MECH577 Optimum Design

Lecture Notes

Jorge Angeles

Department of Mechanical Engineering &
Centre for Intelligent Machines
McGill University, Montreal (Quebec), Canada

September 2002

Chapter 1

Preliminaries and Single-Variable

Optimization

1.1 Introduction

The English word design derives from the Latin word designare, which means “to
mark out”—as found, for example, in the Random College Dictionary. The word
thus implies a goal, an objective. As such, the meaning of the word is extremely
broad, encompassing the general activity of producing concepts aimed at a given
goal, be this pure intellectual pleasure, in the realm of art, or pragmatic, in the
realm of engineering.

The product of the design activity is a good, whether tangible, e.g., a fountain
pen, in the realm of industrial design, or intangible, e.g., a business plan, in the
realm of management. We focus here on engineering design, but this does not mean
that we exclude intangible goods. An important branch of engineering is production
systems, whereby the design good is many a time intangible, such as the organization
of a healthcare system.

In mechanical engineering, more specifically, engineering design is aimed at the
production of mechanical systems or components thereof. Optimization finds its
place in the design process within the dashed box of Fig. 1.1. From this figure, it is
apparent that optimization falls in the realm of synthests, i.e., of production of the
embodiment of the preliminary design. However, synthesis is not a one-way street,
and hence, a feedback loop is formed as the designer resorts to analysis to evaluate
the design performance.

Engineering design problems have increasingly become model-based, in that their

Need
]

Problem Definition
(Task Specification)

{

Preliminary Design:

—Brainstorming
—Evaluation of Sol'ns
—Solution Selection

Synthesis Procedure

!

Analysis:

Change

| |
| |
| |
‘ —Kinetostatic Parameters ‘
| |
| |
| |

—Dynamic
—Structural

No

Produce mf’g dwgs

i

Prototype

i

Tests

Figure 1.1: The role of optimization within the design process

complexity calls for mathematical models involving many quantities, some of which
are to be decided on by the designer with the purpose of meeting performance
specifications—e.g., the thrust that an aircraft engine must deliver at a given rpm—
under given environment conditions—engine must operate at a specified ambient
temperature and at a given ambient pressure. We thus classify the various quantities

occurring in the model into:

o Design Variables: Those quantities that the designer has to find so as to

produce the specified performance under the given conditions;

o Design-Environment Parameters: Those quantities over which the designer
has no control, and that define the conditions under which the designed object

must operate; and

e Performance Functions: Relations representing the performance of the design

in terms of design variables and design-environment parameters.

Henceforth we shall denote by x the n-dimensional vector of design variables;
we shall refer to this vector, consequently, as the design-variable vector (DVV).
Likewise, we shall denote by p the v-dimensional vector of design-environment pa-
rameters, which will be termed the design-environment-parameter vector (DEPV),
while the y performance functions, f; = fi(x; p), for i = 1,2,..., 4 are grouped in
the design-performance vector (DPV) f. We thus have

T y4! i
x= |20 p=|2| e= "] fotxp) (1.1)
Tn bv fu

Needless to say, the DVV and the DEPV being independent from each other,
their dimensions are also independent, and hence, n # v, in general. By the same

token, the number pu of performance functions is independent from n and v.

1.1.1 Example 1: The Design of an Automatic Screw Driver

Shown in Fig. 1.2 is a model of an innovative automatic screw driver (Becker, 1996).
The purpose of this electromechanical system is to automatically insert screws either
in wood or in masonry, as fed by a mechanism and presented to the bit. As the
axis of one screw is aligned with that of the bit, the bit is advanced by the motor
driving the rack-and-pinion until it engages the head of the screw. With bit tip and
screw head engaged, the second motor drives the bit-screw ensemble towards the
surface of the object into which the screw will be inserted. The use of two motors,
whose motion is coordinated and regulated by a chip fed with signals coming from
mechanical and electronic sensors, is the result of invention.

The geometry of the cross section of the bit is hexagonal with a height of 2d.
Moreover, the cross section is made hollow with a circular hole of radius r, to reduce
weight, as shown in Fig. 1.3. The reason behind the hexagonal shape of the bit is
the need to both transmit torque to it and allow for the relative sliding of the bit
with respect to the gear driving it. The discussion process leading to the forgoing
geometry belongs to the realm of preliminary design. The material of the bit is
steel, with Young modulus £ = 200 GPa, yield stress oy = 500 MPa, and density
p =T 850 kg/m3.

During the screw-insertion process, the bit is subjected to an axial load F' of
4760 N and a torque 7" of 4 Nm. The problem is to find the optimum dimensions of

the bit for minimum weight, subject to constraints on buckling, yield, and geometry

3

Figure 1.2: The transmission of an automatic screw driver

requirements. We designate by L the bit length, its cross-section area by A, which
is given by
A =2V3d* — mr’

The weight W is given, in turn, by
W = pgAL = pg(2V/3d? — nr?)L (1.2)

where ¢ is the gravity-acceleration constant. Furthermore, we notice that by virtue
of the axial force F', the bit risks failure under buckling, for which reason we recall
Euler’s formula for the critical load P,. under which a clamped-free column will
buckle, namely (Gere and Timoshenko, 1991),

_ 2.04672E1

PCT' L2

(1.3)

where I is the area moment of inertia of the cross section with respect to the z-axis'.
From Fig. 1.3, I turns out to be

I = —5\9/§d4 — Er‘l

4
Moreover, the combined load of force and torque is bound to produce a general

state of stress in the bit, which can produce failure if the “stress level” becomes

LAs a matter of fact, the cross section being axially symmetric, its two principal moments of
inertia are identical, which means that I is also the area moment of inertia with respect to the z
axis.

Figure 1.3: Loading and support conditions on the bit

higher than the yield stress. The stress level, moreover, can be defined in several
ways, but is based on the model provided by the theory of failure adopted. Although
several theories of failure are available, the one based on the von Mises stress o,ns
is the most appropriate, for it relies on the volumetric strain energy (Norton, 2000),
and is given by the second invariant of the stress deviator, obtained upon subtracting
the hydrostatic component from the stress tensor (Chou and Pagano, 1992). In order
to derive a simple expression for the von Mises stress, we introduce a simplifying
assumption: the shear stress produced by the torque 7' is the same as that occurring

in a hollow shaft of circular cross section?, the normal and shear stresses thus being
F

Ogg — Z: ayy:UzzZO
Td
T:\/T£y+7—z2mzl_pa Tyz:()
and I, defined as the area polar moment of inertia of the cross section, which, by
virtue of its symmetry—the two principal moments of inertia of the cross section
are identical—yields

1
Ip:21:—0\/§d4—f 4
9 2

Then, o, is given, under the above conditions, as

F? 3T2d?
OyM — F + 72 (14)
p

The design-performance functions are, apparently, the weight W, the critical
buckling load P, and the the von Mises stress 0,57, given in egs.(1.2), (1.3) and
(1.4), respectively.

2To account for this assumption, we must introduce a safety factor.

We have thus described a design problem with DVV x = [d, r, L|*, and design
performance functions W, P, and o,),. In this example, then, the DEP are the

applied force F' and the applied torque 7. Hence, n =3, v = 2 and u = 3.

1.1.2 Example 2: The Design of a Low-Pass Filter

We consider here the design of the RL circuit shown in Fig. 1.4, first used by Taguchi
(1988) to illustrate the concept of robust design, and then by Wilde (1992). The
design variables are the resistance R and the inductance L, to be determined by
the designer, Moreover, the excitation voltage v(t) is given by v(t) = V, coswt. The
voltage amplitude V, and its frequency w undergo variations beyond the control of

the designer.

Figure 1.4: A low-pass filter

For this filter, the steady-state current i(¢) is harmonic: i(t) = I, cos(wt + @),
where I, and ¢ are the magnitude and the phase of i(t). These are given by

Vo

L= o (1)
¢ = tan ! (%) (1.6)

Furthermore, Vj is 110 volt, while w is 60 Hz, as provided by a power utility, the
filter being designed for an amplitude I; of the current of 10 ampere. The vectors
of DV, DEP and DPF are, thus,

I,
, f=
¢

Apparently, then, in this design problem we have n =2, v =2 and py = 2.

R
L

Vo
w

x = , P=

1.2 The Structure of Optimum Design Problems

In optimum design problems, the DEP are given by the client either explicitly or
implicitly. The designer then assumes that these bear ideal values that are repre-
sentative of the operation conditions, and do not change. The fact of the matter is
that the DEP entail values that are random and hence, are not known but through
their statistics, such as mean values and standard deviations; when the parameters
obey a Gaussian distribution, mean value and standard derivation are sufficient to
describe the variation of the DEP. In this case, then, the designer uses the mean
values of the DEP as the nominal values of these parameters, on which the design
is based.

The foregoing approach is classical, and will be followed here. A modern ap-
proach, due to Taguchi (1988), consists in admitting that the DEP are not fixed,
but varying in a random manner, beyond the control of the designer, the purpose of
the design task, then, being to select the design variables in such a way that, under
arbitrary variations of the DEP within a certain range, the DPF exhibit “small”
variations. This approach is known as robust design. For an introductory course, we
will not dwell on this second approach, but will illustrate its main underlying ideas
with some examples of optimum design.

In an optimum design problem, then, the designer chooses either one or several
DPF and formulates an objective function to be either minimized, when this function
represents a cost, or maximized, when the same represents a profit. As a matter of
fact, profit-maximization can be readily turned into cost-minimization if the profit
is redefined as a cost by, for example, reversing its sign or taking its reciprocal.
Moreover, a large class of optimum design problems lends itself to a least-square for-
mulation, which inherently aims at minimizing a sum of squares. For these reasons,
and without loss of generality, we will aim in this course at the minimization of
an objective function f(x). Defining the objective function is thus a simple matter
when only one of the DPF is of interest. In defining objective functions, however,
as in many design tasks, it will prove convenient to use dimensionless quantities. In
this vein, we replace d, r and L in Example 1 by the nondimensional variables z,

T9, and x3, defined as

d r L

— = — = — 1.
Lo’) Lo’ €3 Lo (7)

xr =

where Lo can be defined, for example, as a bound for L. Now, if all we want to

achieve in Example 1 is to minimize weight, then the objective function is simply
f(x) =W = pg(2v/32? — mal)as (1.8)

in which the constant factor can be dispensed with, the objective function then
simplifying to
f=2V3az? —mad)a, (1.9)

If we want both to minimize weight and maximize the critical load of the same
example, then we must first rewrite each of these two DPF in nondimensional form.
Let us redefine f(x), as defined in eq.(1.9), as fi(x), a second nondimensional ob-
jective function being derived from the reciprocal of P,,—upon minimizing 1/P,, we
will maximize P, itself—which, apparently, is proportional to L?>/I. Upon introduc-
ing the foregoing dimensionless DV into this quotient, we notice that this quotient

is proportional to f5(x), defined as
1
(5v/3/9)at — (m/4)x}

Now we must decide what relative importance to assign to each of the two fore-

fa(x) =

(1.10)

going functions, and assign, correspondingly, weighting factors w; and ws to them,
so that we obtain now a combined objective function

f(x) = wif1(x) + ws f5(x) (1.11)

However, the formulation of the optimum design problem does not end with
defining the objective function. We still must incorporate into the formulation the
constraints under which every designer must work. To be true, sometimes an opti-
mum design task lends itself to an unconstrained formulation, but this is rather the
exception than the rule. In general, a designer works under physical and budgetary
constraints: the laws of Newton must be obeyed in mechanical design; the laws of
Kirchhoff must be obeyed in electrical design; a fixed budget ($) has been allocated
to the design project; the design project must be finished by a certain date; etc.

1.2.1 Example 3: The Optimum Design of an Automatic

Screw Driver

In Example 1, the bit
1. Should be able to withstand the axial force without buckling;

8

2. should be able to withstand the combined effect of the axial force and the

torque without failing;

3. should have a minimum thickness of 20.0 mm to prevent high stress concen-

trations that can lead to failure;

4. should allow for space to accommodate its mechanical transmission and the
motor, without interference, which means that its length should be at least of
76.2 mm; and

5. should be machinable at a reasonable cost, which means that its bore should

have a radius not smaller than 6.0 mm.

Of the above constraints, items 4 and 5 were supplied by the client, while the first
three items were introduced by the designer, based on both knowledge of strength
of materials and experience.

The constraints in every design are formulated either as equations or as inequali-
ties. Accordingly, the constraints are termed either equality constraints or inequality

constraints. As to the latter, they can be expressed in one of two forms, namely,
g(x) <0 or g(x)>0 (1.12)

In this course we will consistently use the first form. Now, in formulating the five
foregoing constriants as “< (0”7 inequalities, we need to introduce safety factors Sy
and S,, associated with buckling and yield, respectively, the constraints now taking

the form

Buckling : F' — Ler <0 ()
S
Yield : Syoupm — oy <0 ()
Cross sectionthickness : 7 —d + 0.002 < 0 (1.13c)
Length of bit : 0.0762 — L <0 ()
(1.13e)

Radius of the circular bore : 0.006 —r <0

whence Lo = 0.0762 m.
By substituting the expressions for P, and o, into relations (1.13a & b), these

constraints become, more explicitly,

2.0467
- gbif EI<0 (1.14a)
3T2d2A? 1
2 2 12 42
L+ = - SSFZUYIPA <0 (1.14b)

9

The five constraints thus can be expressed as

2.046m°L2E (5\/3 . T 4)] <0

=12 |22 - - —
g1(x) 0 lxza S, F 9 Ty 272

go(x) = L { (10\@% _ Ix4)2 l LW]

(1.15a)

9 272 S2F?

(2\/351 — mxl)ir } <0 (1.15b)

FQL2
.002
g3(x) = Ly (x2 — 11 + 020) <0 (1.15¢)
0
94(x) = Lo(1 —23) <0 (1.15d)
g5(x) = Lo (O'LO% - xQ) <0 (1.150)
0
(1.15¢f)
In summary, the optimum design problem is formulated as
f(x) = (V322 —mzd)zs — min (1.16a)
subject to
2.046mL3E (5V3 ,
g1(x) = 22 — a 0 (9 T — ng) <0 (1.16b)
2
103 7 o? L4
(%) = (Tx% - 5] [1- bVt nriy)
F2L2 (Q\fxl —7m22)2? <0 (1.16¢)
0.002
g3(X) =29 — 1 + 7 <0 (1.16d)
0
9a(x) =1—23 <0 (1.16e)
g95(x) = 0206 —22<0 (1.16f)
0

In compact form, the inequality constraints are usually expresses as

g(x) <0, gx)=[nx) ... gs(x)]" (1.17)

The reader should handle the above vector inequality with care for, properly
speaking, vector inequalities are maningless, the reason being that arrays do not

form ordered sets!

10

1.3 Methods of Single-Variable Optimization

While real-life design problems involve multiple variables, some techniques developed
to find the optimum of these problems rely on a search along each of the variables at a
time. Moreover, the designer in many instances is interested in the role played by one
single variable, in which case the search for the optimum value can be conducted with
techniques specific to this case. For this reason, it is convenient to study techniques
applicable to the solution of single-variable optimization problems, which is the
subject of the balance of this chapter. We start by introducing a definition:

A function f(z) is unimodal in the interval [0, 1] if it attains one single

extremum—a minimum or a mazimum—uwithin this interval.
Remarks:

e We will deal only with function minimization—function maximization can be
handled as a minimization problem by either simply reversing the sign of
the objective function or using the reciprocal of the original function as the

objective function to minimize.
e A unimodal function need neither be continuous nor smooth.

e Defining the interval of interest as [0, 1] is not restrictive. If this interval is
[a, b], where a and b are any real numbers, then a simple linear transformation

of the variable in question can lead to the above interval.

We introduce, moreover, the basic assumption: Function f(z), to be mini-
mized, is unimodal in the interval [0, 1], which means that f(z) attains exactly one
minimum (or one maximum) in the given interval.

As a consequence of the above definition, we have

Lemma 1.3.1 Let f(x) be unimodal in [0, 1] and attain a minimum within this
interval. Then, its maximum lies necessarily at the extremes of the interval, i.e.,

either at x =0 or at x = 1.
The proof of this lemma is left to the reader as an exercise. Moreover, note that:
e The objective function can be evaluated only at a discrete, finite set of sam-

ple values of its argument z, {z; }7: Each function evaluation, f(z;) = f;,

11

is termed an ezxperiment. The name is quite appropriate because in some in-
stances it may happen that the evaluation of function f(z) can be done only
by physical experiments, e.g., when this function is the steady-state tempera-
ture of an engine, that is known to change as the proportion of a mixture of

fuel and air varies;

e We assume that the interval in which the minimum lies is known, and termed
the interval of uncertainty of the problem at hand. Upon a suitable transfor-
mation of the design variable, this interval is mapped into the normal interval
[0, 1], which is of unit length. The length of the interval of uncertainty when
the series of experiments is initiated is thus 1, the purpose of the minimization
exercise being to bring down the interval of uncertainty to an acceptable low,
which is dictated mostly by the cost of each experiment;

e If the computational cost of each experiment is not an issue, then the func-
tion can be evaluated in a rich sample of argument values within the interval
[0, 1] and plot the corresponding values; the optimum can then be located
by inspection, possibly at the click of a mouse. This is termed an exhaustive

search.

e If the computational cost is high, then proceed iteratively: At each iteration,
the interval of uncertainty is cut by a certain factor using a suitable strategy,

i.e., a search method.

e Any strategy exploits the unimodality assumption. We can cite four strategies

that are the most commonly employed:

Dichotomous search

Interval-halving

Fibonacci numbers

Golden search

We will study here only three strategies: dichotomous search; Fibonacci numbers;

and golden search.

1.4 Dichotomous Search

The qualifier “dichotomous” derives from Greek, meaning to cut into two parts. The

strategy to follow thus consists in splitting the interval into two subintervals, not

12

necessarily of the same length, with one not containing the minimum, and is hence,
rejected; the other subinterval then is bound to contain the minimum sought.

The search strategy of this method is described below:

e Assume that, at iteration ¢, the current search interval is Z; = [[, r], of length
Li=r—-1<1;

e locate two points of abscissae x1 and x5 around the centre of the interval: For
a “small” 6 > 0,

1—6 1+96

9 3625?; fi=fxi); [#fo

X

o if fo > fi, then eliminate the interval segment to the right of x,, the new
search interval being [[, zo]. If, on the contrary, f; > f,, then eliminate the

interval segment to the left of x;, the new search interval being [z, 7]

e New search interval Z;,; is of length L;;y = (L; + 0)/2, i.e., slightly over one
half the length of the previous one.

Now we determine the length Ly, of interval Z,, after 2k experiments—this
number is always an even number! To this end, we notice how the length of the

interval of uncertainty (i.o.u.) evolves as the search progresses:

1 6
Ly=—+—
2 =513
Ly 6 1 6 6
L4_7+§_Z+Z+§
1,3
T4 4
L, 6 1 35 ¢
L:— - = — —_— —
6= tT9Tg T3 T3
_1+75
8 8
o 1

The length of the interval after 2k experiments is thus

1 1
Lo = 27”(“@) (1.18)

13

Usually, Loy is prescribed, but £ is not. Computing k£ from Ly is, nevertheless,

straightforward, as described below: Solving eq.(1.18) for 2% yields

g 1—90
2% = T3 (1.19)
and hence,
o (Il =0/ (L)] (1.20)

In(2)
where [(-)] is the ceiling function, defining the smallest natural number that is

greater than the real argument (-).

1.4.1 Example: Finding the Maximum Dexterity Posture of

a Two-Joint Robotic Manipulator

In optimizing the performance of robotic manipulators one is interested in maximiz-
ing their dexterity, a performance index that comes into play as explained below.
In robot control, a velocity v of the operation point of the end link is to be pro-
duced by a suitable set of joint rates, grouped in vector q, the relation between the
two vectors being linear: J§ = v. Hence, the Jacobian matriz J(q) must be inverted
in order to compute the joint-rate vector, for a given posture of the manipulator, as
specified by vector q, and a given desired velocity v. Dexterity measures, essentially,
how invertible the Jacobian matrix is; dexterity can be quantified by means of the
product JJ* = /2K, where £ is the length of the proximal (the longer) link, and K

is given by
_ 3+2v2cosf 1+ +/2cosh

- 1++2cosf 1

where 6 is the angle made by the axis of the distal link with the extension of that
of the proximal. Tt should be apparent that, when 6§ = 0 or 7, matrix K, that we
shall term here the dezterity matriz, is singular, and hence, not invertible, as is J.
Between these two values, 0 and 7, there is one specific value 6, optimum, at which
the dexterity matrix is maximally invertible. To find 6,, we start by defining the
dexterity as the ratio of the smallest (\,,) to the largest (\y;) eigenvalues of K. In
this regard, note that K is symmetric, and hence, its eigenvalues are real. Moreover,
verify that K is positive-definite, and becomes singular only for the two values of
given above. We thus have the dexterity function D(f) defined below:

D)= {20, 0<D() <1

14

Now, maximizing D(f) is equivalent to minimizing f(#) = 1/D(f), which will
be defined as the objective function of the problem at hand. Given the form of the

objective function, then, each experiment involves three steps:

1. For a given value of 6, compute the two eigenvalues of K, a task that can be
readily implemented using an eigenvalue routine, a quadratic-equation solver,
or even the Mohr circle (Norton, 2000).

2. Order the two eigenvalues in ascending order: A, Ay.

3. Compute f(#) as

0= 0<fE)<

An interpretation of f(f) can be obtained if we define the loss of dexterity
L(6) in the form

L(0) = [1— f(6)] x 100 (%), 0 < 6 < 100%

and hence, when D(6) attains its maximum value of unity, L(f) attains its
minimum of 0. At the other side of the spectrum, when the manipulator is
postured at a singularity, L(f) becomes infinitely large, indicating that the

manipulator has lost all its dexterity.

An expert roboticist claims that the dexterity is maximum-—the robot is at the
peak of its positioning accuracy—when 6 lies “somewhere between 90° and 150°.”
Find an estimate of 6, within an interval of uncertainty of 5% of the given interval
length of 60°.

Solution: We implemented the dichotomous search in the Maple worksheet described
below, which is posted in the course Web page.

> restart:withlinalg;

withlinalg
> with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

We start by producing a procedure K that will allow us to evaluate matrix K for a

given value 6:

15

> K:=proc(theta) matrix([[3+2*sqrt(2)*cos(theta),
> 1+sqrt(2)*cos(theta)], [1+sqrt(2)*cos(theta), 1]1]) end;

K := proc(f)
matrix([[3 + 2 x sqrt(2) x cos(f), 1 + sqrt(2) x cos(6)], [1 + sqrt(2) x cos(d), 1]])

end
> argu:= 3*%Pi/4; K(argu);#testing procedure, which should yield the

> 2 by 2 identity matrix for this value of argument theta

argu = o m
10
01

Apparently, procedure is OK.

We introduce now a transformation that maps 6 into the normal interval [0, 1].
Let the associated “normal” variable be z, to be produced by a second procedure
z. By the same token, we need a third procedure # to return the angle in radians,

for a given value of z. Thus,

> x:=proc(theta) (theta - Pi/2)/(5*%Pi/6 - Pi/2) end;
xz:=proc(f)3 x (0 —1/2 x 7)/mend
> theta:=proc(x) (Pi/3)*x + Pi/2 end;
0 := proc(z)1/3x T xx+1/2 x mend

Now we determine the number 2k of experiments needed to attain the prescribed
length of the i.o.u. We recall that the length Ly, of this interval is given by

1 1

> L_2k:= (1/27k) + deltax(1 - (1/27k));
1 1

16

Let 28 = N. Then,

> N:=solve(L_N= (1/N) + deltax*x(1 - 1/N), N);

. —1+4
" —LN+56
> delta:=0.01; L_N:= 0.05;#we want the length
> of the final i.o.u. to be 5% of original length
6:=.01
L_N = .05
> N:=subs((delta=0.01, L_N=0.05), N);
N :=24.75000000
Hence,
> k:= solve(2°k =N, k); k:= ceil(k);

k = 4.629356620
k=5

where the Maple ceil(-) command has been used. We thus need 2k = 10

experiments. Hence, the two points x; and x, within I are defined as

> x1:= (1-delta)/2; x2:=(1+delta)/2;
1 := .4950000000

z2 := .5050000000
> thl:=evalf(theta(xl)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
th1 := 2.089159115

oy [3 .9900173374/2 1 — 4954586687 /2 |
| 1 — 4954586687 v/2 1 |

th2 := 2.099631090
Ko [3 -1.009055247 /2 1 — .5045276237 /2 |
| 1 —.5045276237 v/2 1 |

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

17

[8760194061 |
) := RTABLE(24331224, 876019406)

1.722611857

[8813318770 |

u = RTABLE(24331264, 8813318770)

1.691648508

> f[1]:= lambda[2]/lambdal1]; f[2]:= mu[2]/mul1];
f1:=1.966408330

f2:=1.919422810

f1 > fa = delete subinterval [0, z1]. Let [and r denote, respectively, the
abscissae of the left and right ends of the new subinterval:

> 1:=x1; r:=1; L:=1r - 1;
[:=.4950000000
r:=1
L :=.5050000000

where L is the length of i.0.u. at the end of the first two experiments. Carry on:

> x1:= (1l+4r-delta)/2; x2:= (l+r+delta)/2;

z1 = .7425000000

z2 = .7525000000
> thil:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
th1 = 2.348340509

Kl [3 1.403062852v/2 1 — 7015314261 v/2 |
1 —.7015314261+/2 1
th2 := 2.358812484
Ko [3-1.417911114v/2 1 — .7089555570 /2 |
| 1- 7089555570 v/2 1 _

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

19967340325])

A := RTABLE(24331304,
1.019035453

18

1.001082988

> f[1]:= lambda[2]/lambdal1]; f[2]:= mul[2]/mul[1];
£ := 1022374495
f2:=1.007442078

19936878850
11 = RTABLE(24331384, [])

fi1 > fo = delete subinterval [[, z;]. Redefine [and r:

> 1l:=x1; L:= r - 1;# r remains unchanged

[:=.7425000000
L := .2575000000

where L is length of i.0.u. at the end of 3rd and 4th experiments. Carry on:

> x1:= (1l+4r-delta)/2; x2:= (l+r+delta)/2;

zl = .8662500000

z2 := .8762500000
> thil:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
thl = 2.477931206

K1 [3 1.575484002v/2 1 — .7877420459/2
1 — 7877420459 /2 1
th2 = 2.488403181
Ko - [3 —1.588299054/2 1 — .7941495272+/2 |
1 — 7941495272 /2 1
> 1ambda:=<eige_nvals(K1)>; mu:=<eigenvals(K2)>; _
) := RTABLE(24331464, 7246939855)
1.047235044
1 = RTABLE(24331544, 1028174767)
1.050988460

> f[1]:= lambda[2]/lambdal[1]; f[2]:= mul[2] /mu[l_] ;

19

1 := 1.445072079

fa :=1.495393178
The ensuing computations follow the same pattern. In the interest of brevity, we
record here only the last two experiments: At the end of 7th and 8th experiments,

we have
r:= .8143750000

L = .0718750000
> x1:= (1+r-delta)/2; x2:= (l+r+delta)/2;

zl = 7734375000

2 = .7834375000
> thil:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
th1 = 2.380738183

o [3 1.448494166v/2 1 — .7242470831v/2 |
1 — 7242470831 /2 1
th2 = 2.391210159
K2 — [3 1.462856184/2 1 — .7314280922 /2 |
1 — .7314280922 /2 1
> 1ambda:=<eige_nvals(K1)>; mu:=<eigenvals(K2)>; _
A := RTABLE(24331704, 9414793198)
1.010040556
1 = RTABLE(24331744, 9169618507)
1.014247094

> £[1]:= lambda[2]/lambda[1]; £[2]:= mul2]/muli];
f1 1= 1.072822847
£y := 1.106095192

fa > fi = delete subinterval [zs, r]. Redefine [and r:

> 1r:=x2; L:=r - 1;# 1 remains unchanged

r :=.7834375000
L :=.0409375000

20

where L is length of i.0.u. at the end of the 9th and 10th experiments. Since L
is smaller than 0.05, we’re done. The best estimate of 6, is obviously the mid

point of current i.o.u., i.e.,

> x_opt:= (1+r)/2; th:= evalf(theta(x_opt));
z_opt := 7629687500
th := 2.369775334
> K_opt:=K(th);
K opt i 3 —1.433288769/2 1 — .7166443846 /2]
1 — 7166443846 /2 1

> lambda:=<eigenvals(K_opt)>;

9674365862
A := RTABLE(24331824,)
1.005586999

flo]:= lambda[2]/lambdal1];
£, :=1.039434536

\Y

Note that the exact optimum value of theta is 135°, i.e., 3w/4 = 2.3562 rad,
which yields a value of f = 1.0.

1.5 Fibonacci Numbers

Fibonacci numbers are named after the Italian mathematician Leonardo Pisano
(1175), son of Gulielmo Bonaccio, and hence, referred to as filius Bonacci. These

numbers form a sequence, defined recursively as

FO = Fl =1 (1223)
Fk — Fk*Z + Fk*l (122b)

Remark: The sequence is monotonically increasing, for all numbers are positive

integers and the current one equals the sum of the two previous ones. Hence,
Fk - Flc—l = Fk_2 (123)
As well, since the Fibonacci series is monotonically increasing,

Fk_g < Fk—l or Fk:—l > Fk_g (124)

21

Upon addition of egs.(1.23) and (1.24), we obtain

Fe—Fp 1+ Fy 1> 2F;

ie.,
F]c_2 1
- 1.25
<3 (1.25)
Furthermore, from eq.(1.22b),
Fyp_1 Fy_»
=1- 1.26
F 2 (1.26)

Now we outline the strategy to follow in this method:

e Let Zyp = [0, 1] be the initial interval of uncertainty, of length 1, where the
minimum is known to lie.

e Prescribe the number n of experiments to be conducted

e Define a length L} as®
=2 = (1.27)

e Let Pi(z;) and P,(z3) be two points equidistant from the left and the right

ends of 7, respectively, by a distance Lj, i.e., with abscissae

* FTL—2
1 =0+L5= 7 (1.28a)
* Fn72
m=1-Lj=1-— (1.28b)
Note that 7 P 7
Ty = 1 n—2 _In n—2 _ fn-1 (128(3)

E, E, - F,

Use the unimodality assumption to eliminate the segment of 7, where the mini-
mum cannot lie. Whether the eliminated segment is at the right or at the left end
of 7y, the length L, of the new, shorter interval, Z,—again, such as we do not define

L7, we neither define Z;—is given by

Fn72_Fn_Fn72_Fn71
F, F, - F,

Ly=1-L;=1- <1 (1.29)

3No length L} is defined because we want to make the subscript of L* match that of the corre-
sponding Fibonacci number; since F; = Fyp, the first two Fibonacci numbers are undistinguishable.

22

Also, by virtue of relations (1.25) and (1.27),

1
For n>2, L’ < 5 (1.30)

Once the first iteration is completed,

e Let [and r > [denote the abscissae of the left and the right ends of the
current, smaller interval of uncertainty Z,. The abscissa of one of the ends of

T, left or right, is either x; or xs;

e if z; is the abscissa of one of the ends of Z,, then x5 € Zy; else, 1 € T,. Let

x7 be the abscissa of point Py, the interior point of Zy;

e note that P; lies a distance L} from one of the ends of Z,. Now, define z3 € Z,
so that its associated point Ps also lies a distance L3 from the other end;

e the process is continued until the interval Z,,, of length L,, is obtained. L, is
the length of the final interval of uncertainty.

The abscissa z; computed at the jth experiment is determined by length L7, so
that its associated point, P;, as well as the interior point P; of interval Z;_; are a
distance L7 from the ends of Z;, with L} given by—see eq.(1.27)

L= %LH (1.31a)
while the length L; of the jth interval of uncertainty is—see eq.(1.29)
L= F"F%:L” (1.31Db)
Hence, for j = n,
=50 (1.32)
Fy

which allows us to find n for a prescribed length L,,.

1.5.1 The Location of the Final Experiment

Let Z,-1, = [l, 7], of length L,,_;, be the one-before-the-last interval. According
with eqgs.(1.28a & b), the abscissae of the last two experiments, x, ; and z,, are

given as

Tpo1 =1+ L} (1.33a)
Tp=r—Ly =1+ L, 1— L (1.33b)

n

23

where L} is given by eq.(1.31a), with j = n:

F, 1
Lr =0 =-I 1.34
n =1 = gl (1.34)

Upon substitution of L¥, as given by eq.(1.34), into eq.(1.33b), it is apparent that
Tp =1+ §Ln—1 =Tp-1

ZTn_1 and z, thus coinciding, and hence, the last experiment fails to produce two
distinct points in Z,,_;1. To cope with this outcome, we have to define points P; and
P,, of abscissae x; and x4, in a suitable manner. For example, we can define them
as in the strategy employed by the dichotomous search, with a ¢ small enough with
respect to L.

Fibonacci numbers are tabulated in many manuals, with short tables available in
textbooks (Rao, 1996). Also note that scientific software is provided with Fibonacci

numbers. For example, Maple includes the command

with(combinat, Fibonacci):

that allows the user to invoke the Fibonacci number F(i) by typing
fibonacci(i)

However, note that not all Fibonacci sequences are identical. For example,
The first two Fibonacci numbers in Maple are defined as

f(0) =0 and f(1) =1

1.5.2 Example: Finding the Maximum Dexterity Posture of
a Two-Joint Robotic Manipulator
We implement the Fibonacci search in a Maple worksheet:
> restart:withlinalg;
withlinalg
> with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

24

> with(combinat, fibonacci):

Warning, the name fibonacci has been redefined

We retake the example problem consisting in the finding of the most dexterous
posture of a two-axis robot, using exactly 10 experiments. However, because of
the way Maple defines the Fibonacci sequence, we must use F'(n+1) when we would
normally use F'(n).

We shall use K, 6 and z exactly as described in Subsection 1.4.1.

We want to have

L= (1.35)

but must shift the subscript by 1:

> Lstar[2] :=evalf (fibonacci(9)/fibonacci(11));
Lstary := .3820224719
> 1:=0; r:=1; L[0]:=r - 1;# Abscissae of extremes of left- & right-hand

> sides of the initial (normal) interval, and length of this interval

l:=0
r:=1
L()Z:]_

> x1:=1 + Lstar[2]; x2:= r - Lstar[2];
1 = .3820224719

2 = .6179775281
> thil:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
th1 := 1.970849324

Ki [3 77893431082 1 — 3894671554 v/2 |
| 1- .3894671554 /2 1 |

th2 := 2.217940881
o [3120582153512 1 — .6029107675v/2
| 1 -.6029107675v/2 1 |

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

25

[8139310151 |
) := RTABLE(7311224,)

2.084489519

u = RTABLE(7647492, 9389633883)

1.355747444

> f[1]:=lambda[2]/lambda[1]; f[2]:=mul[2]/mul1];
f1:=2.561014976

fy 1= 1.443876791

f1 > fo = drop left end:

\Y

1:= x1; L[2]:=L[0] - Lstar[2]; Lstar[3]:=
(fibonacci(8)/fibonacci(10))*L[2];

[:=.3820224719
Ly := 6179775281
Lstars := .2359550562
> x1:=1 + Lstar[3]; x2:= r - Lstar[3];
zl = 6179775281

T2 = .7640449438
thl:=evalf (theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

%

\Y%

> K2:=K(th2);
thl = 2.217940881
K1 [3-1.205821535v2 1 — .6029107675v/2 |
1 — .6029107675 /2 1
th2 = 2.370902321
Ko - [3 —1.434859867+/2 1 — .7174299337 /2 |
|1 - .7174299337 /2 1 |

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

) := RTABLE(7521524, 9389633883)
1.355747444
[9647545542 |
11 == RTABLE(7648172, 96475455)

i 1.006047163 |
> f[1]:=lambda[2]/lambda[1]; f[2]:=mul[2]/mul1];

f1 == 1.443876791

26

9 :=1.042801155

f1 > fo = drop left end:

N

vV Vv

1:= x1; L[3]:= L[2] - Lstar[3]; Lstar[4]:=
(fibonacci(7) /fibonacci(9))*L[3];

[:=.6179775281
L3 :=.3820224719
Lstar, := .1460674157
x1:= 1 + Lstar[4]; x2:= r - Lstar[4];
zl = .7640449438

12 = .8539325843
thl:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));
K2:=K(th2) ;

th1 :=2.370902321

Kl [3 1.434859867v/2 1 — .7174299337/2 |
|1 - .7174299337 v/2 1 _

th2 = 2.465032438
K2 — [3 1.550462054 /2 1 — 7797310268 v/2 |
1 —.7797310268 /2 1 |

lambda: =<eige;1va1s (K1)>; mu:=<eigenvals(K2)>;

[9647545542 |
) := RTABLE(7738916,)
1.006047163
[7520453159 |
41 := RTABLE(7648852,)

1.042542298
£[1]:=lambda[2]/lambdal1]; £[2]:=mul[2]/mul1];
f1:=1.042801155
f2 :=1.386275901
x1:= 1 + Lstar[8]; x2:= r - Lstar[8];
zl = 7303370787

z2 = .7415730337
thl:=evalf (theta(x1)); K1:=K(thl); th2:=evalf(theta(x2));

K2:=K(th2);

thl = 2.335603527

27

o [3 1.384795807v/2 1 — .6923979033v/2 |
1 — .6923979033 /2 1
th? := 2.347369792
K [3 1.401678651v/2 1 — .7008393253v/2
1 — .7008393253 /2 1
> 1ambda:=<eige_nvals(K1)>; mu:=<eigenvals(K2)>; .
) = RTABLE(7549132, | 015837380 |,
1.050219250
)1 := RTABLE(7809316, | ~203200091 1y
1.021398433

> £[1]:=lambda[2]/lambda[1]: £[2]:=mul2]/mul1];
1 := 1.059346859
£y 1= 1.025162204

In the interest of brevity, we skip the intermediate results, and display only the last

two experiments:

> 1:= x1; L[8]:= L[7] - Lstar([8]; Lstar[9]:=
> (fibonacci(2)/fibonacci(4))*L[8];

[:=.7303370787
Lg := .03370786516
Lstarg := .01123595505

Note that the length of the i.0.u. at the end of the 8th experiment is 3.4% of original

length, i.e., smaller than at the end of 10 experiments with the dichotomous search!

> x1:=1 + Lstar[9]; x2 := r - Lstar[9];
zl :=.7415730338

2 := 7528089888
> thl:=evalf(theta(x1l)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2);
thl := 2.347369792
3 —1.401678651v/2 1 — .7008393253 /2
~ | 1 - 7008393253 v/2 1

th2 = 2.359136057

K1 :

28

~ | 1-.7091837208 /2 1

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

Ko - 3 —1.418367442 /2 1-—.7091837208\/51

9963286091
A := RTABLE(24765056,)
1.021398433

.9929088850
u:::Rﬂ)XBLEX7680224,[])

1.001216643

> f[1]:=1lambda[2]/lambdal[1]; f[2]:=mu[2]/mu[1];

f1:=1.025162204
f2:=1.008367090

f1 > fo = drop left end:

> 1:=

x1; L[9]:= L[8] - Lstar[9]; Lstar[10]:=
>

(fibonacci(1) /fibonacci(3))*L[9];
| :=.7415730338
Ly :=.02247191011

Lstaryg := .01123595506

> x1:= 1 + Lstar[10]; x2

:= r - Lstar[10];
1 := 7528089889
2 = .752808988K7

As expected, £1 = 5. Let us estimate the optimum by dichotomous search over the
last i.0.u.: Let 6 = L7,/10

> delta:= Lstar[10]/10;

0 :=.001123595506

> x1:= (1 + r - delta)/2;

x2:= (1 + r + delta)/2;
¢l :=.7522471910

z2 = 7533707866

> thl:=evalf(theta(x1)); K1:=K(thl); th2:=evalf(theta(x2)); K2:=K(th2);

thl = 2.358547744

29

K1 [3 1.417537647+/2 1 — .7087688235+/2 |
| 1 —.7087688235 v/2 1 _

th2 = 2.359724370
Ko - [3 1.419196745v/2 1 — .7095983727/2 |
| 1- 7095983727 /2 1 _

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

[9943254329 |
) := RTABLE(7680584,)

1.000973602

[9914931757 |

p := RTABLE(7816444, 9914931757)

i 1.001459540 |

> f[1]:=lambda[2]/lambdal[1]; f[2]:=mul[2]/mul1];
fi1 :==1.006686110

f5 := 1.010051874

fa > f1 = delete [x4, r] and take as most likely estimate of the optimum the

midpoint of remaining interval [, z; |:

> x[0]:=(1+x1)/2; thopt:=evalf(theta(x[o])); Kopt:= K(thopt);
T, := 7469101124
thopt := 2.352958768
3 — 1.409630165 /2 1 — 7048150824 /2]

1 — 7048150824 /2 1
> lambda:=<eigenvals (Kopt)>;

Kopt .=

A := RTABLE(7262512,
1.007824349

9986575537])

> f[o]:=lambda[2]/lambda[1];
fo :=1.009179118

1.6 Golden-Section Search

This method is similar to the method based on Fibonacci numbers, but its imple-

mentation is much simpler. The outcome is that its convergence is a bit slower than

30

that of the former. A major difference with the Fibonacci search is that the number
of elimination stages is not prescribed.

The basis of the golden-search method is the Fibonacci sequence. Indeed, the
golden-search strategy is derived from the Fibonacci search under the assumption
that n in the Fibonacci search is “large,” and hence, we denote it by N. The length
of the interval of uncertainty is shrunken at every iteration by the same proportion,
as opposed to the Fibonacci search.

In order to find the length Ly of the interval Z; at the kth iteration of the
golden search, we compute the corresponding lengths of the Fibonacci search for

n = N — 00, namely,

LQ:J\P_IEO T (1.36a)
Ly = lim Fn_s ~ lim Fy o Fy
N—oo Fy N—oo Fy 1 Fy
:nm(ﬂvﬁ2 (1.36b)
N—oo FN
In general,
. Fy_1**
Ly = lim < > (1.36¢)
N—oo N

Hence, all we need to implement this method is the above limit, which is computed
below: Recall eq.(1.22b), for £k = N

Fy=Fy 1+ Fy o (1.37a)
Therefore,
é31:1+§;j (1.37b)
Now let
v = 1\}1_1)20 P (1.37c)

Upon taking limits, eq.(1.37b) can be rewritten as

1
v=1+~
8
or
Y¥—y—=1=0, >0 (1.37d)
whence,
v=1.618 or y=-0.618 (1.37e)

31

Obviously, we need only the positive root, and hence, L; becomes

Ly = (%)H = (0.618)%* (1.38)

Greeks in the classical period, around the fifth century B.C.E., coined the ex-
pression golden section to refer to a rectangle of divine proportions, whose base b
and height h observe the relation

b+h b

=7 (1.39)

The foregoing equation readily leads to one on
the ratio b/h identical to eq.(1.37d), namely,

2 1
L A
h h

thereby showing that the real solution to eq.(1.39) [0% {

is, indeed, =, the golden section.

This relation is seen in the facade of the Figure 1.5: A rectangle with
Parthenon, besides being present in nature and in sides obeying the divine pro-
many artifacts®. Shown in Fig. 1.5 is a rectangle portion
with sides obeying the divine proportion.

To implement the search, we need the quantity Lj, which is defined below:

Fyoy Fy_oFy_, 1
o2 NI = 0.382 (1.40)

LY = — — —
> Fy Fy_y Fn 2

1.6.1 Example: Finding the Maximum Dexterity Posture of

a Two-Joint Robotic Manipulator

We implement below the golden-section search strategy by means of a Maple work-
sheet. We shall resort the K, 8 and x procedures introduced earlier.

Let us calculate ~:

> eq:=(x"2 - x - 1);

eq =2 —x—1

4For example, Microsoft Word uses the golden-section ratio to proportion its margins.

32

> g:=<solve(eq, x)>;
1 1
3t3 Ve
g := RTABLE | 25969576,
1 1\/5
2 2

> gama:=evalf(g[1]);#Maple reserves the use of "gamma" for the "gamma
> function"!

gama = 1.618033989
amag:=1.0/gama; #we’ll also need the
reciprocal of gamma

amag = .6180339887
> Lstar[2] :=amag~2;
Lstars 1= .3819660112

Now let us find n from the problem specification: L, = 0.05, which leads to

1
=0.05 (1.41)

n—1 "~

> eq:= (n-1)*1n(amag) - 1n(0.05)=0;
eq := —.4812118251 n + 3.476944099 = 0

> mn:=ceil(solve(eq, n));

n:=38

> 1:=0; r:=1;#extremes of initial normal interval
[:=0
r:=1

> L[0]:= r - 1;#length of initial interval
Ly:=1

> x1:=1+Lstar[2]; x2:=r-Lstar[2];
] := .3819660112

2 = .6180339888
> thl:=evalf(theta(xl)); K1:=K(thl); th2:=evalf(theta(x2));

> K2:=K(th2) ;lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;
th1 := 1.970790199

Ko |3 7788253964/2 1 — .3894126982 /2
" 1—.3894126982 /2 1

33

th2 := 2.218000007
3 —1.205915875v/2 1 — .6029579377 /2

K2 =
1 — .6029579377+/2 1
[8138991148 |
) := RTABLE(25969616,)
9.084675447
[9389910200 |
11 := RTABLE(25969656,)
1.355586395

> f[1]:=lambda[2]/lambda[1]; f[2] :=_mu[2] /mu[1];
f1:=2.561343794
fo :=1.443662789

fi > fa = drop the left end:

L[2]:=L[0] - Lstar[2]; Lstar[3]:= x2 - x1;#You should be able to
prove that amag™3 = x2 - x1

Ly := 6180339888

Lstars := .2360679776
> x3:=r - Lstar[3];#x2 is now a distance Lstar_3 from new left end,
> x1, to the left of x3

T8 = .7639320224
> th3:=evalf(theta(x3)); K3:=K(th3); lambda:=<eigenvals(K3)>;
th3 := 2.370784070

3 —1.434695103 /2 1 — .7173475515/2
1 —.7173475515+/2 1

vV Vv

K3 =

9650358237
A := RTABLE(25969696, [])

1.005998904
> f[3]:=lambda[2]/lambda[1] ;f[2];#evaluate f[3] & recall f[2]
f3:=1.042447212
1.443662789

f2 > f3 = drop left end:

> L[3]:=L[2] - Lstar[3]; Lstar[4]:= x3 - x2;

34

Ly := .3819660112
Lstar, := .1458980336
> x4:= r - Lstar[4];
x4 = .8541019664
> thé4:=evalf(theta(x4)); K4:=K(th4); lambda:=<eigenvals(K4)>;
th4 := 2.465209815

Kj 3 —1.559684146 V2 1 — .7798420728 /2
T | 1-.7798420728 /2 1

1.042607347
> f[4]:=1lambda[2]/lambda[1] ;f[3];#evaluate f[4] & recall f[3]
f1:=1.387061669
1.042447212

Again, for brevity we introduce only the last two experiments. We have the interval

7516661806
A:::RﬂyxBLEx25969736,[])

[z5, x¢] and hence,

> L[6]:=L[5] - Lstar[6]; Lstar[7]:= x6 - x3;

Lg :=.0901699440
Lstar; := .0344418544

> x7:= x5 + Lstar[7];
x7 = .7426457872

> th7:=evalf (theta(x7)); K7:=K(th7);lambda:=<eigenvals(K7)>;
th7 := 2.348493177

3 —1.403280430/2 1 — .7016402150 /2]

K7 :=
1 —.7016402150 /2 1

9967977596
A := RTABLE(25969856, {])

1.018664025
> f[7]:=1lambda[2]/lambda[1] ;f[3];#evaluate f[7] & recall f[3]:
f7 :=1.021936511
1.042447212

f7 < f3 = drop right end and perform last experiment:

35

> L[7]:=L[6] - Lstar[7]; Lstar[8]:= x3 - x7;
L, := .0557280896
Lstarg := .0212862352
> x8:= x5 + Lstar[8];
z8 = .7294901680
> th8:=evalf(theta(x8)); K8:=K(th8);lambda:=<eigenvals(K8)>;
th8 = 2.334716645

3 —1.383515463/2 1 — .6917577317/2]

K8 :=
1 — .6917577317+/2 1

9910087350
A := RTABLE (25969896, [])

1.052404934
> f[8]:=lambda[2]/lambdal[1];f[7] ;#evaluate f[8] & recall f[7]:
fs := 1.061953237
1.021936511

fs < f: = delete left end and accept midpoint, of abscissaz,, as best estimate of

optimum:

> x[o]:= (x8 + x3)/2;
T, := .7467110952

Notice that length of final i.o.u. is 3.4% the length of original i.0.u. Evaluate
Jo= f(xO):

> thlo] :=evalf (theta(x[o])); Ko:=K(th[o]);lambda:=<eigenvals(Ko)>;
the := 2.352750357
3 —1.409334444 /2 1 — 7046672222 /2
1 — 7046672222 /2 1]
> L[8]:= x3 - x8;#Length of final i.o.u.
Lg := .0344418544

19985709394])

Ko :=

A := RTABLE(25969936,
1.008329177

> f[o]:=lambda[2]/lambdal1];
£, == 1.009772203

36

> tho:= evalf(th[o]*180/Pi);# theta_optimum in degrees
tho := 134.8026657

1.7 Bibliography

Becker, B., 1996, Automated Screw Driving Device, U.S. Patent Application, Septem-
ber, Swabey, Ogilvy, Renault, Patent Attorneys, Montreal.

Chou, P. C. and Pagano, N. J., 1992, Elasticity: Tensor, Dyadic and Engineering
Approaches, Dover Publications, Inc., New York.

Gere, J. M., and Timoshenko, S. P., 1991, Mechanics of Materials, Chapman and
Hall, Boston, Massachusetts.

Rao, S. S., 1996, Engineering Optimization, 3rd. Edition, John Wiley and Sons, Inc.,
New York.

Norton, R. L., 2000, Machine Design: An Integrated Approach, Prentice-Hall, En-
glewood Cliffs, N.J..

Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing Quality
Engineering Upstream, ASME Press, New York.

Wilde, D., 1992, “Monotonicity analysis of Taguchi’s robust circuit design problem”,
ASME Journal of Mechanical Design, Vol. 114, pp. 616-619.

37

