Chapter 2

Fundamentals of Multivariable

Optimization

2.1 Introduction

We start by introducing the notation to be used throughout the course in the area
of multivariable optimization, which will be the subject of the balance of the course.
We then continue by studying the simplest problem in multivariable optimization,
namely, the unconstrained minimization of a smooth scalar objective function f(x)
of the n-dimensional design-variable vector (DVV), or design vector for brevity, x.
The main result here is the normality conditions (NC) of the problem at hand. We
derive the first-order NC, which are necessary for a stationary point (SP); then, we
derive the second-order NC, which are sufficient for a minimum, a mazimum or a
saddle point. These three kinds of SP are duly characterized.

In the next stage, we recall the basic problem of solving a system of n linear
equations in n unknowns, what is called a determined system. The issue of roundoft-
error amplification is given due attention, which takes us to the concept of condition
number.

As a natural extension of the above problem, we undertake the problem of linear
least squares. That is, we now study the solution of a system of ¢ linear equations
in n unknowns, when ¢ > n, what is called an overdetermined system of linear
equations. In this case, in general, it is not possible to find a single vector x that
verifies the redundant, and inconsistent, set of equations. Hence, we aim at finding
the best fit in the least-square sense, i.e., the vector x that approximates the whole

set of ¢ equations with the minimum Fuclidean norm. We derive a closed-form ex-



pression, i.e., a formula, for the best fit x directly from the NC of the problem at
hand, which readily leads to the left Moore-Penrose generalized inverse (LMPGI) of
the coefficient matrix, namely, rectangular matrix, and for which an inverse proper
cannot be defined. It is shown that computing the best fit from the NC is prone to
ill-conditioning, a phenomenon characterized by a “large” roundoff-error amplifica-
tion. Hence, the reader is strongly advised against computing the best fit with the
said formula. Instead, orthogonalization algorithms are to be used. The difference
between a formula, like that giving the best fit in terms of the LMPGI, and an
algorithm is stressed here: The LMPGI is seldom needed as such, in the same way
that the inverse of a nonsingular (square) matrix is seldom needed. Therefore, the

computation of such a generalized inverse is to be avoided.

2.2 Notation

A: g x n coefficient matrix of the linear system Ax =b

A: the left Moore-Penrose generalized inverse of the full-rank g x n matrix A,
with ¢ > n:
Al = (ATA)TAT (2.1)

b: ¢-dimensional vector of the linear system Ax =b

C: p x n, with p < n, coefficient matrix of the underdetermined linear system
Cx=d

C': the right Moore-Penrose generalized inverse (RMPGI) of the full-rank p x n
matrix C, with p < n:
ct=c’cch)™ (2.2)

d: p-dimensional vector of the underdetermined linear system Cx = d
f: scalar objective function f(x) to be minimized

g(x): p-dimensional nonlinear vector function of the set of inequalities g(x) < 0
G: p x n Jacobian matrix of vector function g(x) w.r.t. x

H;: ith Householder reflection used to render a rectangular matrix into upper-

triangular form; a square matrix
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: [-dimensional nonlinear vector function of x, occurring in the equality con-

straints h(x) =0

. I X n gradient of h w.r.t. x

: lower-triangular matrix of the LU-decomposition of a square matrix A. Also

used to denote the orthogonal complement of C or G; confusion is avoided

because of the two different contexts in which these matrices occur.

: number of equality constraints h;(x) =0, for 7 = 1,...,[, expressed in vector

form as h(x) =0

number of equations ¢(x) = 0

: number of design variables x

: The zero matrix

number of constraint equations g(x) =0 or Cx =d

number of equations in Ax =b

(square) upper-triangular matrix

m x m lower-triangular matrix, a factor of W, i.e., W = V'V
m x m symmetric and positive-semidefinite weighting matrix

n-dimensional vector of design variables

: minimum-norm solution of an underdetermined linear system
. least-square solution of an overdetermined linear system
: The identity matrix

: the gradient operator, pronounced “nabla”; when its operand is a scalar, it

yields a vector; when a vector, it yields a matrix

the Hesdian operator; its operand being a scalar, it produces a square, sym-

metric matrix

a norm of either vector or matrix (-)



2.3 The Numerical Solution of Linear Systems of

Equations

We consider the system

where

A: n x n matrix of known coefficients
b: n-dimensional right-hand side known vector

x: n-dimensional vector of unknowns

Definition 2.3.1 If
det(A) =0 (2.4)

then A is said to be singular. Otherwise, A is nonsingular.

Fact: If A is nonsingular, then eq.(2.3) has a unique solution, which is given by
x=A"b (2.5)

Caveat: Never compute A~! explicitly. It is seldom needed as such, and incurs a
waste of precious CPU time! Instead, find a good numerical approximation to the
solution, while taking into account that A and b are usually known only up to a

certain roundoff error.
Avoid roundoff-error amplification!
Various methods for computing a good approximation to the solution (2.5):

Gaussian elimination, a.k.a. LU-decomposition: This is based on the observa-
tion that a triangular system is readily solved by either backward or forward
substitution. A is decomposed into a lower-triangular and an upper-triangular
factor, L and U, respectively.

Iteratively: Various types of methods, by the names Gauss-Jordan, Gauss-
Seidel, successive-overrelaxation (SOR), etc. Used mainly for “large” systems
(thousands of unknowns) that are weakly coupled; we will not handle such

systems.



Symbolically: Only possible for certain classes of A matrices, like tridiagonal,

and for arbitrary matrices of modest size (n is below 5 or so.)
If A is nonsingular, but otherwise arbitrary, of n x n, decompose A into the form
A=LU (2.6)

where L is lower-triangular and U is upper-triangular, namely,

1 0 -0
A (2.7)
5 lr;z 1
Un Uiz - Ulp
u=|" et e (2.8)
| 0 0 Unn

Now eq.(2.3) is rewritten as

Ly=b

Une v (2.9)

LUx=b = {

and hence, x is computed in two stages: First y is computed from a lower-triangular
system; then, x is computed from an upper-triangular system. The lower-triangular
system is solved for y by forward substitution; the upper-triangular system is solved

for x by backward substitution.

Note that
det(A) = det(L)det(U) (2.10a)
But, apparently,
det(L) =1, det(U) = Tuy; (2.10b)

Hence, A is singular iff any of the diagonal entries of U vanishes.



2.3.1 Cholesky Decomposition

If A is symmetric and positive-definite, then it admits the Cholesky decomposi-

tion:
A =U"U (2.11)
o 0 ce 0
O R (2.12)
Un1 Up2 *°° Unn

where U is a real, upper-triangular matrix.

The solution of system (2.3) proceeds as in the general case, in two steps:
U'y=b (2.13)

Ux=y (2.14)

2.3.2 Condition Numbers

We begin by recalling the concept of vector and matrix norms:

A norm is to an array of numbers, be it a column vector, a row vector, or a matriz,

what the absolute value is to real numbers and the module is to complex numbers
Vector norms can be defined in various ways:

The Fuclidean norm: The best known. For an n-dimensional a with compo-

nents a;, fori =1,...,n:
lallz = \/a? + -+ a2 (2.15)

Computing this norm thus requires n multiplications, n additions, and one

square root. Not very “cheap.”
The Chebyshev norm, a.k.a. the maximum norm, or the infinity norm:
alloo = max{[a;[}7 (2.16)

Notice that this norm requires no floating-point operations (flops). Quite

economical.



The p-norm:
n

lally = (D laif*)/ (2.17)

j=1
This is the most general case. For p = 2, the p-norm becomes the Fuclidean

norm; for p — oo, the p-norm becomes the Chebyshev norm.
Likewise, matrix norms can be defined in various ways:

e The Euclidean norm: the square root of the largest (nonnegative) eigenvalue of
the positive-semidefinite product of the matrix by its transpose. For example,
for the n x n matrix A,

|Allp = max{y/A} (2.18)
where { \; }7 is the set of eigenvalues of AAT.
e The Frobenius norm: the square root of the sum of the squares of the entries

of the matrix. For the same matrix A,

Al = (2.19)

e The Chebyshev or infinity norm: the maximum absolute value of the entries

of the matrix. For the above matrix A,

| Afloe = max [{ai;} (2.20)

e The p-norm:

1A, = Q> lay ) (2.21)

j=1 i=1
For p = 2, the p-norm becomes the Frobenius norm; for p — oo, the p-norm
becomes, such as in the vector case, the Chebyshev norm.

Remarks:

The trace of A, tr(A), is defined as the sum of its diagonal entries: tr(A) =

D i1 Qi

The counterpart of the vector Euclidean norm is not the Euclidean matrix

norm, but rather the Frobenius norm.
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The counterpart of the vector Chebyshev norm is the matriz Chebyshev norm

Now, regarding the roundoff-error amplification when solving the system (2.3),
let

0A: the matrix roundoff error in A
0b: the vector roundoff-error in b

dx: the vector roundoff-error incurred when solving eq.(2.3), by virtue of §A and

ob

The relative roundoff errors in the data, €5 and €, and in the computed solution,

€x, are defined as

[5A]l 1Bl 6]l
ea = N0 9D 19X (2.22)
[A]l bl [l
where || - || denotes any vector or matrix norm.

The relative roundoff error in the computed solution is known to be related to

the relative roundoff error in the data via the relation (Golub and Van Loan, 1983)
ex < K(A)(ea + €p) (2.23)

where k(A) is the condition number of matrix A, which is defined, for nonsingular

square matrices, as
K(A) = [|A[[[ATY] (2.24)

If the Euclidean norm is adopted, then we have
[ A [\
= =\/— =4/ — 2.2
K =RKE X X, ( 5)

e )\,: smallest eigenvalue of AAT

where

e )\ largest eigenvalue of AAT
It is now apparent that kg is bounded from below but unbounded from above:
kp > 1 (2.26)

In fact, the above result holds for x defined based on any norm.



Remarks:

e The condition number of a singular matrix tends to co

e If a matrix AAT has all its eigenvalues identical, then A is said to be isotropic.

Isotropic matrices have a kK = 1. They are optimally conditioned.
Definition 2.3.2 An nxn matrix A is symmetric if it equals its transpose: A = AT

Definition 2.3.3 An n X n matrix A is skew-symmetric if it equals the negative of

its transpose: A = —AT

Fact 2.3.1 (The Matrix Cartesian Decomposition) Every nxn matrix A can

be decomposed into the sum of a symmetric and a skew-symmetric components:

A=A,+A, (2.27a)
1

A=A+ AT) (2.27b)

A, = %(A — AT) (2.27¢)

Equation (2.27a) is termed the Cartesian decomposition of A.

Definition 2.3.4 A quadratic form ¢ of an n-dimensional vector x is associated

with an n X n matrix A:

g =x"Ax (2.28)
Fact 2.3.2 The quadratic form associated with a skew-symmetric matrix vanishes
identically. That is, if A = —AT, then, for any n-dimensional vector x,

x"Ax =0 (2.29)

Proof: Note that, since ¢ = x! Ax is a scalar, ¢ = ¢, and hence,
(x"Ax)" =x"Ax
Expand the left-hand side:
x'ATx = xTAx
However, by assumption, A7 = —A, and hence,
—xTAx =xTAx

whence the proof follows immediately.



Definition 2.3.5 An n x n (symmetric) matrix A is positive-definite (positive-
semidefinite) if, for every n-dimensional vector x, the quadratic form x” Ax is greater

than (greater than or equal to) zero.

Characerization of positive-definiteness (semidefiniteness): An n x n (sym-
metric) matrix A is positive-definite (positive-semidefinite) if and only if its eigen-
values are all positive (nonnegative).

Remarks:

o Negative-definiteness and negative-semidefiniteness are defined and character-

ized likewise;

e If a matrix is neither positive- nor negative-definite, or semidefinite , then it

is said to be sign-indefinite.

2.4 The Least-Square Solution of Overdetermined

Linear Systems
Definition 2.4.1 A system of linear equations of the form
Ax=Db (2.30)
is overdetermined if A is rectangular, of ¢ x n, with ¢ > n.

This means that the system has more equations than unknowns. In general, no

x that verifies all the equations is available.

Definition 2.4.2 A is of full rank if its n (< ¢) ¢-dimensional columns are linearly

independent.
Remark: If A is of full rank, then
e The product AT A is nonsingular, and hence, positive-definite; moreover,

® as a consequence,
det(ATA) >0 (2.31)
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For an arbitrary x, there will be an error e:
e=b-— Ax (2.32)

Problem: Find a particular x, x;,, that minimizes the Euclidean norm of the error,
or its square, for that matter: ||e||* = e”e.

Solution: Define the objective function f to be minimized as
1
f= §||e||2 —  min (2.33)

The normality conditions of Problem (2.33) are obtained upon zeroing the gradient
of f with respect to x.

af
Vfi=—=0 2.34
f=2 (234
Moreover, V f is obtained from the “chain rule”:
of Oe; Of
= a_ = ]-7 ,
8:1:1- ax, 8ej
where the repeated index j indicates summation, for 5 = 1,...,¢q. The foregoing
relation can be written in compact form as
de\" of
Vi=(—| = 2.35
/ (8){) Oe (2:35)
Apparently, from the definitions of f and e,
Oe of
—=—-A, —=e=b-A 2.36
ox ' de  © * (2:36)

Upon plugging expressions (2.36) into eq.(2.34):

ATAx = A"b (2.37)
which is a system of ¢ linear equations in ¢ unknowns. This set of equations yields
the NC of the problem at hand; the set is known as the normal equations of the
problem at hand.

If A is of full-rank, then eq.(2.37) admits one unique solution—determined case—

which is the least-square solution of the given system:
x;, = A'b (2.38a)

where

Al = (ATA)IAT (2.38b)

Here, A’ is termed the left Moore-Penrose generalized inverse of the rectangular

matrix A.

11



Remarks:

e The condition number kg of the rectangular matrix A of ¢ x n, with ¢ > n,
based on the Euclidean norm, is defined in a similar way to that of a square
matrix, with the difference that, in the case at hand, this is done in terms of
the eigenvalues of ATA;

e The condition number k5 of AT A is the square root of the ratio of the largest
to the smallest eigenvalues of (ATA)(ATA)T = (ATA)?;

e Hence, kg is given by the ratio of the largest to the smallest eigenvalues of
(ATA), ie.,
ke(ATA) = k% (A) (2.39)

e Thus, the roundoff-error amplification factor incurred in solving the normal
equations (2.37) is the square of that incurred when “solving” eq.(2.3) in the
determined case.

e Not only this. Formula (2.38a) is computationally expensive, for it involves:

— the multiplication of A by its transpose from the left, which consumes
n? scalar products of two g-dimensional vectors. Hence, AT A requires
n? x q products and n?(q — 1) additions;

— the computation of the right-hand side of eq.(2.37), which entails, in turn,
n scalar products of two ¢g-dimensional vectors, i.e., ¢ X n multiplications
and (¢ — 1)n additions.

e In consequence, solving normal equations should be avoided!

The good news is that there are alternative to normal-equation solving. One
of these relies on Householder reflections (to be described presently): Premultiply
both sides of eq. (2.30) by n Householder reflections—¢q x g improper orthogonal

matrices— H;, for: =1,...,n, i.e.,
HAx = Hb (2.40)

where
H == Han—l e Hl

12



The set { H; }7 is chosen so that
HA = [U] Hb = [bU] (2.41)
in which
e U: an n x n upper-triangular matrix
e O: the (¢ — n) x n zero matrix

e by: an n-dimensional vector containing the first n components of ATb

e by: an (¢ — n)-dimensional vector containing the last ¢ — n components of
A™b

Thus, eq.(2.40) leads to two subsystems of equations:

Ux = by (2.42a)

The least-square solution can be readily calculated by backward substitution
from eq.(2.42a), and symbolically expressed as

x;, = U 'by. (2.43)

Remark: Equation (2.42b) expresses a contradiction: The left-hand side is the
product of the (¢ — n) X n zero matrix times the unknown vector; the right-hand
side is not necessarily zero

Thus, eq.(2.42b) yields the least-square error associated with the solution xp:
|Ibz||. Now we have an important result:

Theorem 2.4.1 (The Projection Theorem) Let e, denote the error vector of

minimum Euclidean norm, i.e.,

€y = b - AXL (244)

Then, eq is orthogonal to the image of x; under A.

Proof: We have
el Ax; = (b — Ax;)TAxy,

13



Upon expansion,
egAxL =bTAx; — X:LPATAXL
Plugging expressions (2.38a & b) into the above equation,
et Ax; =bTA(ATA) 'ATb — bTA(ATA) 'ATA(ATA) 'A™D
=bTAATA)T'ATb —bTA(ATA)TATH =0 (2.45)

thereby completing the proof. The Projection Theorem is illustrated in Fig. 2.1.

Figure 2.1: The Projection Theorem

2.4.1 Householder Reflections

Definition 2.4.3 An n X n matrix R is improper orthogonal if () RR” =
RTR =1 and (ii) det(R) = —1

Remark: An improper orthogonal matrix of n X n represents reflections, i.e., linear
transformations of an n-dimensional vector space that preserve both the magnitude
of vectors—their Euclidean norm—and the inner product of any two vectors.

Problem: Find a linear transformation of the columns of the ¢ x n matrix A that
will render this matrix in upper-triangular form without changing the geometric
relations among the columns, i.e., while preserving the inner products of any two of

these columns, including the product of a column by itself

14



Solution: Assume that we have applied reflections Hy, Hs, ..., H; 1, in this order,

to A that have rendered it in upper-trapezoidal form, i.e.,

Aifl = Hi,1 e H2H1A

- * * * * * -1
a1y G -0 0149 ay; 0 Gy
* * * *
0 a3 -+ a3, Qg; =7 Qg
* * *
0 0 - a3, agi -0 A3y
- 0 0O --- a* * e at (2.46)
Ai_15-1 Gj—14 Qi1 pn
* *
0 0 0 CLZ,Z R az,,n
* *
L 0 O 0 Ay i (i

The next Householder reflection, H;, is determined so as to render the last ¢ —
components of the ith column of H;A; | equal to zero, while leaving its first ¢ — 1

columns unchanged. We do this by setting

0 = sgn(ay) 1/ (a5)? + (07,1,)2 + -+ + (a3,)? (2.47)
w=[0 0 -+ 0 aj+a; afq; - ay]" (2.48)
T
u;u;
H=1-2"- (2.49)
[[ui[?

where sgn(z) is defined as +1 if z > 0, as —1 if z < 0, and is left undefined when
z=0.
Notice that .

Sluill” = ei(wi); = ai(a; + o) = B
and hence, the denominator appearing in the expression for H; is calculated with
one single addition and a single multiplication.
Exercise: Show that H;H] = H] H; = 1 and det(H;) = —1.
Remark: H; refiects vectors in ¢-dimensional space onto a hyperplane of unit nor-
mal n = u;/||u;||, as depicted in Fig. 2.2.
It is noteworthy that

(a) «; is defined with the sign of a}; because j; is a multiple of the ith component
of u;, which is, in turn, the sum of @}, and «;, thereby guaranteeing that the
absolute value of this sum will always be greater than the absolute value of
each of its terms. If this provision were not made, then the resulting sum

could be of a negligibly small absolute value, which would thus render 3; a

15



Figure 2.2: The geometric interpretation of the ith Householder reflection

very small positive number, thereby introducing unnecessarily an inadmissibly
large roundoff-error amplification upon dividing the product w;ul by 3;;

(b) an arbitrary g-dimensional vector v is transformed by H; with unusually few
flops, namely,

T

Hv=v——(v uu

i
Upon application of the n Householder reflections thus defined, the system at

hand becomes
HAx = Hb (2.50)

with H defined as

Notice that HA is in upper-triangular form. That is,

A - | U] o= (2.52)

where: ¢' = g—n; Oy, is the (¢ —n) X n zero matrix; by is an n-dimensional vector;
and by, is a ¢’-dimensional vector, normally different from zero.
The unknown x can thus be calculated from eq.(2.50) by back-substitution.

Remarks:

e The last m' components of the left-hand side of eq.(2.50) are zero

16



e However, the corresponding components of the RHS of the same equation are

not necessarily zero. WWW?

e Nothing! Recall that the overdetermined system (2.30) in general has no
solution. The lower part of b, by, is then nothing but a ¢’-dimensional array
containing the nonzero components of the approximation error in the new

coordinates. That is, the least-square error e, in these coordinates, takes the

form
0,
€ = |:bL:| (2.53a)
Therefore,
leoll = [[be]] (2.53b)

2.5 Unconstrained Optimization

Under the smoothness assumption, the objective function is continuous and has

continuous first- and second-order derivatives. The problem at hand is, moreover,

f(x) — min (2.54)

x

Since the problem under study is unconstrained, the search of the minimum is
conducted over the whole design space R", which eases the search tremendously.
Notice that every point of the design space is characterized by a position vector
x, which defines a design, and hence, every such point represents one design. For
conciseness, we will refer to a point and the design that the point represents by its
position vector.

Now, for f(x) to attain a minimum at a certain point x, of the design space, the
point must be, first and foremost, stationary, i.e., the gradient V f of the objective

function with respect to the design vector must vanish:

_of
T 0x

Xo

VS =0 (2.55a)

which is known as the first-order normality condition. As a matter of fact, the above

relation is short-hand for n normality conditions, one for each component of the V f
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vector, namely,

6f/3:1:1
Vf= g—i _ | / 0, (2.55b)
of |0

However, a stationary point can be a minimum, a mazimum or a saddle point, to
a second-order approximation. To characterize each case, we expand, to this order
of approximation, f(x) around x = x,:

f(x) = f(x0) + V flx, (x —%,) + %(x — %) 'VV [y, (x —%,) + HOT  (2.56a)

where HOT stands for ”higher-order-terms”, while VV f, the Hessian of f with
respect to X, is a matrix of second derivatives, namely,

0*f/0xr  0*f/0x,0x9 --- O f/Ox,101y
2 02 f/0x40 0% f | Oz oo 02 f 0,0,
vz &F _ | 9F/90m f/om; f/0m:0 (2.56b)
0x? : : . :
0*f )0z, 0z, 0°f)0xn0zy ---  O*f)0Z2
Notice that, by virtue of the smoothness assumption,
2 2
or _ 9 for 4,7=1,2,...,n (2.57)

8xi8xj B axzaxj ’

which follows after Schwartz’s Theorem: Given a continuous function f(x) with first-
and second-order continuous derivatives, the order of differentiation in computing
the second derivatives is immaterial.

As a consequence of eq.(2.57), then,
e The Hessian of f with respect to x is a symmetric n X n matrix, and

e the eigenvalues of the Hessian matrix are all real and its eigenvectors are

mutually orthogonal.

At a stationary point x,, then, and up to a second-order approximation, eq.(2.56a)
leads to

(x — %) VVf |x, (x — X,) (2.58)

AF= )~ T(x) ~

Now we have that

o If, for any Ax = x — %x,, Af(x) > 0, then the stationary point (SP) x, is a
local minimum of f(x);

18



e if, for any Ax = x — x,, Af(x) < 0, then the SP x, is a local mazimum of
f(x); and

e otherwise, the SP x, is a saddle point.

It is not practical to test a stationary point for the sign of A f for every possible
Ax. However, it is possible to characterize the nature of the stationary point x,
by means of a test based on the signs of the eigenvalues of the Hessian matrix. To
this end, we recall the characterization of positive-definite, positive-semidefinite and

sign-indefinite matrices given above. In this light, then,

e the stationary point x, is a local minimum if the Hessian evaluated at this

point is positive-definite;

e the SP is a local mazimum if the Hessian evaluated at this point is negative-

definite;

e the SP is a saddle point if the Hessian evaluated at this point is sign-indefinite.

2.6 Nonlinear-Equation Solving: Determined Case

Definition 2.6.1 A system of algebraic equations containing some that are not
linear is termed nonlinear. If the number of equations is identical to the number of

unknowns, the system is determined.

Example: Find the intersection of the circle and the hyperbola depicted in Fig. 2.3.

Yy

8

Figure 2.3: Intersection of a circle and a hyperbola
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Solution: The equations of the circle and the hyperbola are

di(z,y)=2"+y*—4=0
pa(z,y) =2 —y*—1=0

The solution to a nonlinear system of equations, when one exists at all, is usually

multiple: The circle and the hyperbola of Fig. 2.3 intersect at four points:
\/5 \/§ \/5 _\/3
27V2)’ 2’ 2]’
_\/5 \/5 _\/5 _\/§
22V2)’ 2’ 2
The problem may have no real solution, e.g., the circle and the hyperbola of

Fig. 2.4 do not intersect. The system of equations from which the coordinates of

the intersection points are to be computed is given below:

di(z,y) =" +y°—1=0
pa(z,y) =" —y* —16=0

This system of equations admits no real solution!

Yy

e
RN

Figure 2.4: A circle and a hyperbola that do not intersect

In general, a determined nonlinear system of equations takes the form

(x) =0 (2.59)

where x and ¢ are n-dimensional vectors:
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X ¢1($1, Ty - v vy .T”)

Ta d’?(mlv T2y - v vy -/Lln)

, ¢= : (2.60)

”
If

Tn ¢n($1, T,y .., $n)

2.6.1 The Newton-Raphson Method

A value x( of x is given as an nitial guess:

_ T
Xo=[p1 P2 --- Dnl

and ¢ is evaluated at xg:

by = d(x0)
If the value xo was chosen randomly, most likely it will not verify the given system
of equations, i.e.,

¢ # 0

Next, we look for a “small” increment Ax of x (the increment is small if its

norm—any norm—is small):
Ax =[Azx; Azy ... Amn]T

Now, ¢p(x¢ + Ax) is evaluated up to its linear approximation (all quadratic and
higher-order terms are dropped from its series expansion):
o¢
d(xo + AX) ~ ¢(x¢) + Ix Ax (2.61)
X=Xg
The Jacobian matrix of ¢ with respect to x is defined as the matrix of partial

derivatives of the components of ¢ with respect to all the components of x:

8¢1/8x1 3(151/8352 T 5(151/53%
gz 00 _ | 902/0n 06a/0ws - 0o/, 2.62)
8X : : . .
0¢n/0r1 Oy /0xy -+ 0O¢n/0T,

In the next step, we find Ax that renders zero the linear approximation of
b (xo + Ax):
¢y + P(x0)Ax =0

or
®(x0)Ax = — ¢, (2.63)



whence Ax can be found using, for example, Gaussian elimination:

Ax = —®; ¢, Py = P(x) (2.64)

Next, x is updated:
Xg < Xo+Ax (2.65)

the procedure stopping when
A <€ (2.66)

for a prescribed tolerance ¢,.
Remarks:

e Use the maximum norm to test convergence in eq.(2.66);
e no guarantee that the Newton-Raphson method will converge at all;

e whether the Newton-Raphson method converges is dependent upon the initial

guess, Xo;
e the boundary between regions of convergence and divergence is a fractal,

e when the Newton-Raphson method converges, it does so quadratically: At
every iteration, two decimal places of accuracy are gained.

2.7 Overdetermined Nonlinear Systems of Equa-

tions

A system of nonlinear equations of the form
o(x)=0 (2.67)

where x is an n-dimensional vector and ¢ is a g-dimensional vector, is overdetermined
if ¢ > n. Just as in the linear case, in general, no vector x can be found that verifies
all the g scalar equations of the system. However, approximations can be found that
minimize the least-square error of the approximation, as described below:

Problem: Find an approzimate solution to system (2.67) that verifies those equa-

tions with the least-square error:
1 ,p .
flx)= §¢ W¢ — min (2.68)
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where W is a ¢ x ¢ positive-definite weighting matriz.
Solution: We follow a procedure similar to Newton-Raphson’s: First, an initial

guess x° of x is given. Then, we produce the sequence
xt x% . (2.69)

such that
xP1 = xF 4 AxF (2.70)

Calculation of Ax*:
e Factor W into its two Cholesky factors:
W =VTv (2.71)
which is possible because W is assumed positive-definite.

e Compute Ax* as the least-square solution of the unconstrained overdetermined

linear system

V& (x")AxF = —Vo(AxF) (2.72)
with ®(x) defined as the ¢ x n Jacobian matrix of the vector function ¢(x),
ie.,

9¢(x)
P = 2.
() = 220 (273)
Drop superscripts and recall egs.(2.38a & b):
Ax = —(3TWB) 18" We (2.74)

This procedure is iterative, stopping when a convergence criterion is met.

2.7.1 Convergence Criterion

Calculate first V f(x):

_of _(99\" of
Vf(x):ax— (Gx) 96 (2.75)
o _ of _
T = P, 96 Wo (2.76)
Hence, the condition for a stationary point is
®TWe¢p =0 (2.77)
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which is the normality condition of eq.(2.68).

It is thus apparent that, at a stationary point of f, ¢(x) need not vanish;
however, ¢(x) must lie in the nullspace of ®IW. Moreover, from eq.(2.74)
follows that, at a stationary point, Ax vanishes. Hence, the stopping criterion is

|AX] < € (2.78)

where € is a prescribed tolerance.

Remarks:

e The normality condition (2.77) alone does not guarantee a minimum, but only

a stationary point.

e However, it turns out that, if the procedure converges, then it does so, to a
second-order approximation, to a minimum, and neither to a maximum nor a

to saddle point, as we prove below.

The sequence f(x°), f(x!), ..., f(xF), f(x*1), ..., obtained from the sequence
of x values, evolves, to a first order, as Af(x), given by
af\"
ie.,
Af = ¢" WPAX (2.80)

Upon plugging expression (2.74) of Ax into eq. (2.80), we obtain

Af = —p"We(B'"WP) "W
= —¢"M¢ (2.81)

where, apparently, M is a ¢ X ¢ positive-definite matrix. As a consequence, ¢’ M
becomes a positive-definite quadratic expression of ¢; hence, Af is negative definite.
Thus, the second-order approximation of f(x) is negative-definite, and hence, the
sequence of f values decreases monotonically. That is, in the neighbourhood of a
stationary point the first-order approximation of ¢(x) is good enough, and hence,

if the procedure converges, it does so to a minimum.
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