, and hence, minimizing the norm of y is equivalent to minimizing
that of x. Thus, x will be the minimum-norm solution of the underdetermined

system (3.51) if y is, correspondingly, the minimum-norm solution of the system

(HC")'y =d (3.62a)
Upon substitution of eq.(3.60) into eq.(3.62a), we obtain, with a suitable partitioning
of y,
[uT o7, [YU} —d, y= [YU] (3.62b)
yL yo
which, upon expansion, leads to
Ulyy +0O,,yL =d (3.62c¢)

whence it is apparent that y; is undetermined, and hence, can be assigned any
value, while y; is determined because we have assumed that C is of full rank, U
thus being nonsingular. If our intention is to minimize ||x|| or, equivalently, ||y||,
whose square is given by

Iy II* = llyoll* + [yl
it is apparent that the optimum choice of y is y;, = 0, with 0, denoting the (n —

p)-dimensional zero vector. Therefore, the minimum-norm solution y, of eq.(3.62a)

Yo = [Uo_:ld} (3.63)

i.e., the last (n — p) components of y, are zero. In this way, yo verifies eq. (3.61)

takes on the form:

and has a minimum norm. Then, the minimum-norm solution x, can be readily
computed as
Xp = HTy() (364)

The Case of a Rank-Deficient C Matrix

If C is rank-deficient, with rank(C) = r < p, then we can proceed as described
above with only r Householder reflections, namely, H = H,.H,_; ... H;, such that

HC” = [ ] , y=Hx (3.65)

[0}
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where U is a full-rank 7 x p matrix with zero entries in its lower-left “corner” —this
matrix has an upper-trapezoidal form—and O defined as the (n—r) X p zero matrix.

Note that, in general, the rank of C is not known in advance. It is first learned
when the p Householder reflections of Subsection 3.4.1 are defined to bring C* into
upper-triangular form. In the presence of a rank-deficient matrix C of rank r < p,
The last n — r rows of HCT are all zero, and the last p — r H; matrices are all
identical.

Upon application of the foregoing » Householder reflections, eq. (3.62b) becomes

T O [“i”] —d, y= [Z } (3.66)
Yo Yo
whence,
Apparently, ||x|| = ||y||, and hence, minimizing one norm, one minimizes the other

one. Moreover,
Iy II* = IFul1* + 1¥.11

Therefore, the optimum choice of y is the one for which ¥, = 0,», with 0,» denoting

the n”-dimensional zero vector, and n” = n — r, eq.(3.67) thus reducing to

Uy, =d (3.68)

where U is a p X r matrix with zero entries in its upper corner, i.e., this matrix

U = [I\E/J (3.69)

has the form

in which L is a nonsingular r x r lower-triangular matrix and M is a (p —r) x r
matrix. Moreover, since U has been assumed of full rank, T is also of full rank,
its last p — r rows being linearly dependent from its first r rows. That is, the p —r
rows of M are linearly dependent from the r rows of L. This means that ¥y is
determined from the first r equations of eq.(3.68). We can thus use only those
equations, which are, moreover, in lower-triangular form already, to compute yy by

forward substitution. Symbolically, then, we have
—1
__ L d
yo=L'd, x =H [ ] } (3.70)

Alternatively, and if CPU time is not an issue, we can use all redundant scalar

equations of that vector equation. We do this, then, by application of another set
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of r Householder reflections, H;, H,, ..., H,, thereby obtaining
HU'yy, =Hd, H=HH,...H, (3.71)

whence the optimum solution is obtained in the way explained for overdetermined
systems in Section 2.4. The details are left as an exercise.

Example 3.4.1 (The Solution of a x x = b)
Let a, b, and x be three 3-dimensional Cartesian vectors. We would like to solve
the equation

axx=Db

for x. It is well known, however, that the foregoing equation contains only two
independent scalar equations, which prevents us from finding “the x” that verifies
that equation. Thus, we can proceed by finding a specific X, Xq, that verifies any two
of these three equations and that is of minimum norm. To this end, we expand that

equation into its three components:
asT3 — a3Ty = by

asr, — a1x3 = by

a1Ty — A2l1 = b3

Note that the foregoing equation can be cast in the form of eq.(2.3) if we define
matriz A as

0 —as a9
A= as 0 —a3
—Q2 aq 0

which is apparently skew-symmetric, i.e.,
AT =—A

In fact, A s the cross-product matriz of a. Picking up, for example, the first two

scalar equations above, we obtain an underdetermined system of the form (3.51),

with 0 ;
as 0 —aq bz

and hence, the corresponding minimum-norm solution xq is given by eqs.(3.59a &
b), with

CCTz[

a3 +ai —ajay ]

—ajay a2 +a}
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Hence, ) )
o) =5
where
A = det(CCT) = (aj + a)(a} + a3) — ala; > 0

a relation that the reader can readily prove. Therefore,

a1a903 (a% + a%)ag'l

1
Cl = A —(a} +a3d)as  —aiasas J

i asa; —a,a;

and i s
a1a2a3b1 + (CL2 + CL3)(Z3[)2 -|

— 2 2

Xg = —(0,1 + a3)a3b1 — alagagng

1
A

a»aiby — ayaib,
Notice that the foregoing solution depends on the condition az # 0. If a3 = 0, or
very close to 0, then C becomes either ill-conditioned or rank-deficient, which s
bad news. Apparently, the foregoing solution has an element of arbitrariness that
may lead either to ill-conditioning or to rank-deficiency. There is no guarantee that
the two equations chosen are the best choice from the condition-number viewpoint.
Besides, that approach leaves aside useful information, that of the deleted equation.
The alternative approach uses all three equations, to which one fourth equation is
adjoined, namely, the minimum-norm condition, as described below.

First we observe that, if x has been found that verifies the given cross-product
equation, then any other vector X+aa, for a € R, verifies that equation. Apparently,

then, the minimum-norm X is that whose component along a vanishes, i.e.,

alx=0

Upon adjoining the foregoing equation to the original three, we end up with an ap-

parently overdetermined system of four equations with three unknowns, of the form

Mx =n

M=) =l

Hence, M is a 4 x 3 matriz, while n is a 4-dimensional vector. The least-square

where M and n are given by

approximation of the new system is, then, the minimum-norm solution of the original
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system, provided the latter is verified exactly, which it is, as will become apparent.

Indeed, the least-square approrimation of the new system takes the form
x; = (M"M)"'M"n (3.73)

While we have strongly advised against the explicit computation of generalized in-
verses, our advice is valid only as pertaining to numerical computations. In the case
at hand, we will pursue not a numerical, but rather a symbolic computation of the
solution sought.

The first issue now is whether MTM is invertible, but it is so and, moreover, its

inverse is extremely simple to find:
T T A T T
M'M=[A" a]| ,|=A"A+aa
a

But, since A is skew-symmetric,

MM = —A? + aa”
As the reader can readily verify, moreover,

A’ = —|a|]’1 +aa”

Hence,
M™M = ||a||*1

which means that M is isotropic, i.e., optimally-conditioned. Therefore,

1
M) =
ol

1 b 1
Xy = 1[AT a] [ ] = A"b
" lalP 0l llalf

which can be further expressed as

That is |

axb

X[ = ———0
la]]”

(3.74)

thereby obtaining a much simpler expression than that displayed above as Xq.

30



3.4.2 Least-Square Problems Subject to Linear Constraints
Given the system of linear equations
Ax=b (3.75)

where A is a full-rank ¢ x n matrix, with ¢ > n, and b is a ¢-dimensional vector,
find an n-dimensional vector x that verifies the above system with the least-square

error, subject to the linear equality constraints
Cx=d (3.76)

with C a full-rank p X n matrix and d a p-dimensional vector. Moreover, W is a

q X q positive-definite weighting matrix, with ¢, p and n subject to
g+p>n and n>p (3.77)
The least-square error of eqs.(3.75) is defined as
f= %(Ax —b)"W(Ax — b) (3.78)
As usual, we solve this problem by introducing Lagrange multipliers:

F(x;A) = f(x) + AT(Cx —d) min (3.79)

X,

subject to no constraints.

The first-order normality conditions of the foregoing problem are

g—i =ATW(Ax-b)+CTA =0, (3.80a)
oOF
oy =Cx—d=0, (3.80b)

Since A is assumed of full rank and W is positive-definite, we can solve eq.(3.80a)

for x in terms of A, namely,
x = (ATWA) ' (ATWDb — C" ) (3.81)
Upon substituting the above expression into eq.(3.80b), we obtain
C(A"WA)'C"A = C(ATWA) 'A"™Wb - d

whence,
A= [C(ATWA)'CT] ' [C(ATWA)*ATWD — d] (3.82)
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Now, the foregoing expression for A is substituted, in turn, into eq.(3.81), thereby

obtaining the optimum value of x, xy, namely,
xo = PQb + Rd (3.83a)

where P, Q and R are the n X n-, n X m- and n X p matrices given below:

P=1,-RC (3.83b)
Q= (ATWA) 'ATW (3.83c¢)
R = (ATWA)'CT[C(A"WA)'CT]™ (3.83d)

with 1, standing for the n x n identity matrix. The solution derived above, while
being exact, for it is symbolic, is unsuitable for numerical implementation. Indeed,
this solution contains inversions of products of several matrices times their trans-
poses, which brings about ill-conditioning. Various approaches to the numerical
solution of this problem will be studied in Ch. 4.

3.5 Equality-Constrained Nonlinear Least Squares

We consider here the problem of finding the least-square error f of an overdetermined

system of nonlinear equations, namely,

¢(x) =0 (3.84a)
subject to the nonlinear constraints

h(x)=0 (3.84b)

In general, moreover, the various scalar equations of eq.(3.84a) have different
relevance and are, hence, assigned different weights, which then leads to a problem
of weighted least squares, namely,

f(x):%(bTW(b — min (3.85)

subject to eq.(3.84b).
In the foregoing problem, ¢ and x are ¢- and n-dimensional vectors, respectively,
with ¢ > n, and W is a ¢ X ¢ positive-definite weighting matrix. Moreover, h is a

[-dimensional vector of nonlinear constraints.
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The normality conditions of the problem at hand are derived directly from those
of the general equality-constrained problem, namely, eq.(3.27) or its dual counter-

part, eq.(3.35). In our case,

_ (99\" of
Vf= <8—x> s (3.86a)
h
o 9 _ ®(x) or _ Wo(x) (3.86b)
ox T 0 ’

i.e., ®(x) denotes the Jacobian matriz of ¢(x) with respect to x. Hence,
Vf=®"W¢ (3.86¢)

where we have dispensed with the argument x for simplicity.

The normality condition (3.27) thus reduces to
1-J"3I""'J@"We =0, (3.87)

What this condition states is that, at a stationary point, ¢, or ®TW¢ for that
matter, need not vanish; only the projection of the latter onto the nullspace of the
gradient of the constraints must vanish.

The dual form of the same normality conditions, in turn, reduces to
L"®"W¢ =0, (3.88)

with L indicating an n x (n— 1) orthogonal complement of J, as defined in eq.(3.33).
The second-order normality conditions are now derived by assuming that we

have found a stationary value of the design-variable vector, xq3. This means that
L7®" (x0)We(x0) = 0, (3.89)

Next, we impose the condition that, for any feasible move Ax, the corresponding
increment of f, Af, be positive. A feasible move is obtained by resorting to the

orthogonal complement L, namely,
Ax = LAu (3.90)

On the other hand, upon expansion of ¢(x¢ + Ax) to a first order,
1
(%o +A%) ~ 5(¢+ Ad)"W( + Ag)
1 1 1
= 5¢TW¢ +§(¢TWA¢ + A" W) + §A¢TWA¢
f(xo0)
X0
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whence,

Af = f(xo+ Ax) — f(x0) ~ %(q&TWAd) + APpTW ) + %Aq’)TWAqS (3.91a)
where
A¢p = PAx = PLAu (3.91b)
Therefore,

Af = 3870 W(xo L Au + Au” LT 8 (x0) Wes(x0)

=0T

=0,_
—1 n—1

+%AuTLT<I>T(x0)W<I>LAu
1
= §AuTLT<I>T(x0)W<I>(x0)LAu >0 (3.91c)

the terms inside the brackets vanishing by virtue of the first-order normality con-
ditions. What conditions (3.91c) state is that, for the stationary value x, to be a
minimum, the feasible Hessian L7 ®7 (xo)W®(x)L must be positive-definite. How-
ever, at the outset we defined W as positive-definite, while L is of full rank. Hence,
the feasible Hessian is necessarily positive-definite, except for points at which ®
becomes rank-deficient, at which the said Hessian becomes positive-semidefinite. As

a consequence, then,

Fact 3.5.1 To a first-order approzimation of ¢(x), a stationary point of the weighted
least-square approzimation of the overdetermined nonlinear system ¢(x) = 0 is a

minimum; never a mazximum or a saddle point.

3.6 Linear Least-Square Problems Under Quadratic

Constraints

An important family of design problems lends itself to a formulation whereby the
objective function is quadratic in a linear function of the design vector x, while the
constraints are quadratic in x. Contrary to the case of linear least-squares subject
to linear constraints, this family of problems does not allow, in general, for closed-
form solutions, the reason being that their normal equations are nonlinear. Let us
consider

f(x) = %(b —Ax)'W(b - Ax) — min (3.92a)
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subject to
h(x) = 0, (3.92b)

where A is a ¢ x n full-rank matrix, with ¢ > n, W is a ¢ X ¢ positive-definite
weighting matrix, while h, x and b are /-, n- and ¢-dimensional vectors, respectively,
with

g+Ii>n, n>lI (3.92¢)

Moreover, in this particular case, the ith component of vector h is quadratic, namely,
1
hi(x) = ixTPix +q + 7 (3.92d)

in which P; is a known n x n symmetric matrix, while q; is a n-dimensional given

vector and r; is a given scalar. Apparently, then, the ith row of J, the Jacobian of

h with respect to x, takes the form
Oh;
ox

whence J is linear in x. The first-order normality conditions (3.27) now take the

=Px+q (3.93)

form

1, — J7(IIH'JJATW (b — Ax) =0, (3.94)

It is thus apparent that, although J is linear in x, the normality conditions are
polynomial, thereby leading to a problem lacking a closed-form solution, except for
special cases, like the one included below.

Example 3.6.1 (A Quadratic Objective Function with a Quadratic Cons-
traint)

Consider an optimization problem with an objective function defined as

1
f(x) = =(922 —8xyxy +322) — min

2 T1,T2
subject to the quadratic condition
h(x) =2} +25—1=0 (3.95)
The objective function f(x) can be factored as
f(x) = %(b — Ax)"W(b — Ax)

with 9 A
A=1,, b=0, W=[ _] x=[x1] (3.96)



Solution: Upon adjoining the constraint to the objective function, we obtain the
Lagrangian F(x; X), namely,

1
F(x; Q) = 5(93;21’ — 87129 + 373) + A2} + 25 — 1)

that we want to minimize subject to no constraints. The normality conditions are,
thus

oF

R :9x1—4$2+2)\$1 =0
6.731

oF

— = —4x1 + 329 +2)\$2 =0
8.’E2

oF

We can now eliminate X from the first and the second of the above equations. We

do this dialytically, i.e., we write these two equations in linear homogeneous form in
Aand 1, i.e.,

My =0,

2 92, — 4 A
M= |7 TRy = 20,
209 —4x; + 319 1

where

with 0y denoting the 2-dimensional zero vector. Now, the above linear homogeneous
equation in'y cannot be zero, for y # 05, and hence, matriz M must be singular,
which is stated as

det(M) = 0

Upon expansion, the foregoing equation leads to
det(M) = 221 (—4x1 + 329) — 229(921 — 429) =0

or, after simplification,
3

T} + gT1ta — 73 =0
thereby reducing the problem to the solution of two quadratic equations in two un-
knowns, the above equation and the third normality condition. Upon eliminating of
Ty from the latter, and substitution of the expression thus resulting into the remain-
ing equation, we obtain, after some simplifications,

4 2
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which is, in fact, a quadratic equation in x?, its roots being

which yields, correspondingly,

2v/5 V5
($2)1,2 = iT, (332)3,4 = ﬂ:?

More general problems of this family can be solved using the methods discussed

in Ch. 4 for arbitrary objective functions subject to nonlinear equality constraints.
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