The physical meaning of the proposed optimality criterion is
explained below: When a structure is subject to a load with a
given magnitude but applied in an arbitrary direction, the possible
displacement field is defined by the stiffness ellipsoid of the stiff-
ness matrix. Therefore, the maximum displacement lies on the
largest semi-axis of the ellipsoid, i.e., in the direction of the ei-
genvector associated with the minimum eigenvalue. Therefore, the
minimax problem pertaining to the minimization of the maximum
displacement thus leads to the problem of maximizing the mini-
mum eigenvalue of the stiffness matrix.

Notice that the load p of Eq. (1) is of a generalized nature, for
it lies in R™. In a finite element model, p, the nodal force, includes
all Cartesian forces acting on the structure, some of which are
constant, and some of which are either deterministic but variable,
or stochastic.

3.1 Condensation. The concept of the proposed optimality
criterion is extended further into a broader range of applications
when combined with a condensation process.

Instances occur in a structural optimization problem where only
the stiffness over a certain region is critical, whereas the stiffness
elsewhere in the structure is unrelated to the design objective. For
example, in the design of the Speed-o-Cam roller carrying disk,
displacements of the nodes associated with the location of the
roller pins affect the positioning of the rollers and, hence, affect
the stiffness of the entire mechanism, whereas the displacements
elsewhere of the disk are not. Condensation is a process that re-
duces the dimension of the stiffness matrix from the overall num-
ber of nodes to a reduced number of nodes, i.e., those associated
with the critical region. Not only the dimension of the optimiza-
tion problem is reduced significantly, but also the optimization
problem can be formulated more accurately in following this ap-
proach.

Let g<n denote the number of nodes at which the loads are
applied; &, the displacement vector of the loaded nodes; and &,
the displacement vector of the remaining nodes. Moreover, let
K, Kyy, and Ky, be (m—vg)X(m—vq), (m—vq)Xvq, and
vq X vq blocks of the stiffness matrix, respectively. In the forego-
ing relations, »=2 or 3, depending on whether the structure is
planar or solid. Then, Eq. (1) can be expressed as

[Kn Ky, [51}_ f,
Kyl &

=
K, fj
Equation (7), when expanded, becomes
K16+ K8, =f
K8 +Kypd=f,

Upon elimination of &,

(Kn— KK, 'Kp) &+ KK 'f =1, (®)
Since f; =0, Eq. (8) reduces to
K¥o,=f, €)

where K¥* is the vg X vq condensed stiffness matrix defined as
K¥ =Ky~ KK 'K (10)
In normalized form, the above Lnatrix becomes the normalized
condensed (NC) stiffness matrix K* given by
K*=¢K* (11)

for the number of nodes around the critical region is g. Equation
(9) thus becomes

K¥é,~1, (12)
Assuming that ||f,]| is constant, we have
BRI KB (13)
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Fig. 3 A three-bar truss subject to a force of bounded magni-
tude but of arbitrary orientation ¢

where, for a given level of loading, ||f,||>= const. The above equa-

tion represents an ellipsoid in the space of the normalized critical
displacement &, . Any point on the boundary of the ellipsoid de-
notes the root-mean-square of the components of the possible
nodal displacements along the critical region. We can now state
the criterion below:

Criterion 3.2: For a given amount of material and an uncertain
load whose Euclidean norm is of a known bound, but applied in
an arbitrary direction, the structure with the maximum stiffness at
a specific region is the one whose normalized condensed stiff-
ness matrix Aas the maximum smallest eigenvalue.

The problem is thus reformulated as finding a structure of stiff-
ness matrix K;", with the largest possible minimum eigenvalue
kmin - Moreover, this layout leads to a minimum deformation at the
points of load application.

4 Examples

We illustrate the application of the proposed design concept
with two examples, a three-bar truss and two serially coupled
springs, both subject to uncertain loading conditions and isometry
constraints. In the first example, the optimum solution occurs
when the minimum eigenvalue equals the maximum eigenvalue,
thus leading to an isotropic stiffness matrix. However, in the sec-
ond example, the optimum solution does not yield an isotropic
stiffness matrix.

Notice that, since the number of nodes in both examples is
fixed, it is not necessary in these examples to normalize either the
nodal displacement vectors nor the stiffness matrices.

4.1 Example 1: A Truss Under Uncertain Loading and an
Isometry Constraint. Consider the truss of Fig. 3. The lengths
of the three bars are v2h, h, and V2h, respectively. The structure

is subject to a load f=[f, f,]17 with a magnitude F= \/fx2 +fv2,
applied at the free node, but oriented at an uncertain angle ¢.
For conciseness, let the cross sections of the 1-2, 1-3, and 1-4
bars be all circular—other shapes can be equally considered—of
areas A, A,, and A5, respectively, these areas playing the role of
the design variables.
By fixing the amount of material, the structure is subject to the

isometry condition
V2A+A,+v2A;=A=const (14)

The design aims at determining the optimum values of A, A,,
and A; that yield a minimum deformation under any direction of
the load. The nodal displacement vector &, the nodal force vector
P, and the design-variable vector x are defined in this case as

(15a)
(15b)

= T
0=[u; vy uy vy U3 V3 Uy V4]

P=[Pix Piy Pax P2y P3x P3y Pax P4y]T
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A+B+C -A -B -(C
E —A A 0 0
| B R )
= 0 0 C
where, A, B, C. and O are al] 232 mittrices, namely,
vZ V32
g 0 0]
55 _E;,, 1?:1. 2o A
4 % (17
v V2
2 a0 g 0 0]
il 5 ] 9=/, 0]
PR e

In addition, the applied force 4 node | and the displacements o
nodes 2, 3, and 4 are prescribed g
P - piv=F. = ViSli=ts=p,=p, =1} {14

Upon substituting the above cenditions into Eq. (18), the equilib-
dum equation becomes

K.d=p, (19)
with K, defined a5
E[A+B+C 0,,,]
Rr:I’._ 024 Lis

in which 0., is the 2X6 zero matrix and lg.. is the 626
identity matrix, while P- is defined as

pr _-“'.'T EI::!:-_J'I

where 0y is the six-dimensional zero vector, Therefare, the system
of simultaneous equations defined in Ey. (19) can be condensed
into @ system of two eQuations in two unknowns, e,

K. d=p, {20}

In Eq. {20}, K. and p_ represent the 232 condensed stiffness
matrix and the two-dimensional condensed nodal force vector,
while & is the condensed two-timensional displacement Vector,
all these iterns being displayed helow;

vz V2 vz v
£ —4-".4[—'_‘-1—:‘1.': _Iﬂ; 3 TA_;
i e e R v
= T.-1|+':I:-.qu 4—."”" Aat T.-'-'l_—.
5] el
T4 I
== F=
s |-|r1 |.”.‘_|

Since |[fi=F is constunt, we have

KK 4=8Kg = (21)

Equation (21) represents an cllipse in the space of i
=+ r = ; Tt oty 2 i 3
=[#y. u:1". Hence, the muximum value of uj-+u; occurs
when [1, 1,]" is aligned with the largest semi-axis of the ellipse,
e, when [y, w2 )" is directed along the eigenvector correspond-

s e ' - el " S el
mg to the minimum eigenvalue nf K or, correspondingly, of K, |
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Fig. 4 A two-spring system

Lethy and A=, with Ap=A;, denote the eigenvalues of K: and
ky and ky with k=&, those of K_. We thus have Ap=ki and
A= .i-g. Now, Eq. (14) allows us 1o EXpress A- in tenms of A, and
A, which then leads to the eigenvalues of K, in terms of inde-
pendent variables, Indeed, Upon resorting o computer algebra, we
abtain ¢losed-form expressions for the cicenvalues of K. :

viE e
k| ;_}{T{_ld e 2.*1]."'2\?.-’1 '2 l..-'HJ

VIE =
ks -_E}r [=24 =24+ 124 +2.R)
where A5 bas been eliminated by meuans of By, (14} and
B=541164,4;—4v3A4, FSAT—4VIAA, +242

since K. is symmetric ang positive-delinite, &, and ko are Bound
o be real and positive. Hence, f= ), and

IJ-&'L—[:“:_{-:

The wnconstraiied optmizmion problem at hand consists in de-
termining the values of 4, and A i that render 145 a minimum,
LE.;

|
min— or maxk,
! TR

(22)
Ay

The optimum solution must thys salisty the first-order conditions

s

=

il 5
whenee the optimum values of Ayand Ay are found to be
v
:1,-—.-1_-.=-4'—r1. (23)

which leads w A,=0, while the stiffness matrix of the opinmium
structure takes the form

K=kl (24
with 1 denoting the 232 identity matrix and & siven as
I EA
i (25)
4 :

This result skows that at the optimum solution, the maximum and
the minimum eigenvalues are egual, Le., A=A ... . The stiffness
mattix of the optimum struciure in the presence of an uncerain
load orientation is therefore fserropie. The optimum solution thus
eeurs, in this case, when the condition number & of K, defined as
the ratio k. . attains its minimom value of unity,

4.2 Example 2: Two Serially Coupled Springs Under Un-
certain Loading and an Isometry Constraint. As shown in
Fig. 4, two springs with Spring constants denoiec by Ky and K.,
respectively, are serially coupled. Morcover, 1he system is suhject
0 external forces £, and f5. applied at nodes 1 and 2, respec-
tively,

We assume that (1) the magnitude of the nodal force vector lies
within a known bound 2 and (i) the amount of material in the
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