
MECH 577 Optimum Design

Lecture Notes

Jorge Angeles

Department of Mechanical Engineering &

Centre for Intelligent Machines

McGill University, Montreal (Quebec), Canada

c© January 14, 2013

These lecture notes are not as yet in final form.

Please report corrections & suggestions to

Prof. J. Angeles

Department of Mechanical Engineering &

McGill Centre for Intelligent Machines

McGill University

817 Sherbrooke St. W.

Montreal, Quebec

CANADA H3A 2K6

FAX: (514) 398-7348

angeles@cim.mcgill.ca

Contents

Notation 7

1 Preliminaries 11

1.1 The Role of Optimization Within the Design Process 11

1.2 The Structure of Optimum Design Problems 16

1.2.1 Case Study: The Optimum Design of the Links of a Robotic

Wrist . 17

2 Single-Variable Optimization 19

2.1 Methods of Single-Variable Optimization 19

2.2 Dichotomous Search . 21

2.3 Interval-Halving . 29

2.4 Fibonacci Numbers . 30

2.5 Golden-Section Search . 40

3 Numerical Equation Solving 47

3.1 Introduction . 47

3.2 Background Facts and Definitions . 48

3.3 Background on Linear Transformations 52

3.3.1 Rotations . 53

3.3.2 Reflections . 56

3.3.3 Projections . 57

3.4 The Numerical Solution of Determined Linear Systems of Equations . 59

3.4.1 Roundoff Error of the Solution and Condition Numbers 60

3.4.2 LU-Decomposition, a.k.a. Gaussian Elimination 61

3.4.3 Cholesky Decomposition . 62

3.5 The Least-square Solution of Overdetermined Linear Systems 62

3.5.1 The Normal Equations for Plain Least Squares 63

3

3.5.2 The Normal Equations for Weighted Least Squares 66

3.5.3 The Numerical Solution of Least-square Problems 67

3.6 Nonlinear-equation Solving: the Determined Case 73

3.6.1 The Newton-Raphson Method 75

3.7 Overdetermined Systems of Nonlinear Equations 79

3.7.1 The Newton-Gauss Method 79

3.7.2 Convergence Criterion . 80

3.8 Computer Implementation Using ODA—

C-Library of Routines for Optimum Design 85

4 Unconstrained Optimization 87

4.1 Introduction . 87

4.2 The Normality Conditions . 87

4.3 Methods of Solution . 89

4.4 Direct Methods . 90

4.4.1 The Hooke and Jeeves Method 90

4.4.2 The Powell Method (Conjugate Directions) 91

4.4.3 The Nelder-Mead Simplex Method 96

4.5 Gradient Methods . 100

4.5.1 The Method of Steepest Descent(Cauchy) 100

4.5.2 The Conjugate-Gradient Method (Fletcher-Reeves) 101

4.5.3 Quasi-Newton Methods . 109

4.6 Newton Methods . 111

4.6.1 The Newton-Raphson Method 111

4.6.2 The Levenberg-Marquardt Method 112

5 Equality-Constrained Optimization: Normality Conditions 115

5.1 Introduction . 115

5.2 The First-Order Normality Conditions 116

5.2.1 The Primal Form . 116

5.2.2 The Dual Form . 119

5.3 The Second-Order Normality Conditions 123

5.3.1 A Mechanical Interpretation of the Lagrange Multipliers . . . 141

5.4 Linear-Quadratic Problems . 143

5.4.1 The Minimum-Norm Solution of Underdetermined Systems . . 143

5.4.2 Least-Square Problems Subject to Linear Constraints 149

4

5.5 Equality-Constrained Nonlinear Least Squares 151

5.6 Linear Least-Square Problems Under Quadratic Constraints 153

6 Equality-Constrained Optimization:

The Orthogonal-Decomposition Algorithm 161

6.1 Introduction . 161

6.2 Linear Least-square Problems Subject to

Linear Equality Constraints: the ODA 162

6.3 Equality-Constrained Nonlinear Least-Square Problems 166

6.3.1 A Geometric Interpretation of the ODA 182

6.4 Equality-Constrained Optimization with Arbitrary Objective Function190

6.4.1 A Sequential-Quadratic Programming Approach 192

6.4.2 A Gradient-based Approach 222

7 Inequality-Constrained Optimization 223

7.1 Introduction . 223

7.2 The Karush-Kuhn-Tucker Conditions 224

7.3 Second-Order Normality Conditions 231

7.3.1 Overconstrained Problems . 233

7.4 Methods of Solution . 234

7.5 Indirect Methods . 236

7.5.1 Slack Variables . 236

7.5.2 Penalty Functions . 239

7.6 Direct Methods . 244

7.6.1 The Generalized Reduced-Gradient Method 244

7.6.2 The Complex Method . 255

Bibliography 259

Index 263

6

Notation

0n: The n-dimensional zero vector

1: The n× n identity matrix, when n is obvious

1k: the k × k identity matrix, when k should be specified

A: q × n coefficient matrix of the linear system Ax = b

AI : the left Moore-Penrose generalized inverse (LMPGI) of the full-rank q × n

matrix A, with q > n:

AI ≡ (ATA)−1AT (1)

b: q-dimensional vector of the linear system Ax = b

C: p × n, with p < n, coefficient matrix of the underdetermined linear system

Cx = d

C†: the right Moore-Penrose generalized inverse (RMPGI) of the full-rank p × n
matrix C, with p < n:

C† ≡ CT (CCT)−1 (2)

d: p-dimensional vector of the linear system Cx = d

f : scalar objective function f(x) to be minimized

g(x): p-dimensional nonlinear vector function of the set of inequalities g(x) ≤ 0

G: p× n Jacobian matrix of vector function g(x) w.r.t. x

H: the n× n Hessian matrix of the objective function f(x)

Hi: ith Householder reflection used to render a rectangular matrix into upper-

triangular form; a square matrix

7

h(x): l-dimensional nonlinear vector function of x, occurring in the equality con-

straints h(x) = 0

J(x): l × n gradient of h w.r.t. x

L: lower-triangular matrix of the LU-decomposition of a square matrix A. Also

used to denote the orthogonal complement of C or G; confusion is avoided

because of the two different contexts in which these matrices occur

l: number of equality constraints hi(x) = 0, for i = 1, . . . , l, expressed in vector

form as h(x) = 0

m: number of equations φi(x) = 0, for i = 1, . . . , m, expressed in vector form as

φ(x) = 0

n: number of design variables xi, for i = 1, . . . , n, expressed in vector form as x

Omn: the m× n zero matrix

p: number of constraint equations gi(x) = 0, for i = 1, . . . , p, expressed in vector

form as g(x) = 0 or Cx = d

q: number of equations in Ax = b

IRn: the n-dimensional vector space defined over the real field IR

U: (square) upper-triangular matrix

V: m×m lower-triangular matrix, a factor of W, i.e., W = VTV

W: m×m symmetric and positive-semidefinite weighting matrix

x: n-dimensional vector of design variables

xo: minimum-norm solution of an underdetermined linear system

xL: least-square solution of an overdetermined linear system

xi: the ith component of vector x

xk: the kth entry of a sequence x0,x1, . . .

∇: the gradient operator, pronounced “nabla”; when its operand is a scalar, it

yields a vector; when a vector, it yields a matrix

8

∇∇: the Hessian operator; its operand being a scalar, it produces a square, sym-

metric matrix

‖ · ‖: a norm of either vector or matrix (·)

9

10

Chapter 1

Preliminaries

1.1 The Role of Optimization Within the Design

Process

The English word design derives from the Latin word designare, which means “to

mark out”—as found, for example, in the Random College Dictionary. The word

thus implies a goal, an objective. As such, the meaning of the word is extremely

broad, encompassing the general activity of producing concepts aimed at a given

goal, be this pure intellectual pleasure, in the realm of art, or pragmatic, in the

realm of engineering.

The product of the design activity is a good, whether tangible, e.g., a fountain

pen in the realm of industrial design, or intangible, e.g., a business plan, in the

realm of management. We focus here on engineering design, but this does not mean

that we exclude intangible goods. An important branch of engineering is production

systems, whereby the design good is many a time intangible, such as the organization

of a healthcare system.

Design is an extremely complex process. Various models have been proposed in

the literature, e.g., the one proposed by French (1992) and shown in Fig. 1.1, which

divides the process into two parts, (i) stages/descriptions and (ii) activities. The

process is represented as a flow diagram, in which stages or descriptions are included

in circles, while activities in rectangles. In this model, the process starts with a need

and ends with “working drawings.” In-between, we have a sequence, starting by the

analysis of the problem, an activity, followed by the statement of the problem, a

stage. Once the problem has been formulated, in design engineering terms, we

11

suppose, as opposed to “client-needs” terms, the activity leading to the conceptual

design follows, out of which comes (come) the “selected scheme(s),” apparently a

description. Then comes the “embodiment of scheme(s),” i.e., of the scheme(s)

selected in the previous part. The embodiment is then followed by the “detailing”

of the designed object, also an activity.

Figure 1.1: French’s model of the design process

However, the design process is recognized as being anything but a one-way street.

Two feedback loops are thus included in French’s model: one at the conceptual

design level, in which a revision may indicate that the problem needs further analysis,

and hence, the designer or the design team must return to the first activity. A second

loop arises at the embodiment level, at which the designer may realize that either a

revision of the conceptual design is needed, or even a revision of the problem analysis

is warranted.

The foregoing model contemplates the design process as a consultant’s activity,

in which a consultant—an individual or a company—participates in a project within

12

an organization, to either develop a new product or improve an existing one. The

model does not contemplate the prototyping aspects—usually outside of the scope

of the consultant’s activities—that lead to the realization of the design motivated

by the client’s need. Prototyping is needed when either an innovative product is

under design or when an improvement on an existing design is planned that will

affect thousands or millions of produced objects. Prototype tests may bring about

various feedback loops in turn. We propose in Fig. 1.2 an alternative model that

should help better understand the role of optimization within the design process

and its place therein.

In the model of Fig. 1.2, the design process is initiated by a client’s need. The

designer then translates the need into a form that allows the designer to analyze

the client’s needs within a design context, which is the block indicated as “Problem

Definition.” Once the problem is well-defined, free of the fuzziness of the client’s

description, a search for alternative solutions begins, leading to a design candidate.

These activities take place within the “Preliminary Design1” box in the proposed

model. Once a design candidate has been selected, a detailed design follows, as

included in the dashed box of the same model. In this phase, the input is a prelim-

inary design solution, devoid of details. That is, the preliminary design is nothing

but a rough layout needing an embodiment, i.e., a detailed definition in terms of

materials, dimensions, and so on. The first step in this stage is the synthesis of the

embodiment, i.e., a topological layout of the design—number of moving parts; types

of moving parts; individual functions of the parts; etc.—involving only a qualitative

description of the design structure. Once a topological layout has been produced, its

design features are identified and labelled, probably using mathematical symbols,

such as ℓ for length; m for mass; R for resistor; P for compressive load; T for tensile

load; etc.

A key step in the dashed box consists in assigning numerical values to the fore-

going features, which is a task calling for discipline-specific knowledge—fluid me-

chanics; structural engineering; machine design; multibody dynamics; etc.—either

theoretical or empirical. Out of this knowledge comes a mathematical model relat-

ing all the foregoing features. The importance of a mathematical model cannot be

overstressed, as it is the foundation on which optimization methods rely. A detailed

discussion, with a few examples, on mathematical modelling, and modelling at large,

in fact, is given by Papalambros and Wilde (2000).

Once a mathematical model of the object under design is available, numerical

1Also known as Conceptual Design.

13

values can be assigned to its features using most often good engineering judgment,

which comes only from experience and common sense. As a means of verifying

decisions on dimensioning, the designer can resort to well-developed design methods

leading systematically to the best possible values of those features, while satisfying

the client’s needs and budgetary constraints. Under “budgetary” we understand

not only financial resources, but also time, for deadlines must be respected. How to

assign values systematically to the foregoing features is the role of optimization.

Optimization is thus a process by which the decision-maker, in our case the

designer, arrives at optimum values of the features defining the design solution pro-

posed. A set of optimum values has been achieved when a cost has been minimized

or a profit has been maximized, while respecting the mathematical model, i.e., the

functional relations among all quantities at stake and the budgetary constraints

expressed in the form of equality or inequality relations. Once all design features

have been determined, and validated by means of simulation using discipline-specific

tools—computational fluid dynamics code; finite element code; electromagnetic de-

sign code; code implementing Monte Carlo methods; etc.—an embodiment of the

design solution can be produced, probably as a virtual prototype. Such embodiment

is the output of the dashed box in Fig. 1.2.

The embodiment is then further developed to the last detail, in order to allow

for third parties, e.g., a machine-tool shop, to produce all the parts leading to the

physical prototype upon assembly. Finally, the physical prototype is subjected to

validation tests before it is certified and ready to go either into mass production

or to the client as an end user, thereby completing the design process. Current

trends dictate that the design contemplate not only delivery to the end user, but

also disposability of the designed object upon completion of its life cycle.

Engineering design problems have increasingly become model-based, in that their

complexity calls for a mathematical model describing not only the physical laws gov-

erning the operation of the product under design, but also corporative policies, gov-

ernment regulations (codes and standards) and legislation. The work of the design

engineer starts by producing a mathematical model that best reflects the relations

among all quantities involved, some which are constant values either provided by

the operating conditions—e.g., gravity acceleration g; number π; freezing temper-

ature at sea level, i.e., 273.2◦ K—or to be determined by the designer; some are

variable during the operation of the designed object—engine temperature, current

in a low-pass filter, speed of the electrode tip in arc-welding, etc. In model-based de-

sign, variables are usually grouped into state variables, output variables and control

14

Figure 1.2: The role of optimization within the design process

variables. State variables are those governed by the dynamics of the system under

modelling, e.g., altitude and angle of attack in aircraft-piloting; output variables

are those that are available to the operator via instruments, e.g., altitude, as this

is available to the pilot as an altimeter display; control variables are those that the

operator can set at will either manually or automatically by means of a feedback

control system, e.g., rate of climbing. Constant variables whose values are to be

determined optimally by the designer are usually called design variables, as these

attain different values within the optimization process, which more often than not

is iterative.

15

1.2 The Structure of Optimum Design Problems

In optimum design problems, the conditions under which the designed object will

operate are given by the client either explicitly or implicitly. The designer then

assumes that these bear ideal values that are representative, and do not change.

The fact of the matter is that the operation conditions entail values that are random

and hence, are known, if at all, only through their statistics, i.e., their probability

distributions. In this case, then, the designer can choose either the mean values of

the variables representing the operation conditions, or their extreme values, if safety

is the main design concern, as the nominal values of these variables.

The foregoing approach is classical, and will be followed here. An alternative

approach, due to Taguchi (1988), consists in admitting that the operation conditions

are not fixed, but varying in a random manner, beyond the control of the designer,

the purpose of the design task then being to select the design variables in such a way

that, under arbitrary variations of the operation conditions within a certain range,

the performance of the designed object exhibits “small” variations. This approach

is known as robust design. For an introductory course, we will not dwell on this

approach.

In an optimum design problem the designer formulates an objective function, to

be either minimized, when this function represents a cost, or maximized, when the

same represents a profit. As a matter of fact, profit-maximization can be readily

turned into cost-minimization if the profit is redefined as a cost by, for example,

reversing its sign or taking its reciprocal. Moreover, a large class of optimum design

problems lends itself to a least-square formulation, which inherently aims at mini-

mizing a sum of squares. For these reasons, and unless otherwise stated, we will aim

in this course at the minimization of an objective function f(x). In defining objec-

tive functions, it will prove convenient to use dimensionless quantities. As a matter

of fact, mathematical models based on dimensionless quantities have the merit that

their results can be more generally applicable, as every time the operation conditions

or design specifications change numerically, a simple scaling will yield the optimum

values applicable to the specific conditions or specifications.

The foregoing discussion contemplates one single objective function. However,

some applications problems lead to several objectives, which, moreover, are con-

flicting. Such is the realm of aircraft design, which calls for lightweight for fuel

economy. However, in aircraft design reliability plays a major role, which calls, in

turn, for stronger, and hence, heavier structural elements. Such situations are best

16

formulated as multi-objective optimization problems. We will not dwell on problems

of this kind in this course, but will provide an example, if time permits.

We illustrate the structure of an optimum design problem with the aid of a Case

Study in the subsection below:

1.2.1 Case Study: The Optimum Design of the Links of a

Robotic Wrist

See:

Bidaud, F., Teng, C.-P. and Angeles, J., 2001, “Structural Optimization of a Spher-

ical Parallel Manipulator Using a Two-Level Approach,” Proc. ASME 2001 Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference, Pittsburgh, Pennsylvania, September 9–12.

17

18

Chapter 2

Single-Variable Optimization

2.1 Methods of Single-Variable Optimization

While real-life design problems involve multiple variables, some techniques developed

to find the optimum of these problems rely on a search along each of the variables at a

time. Moreover, the designer in many instances is interested in the role played by one

single variable, in which case the search for the optimum value can be conducted with

techniques specific to this case. For this reason, it is convenient to study techniques

applicable to the solution of single-variable optimization problems, which is the

subject of this chapter. We start by introducing a definition:

A function f(x) is unimodal in the interval [0, 1] if it attains one single

extremum—a minimum or a maximum—within this interval.

Remarks:

• We will deal only with function minimization in explaining the methods of

interest—function maximization can be handled by paraphrasing the corre-

sponding method accordingly.

• A unimodal function need neither be continuous nor smooth.

• Defining the interval of interest as [0, 1] is not restrictive. If this interval is

[a, b], where a and b are any real numbers, then a simple linear transformation

of the variable in question can lead to the above interval.

We introduce, moreover, the basic assumption: Function f(x), to be mini-

mized, is unimodal in the interval [0, 1], which means that f(x) attains exactly one

minimum (or one maximum) in the given interval.

19

As a consequence of the above definition, we have

Lemma 2.1.1 Let f(x) be unimodal in [0, 1] and attain a minimum within this

interval. Then, its maximum lies necessarily at the extremes of the interval, i.e.,

either at x = 0 or at x = 1.

The proof of this lemma is left to the reader as an exercise. Moreover, note that:

• The objective function can be evaluated only at a discrete, finite set of sam-

ple values of its argument x, { xi }n1 . Each function evaluation, f(xi) ≡ fi,

is termed an experiment. The name is quite appropriate because in some in-

stances it may happen that the evaluation of function f(x) can be done only

by physical experiments, e.g., when this function is the steady-state tempera-

ture of an engine, that is known to change as the proportion of a mixture of

fuel and air varies;

• We assume that the interval in which the minimum lies is known, and termed

the interval of uncertainty (i.o.u) of the problem at hand. Upon a suitable

transformation of the design variable, this interval is mapped into the normal

interval [0, 1], which is of unit length. The length of the interval of uncer-

tainty when the series of experiments is initiated is thus 1, the purpose of the

minimization exercise being to bring down the interval of uncertainty to an

acceptable low, which is dictated mostly by the cost of each experiment;

• If the cost of each experiment is not an issue, then the function can be evaluated

in a rich sample of argument values within the interval [0, 1] and plot the

corresponding values; the optimum can then be located by inspection, possibly

at the click of a mouse. This is termed an exhaustive search;

• If the foregoing cost is high, then proceed iteratively: At each iteration, the

interval of uncertainty is cut by a certain factor using a suitable strategy, i.e.,

a search method;

• Any strategy exploits the unimodality assumption. We can cite four strategies

that are the most commonly employed:

- Dichotomous search

- Interval-halving

- Fibonacci numbers

- Golden search.

20

2.2 Dichotomous Search

Figure 2.1: Dichotomous search

The qualifier “dichotomous” derives from

Greek, meaning to cut into two parts.

The strategy to follow thus consists in

splitting the interval into two subinter-

vals, not necessarily of the same length,

with one not containing the minimum, and

is hence, rejected; the other subinterval

then is bound to contain the minimum

sought.

The search strategy of this method is de-

scribed below:

• Assume that, at iteration i, the current search interval is Ii = [l, r], of length

Li = r − l < 1 (Fig.2.1);

• locate two points of abscissae x1 and x2 around the centre of the interval: For

a “small” δ > 0, prescribed by the user,

x1 ≡
r + l − δ

2
, x2 ≡

r + l + δ

2
; fi ≡ f(xi); f1 6= f2

Note: If f1 = f2, then we have two cases: (i) f(x) is symmetric about x =

(r + l)/2, in which case the minimum lies at x = 1/2, and we are done; and

(ii) f(x) is not symmetric about x = 1/2, in which case we just change δ, and

eliminate this special case.

• if f2 > f1, then eliminate the interval segment to the right of x2, the new

search interval being [l, x2]. If, on the contrary, f1 > f2, then eliminate the

interval segment to the left of x1, the new search interval being [x1, r].

• After the last pair of experiments, one is left with two values, x1, and x2. The

obvious choice as the “optimum” is the mean value of these, xopt = (x1+x2)/2.

Notice that the new search interval Ii+1 is of length Li+2 = (Li + δ)/2, i.e., slightly

over one half the length of the previous one.

Now we determine the length L2k of interval I2k after 2k experiments—this

number is always even! To this end, we notice how the length of the i.o.u. evolves

21

as the search progresses:

L2 =
1

2
+
δ

2

L4 =
L2

2
+
δ

2
=

1

4
+
δ

4
+
δ

2

=
1

4
+

3δ

4

L6 =
L4

2
+
δ

2
=

1

8
+

3δ

8
+
δ

2

=
1

8
+

7δ

8
...

The length of the interval after 2n experiments is thus

L2n =
1

2n
+

(

1− 1

2n

)

δ (2.1)

Usually, L2n is prescribed, but n is not. Computing n from L2n is, nevertheless,

straightforward, as described below: Solving eq.(2.1) for 2n yields

2n =
1− δ
L2n − δ

(2.2)

and hence, upon taking ln(−) of both sides and solving for n

n =

⌈
ln[(1− δ)/(L2n − δ)]

ln(2)

⌉

(2.3)

where ⌈(·)⌉ is the ceiling function, defined as the smallest integer that is greater

than the real argument (·). Note: 1 > δ, 2n > 0 ⇒ L2n > δ.

Example 2.2.1 (Finding the Maximum Dexterity Posture of a Two-Phalanx

Robotic Finger) We study here the optimum dimensioning of the two-phalanx

robotic finger, as depicted in Fig. 2.2. The geometry of the finger is thus completely

specified by the angles that the phalanx axes make with given lines. In the figure,

only the angle θ made by the distal phalanx with the first one is indicated because

only this angle is relevant to the problem under study.

In optimizing the performance of robotic hands, one is interested in maximizing

their dexterity, a performance index that comes into play as explained below.

In robot control, a velocity v of the operation point of the end link is to be pro-

duced by a suitable set of joint rates, grouped in vector q̇, the relation between the

22

Figure 2.2: Two-phalanx robotic finger

two vectors being linear: Jq̇ = v. Hence, the Jacobian matrix J(q) must be inverted

in order to compute the joint-rate vector, for a given posture of the manipulator, as

specified by vector q, and a given desired velocity v. Dexterity measures, essentially,

how invertible the Jacobian matrix is. If we assume that a1 = l and a2 = l
√

2/2,

which bear the optimum proportion found by Salisbury and Craig (1982), then dex-

terity can be quantified by means of the product JTJ = ℓ2K, where K is given by

K ≡
[

3 + 2
√

2 cos θ 1 +
√

2 cos θ

1 +
√

2 cos θ 1

]

It should be apparent that, when θ = 0 or π, matrix K, that we shall term here the

dexterity matrix, is singular, and hence, not invertible, as is J. Between these two

values, 0 and π, there is one specific value θo optimum, at which the dexterity matrix

is maximally invertible. To find θo, we start by defining the dexterity as the ratio of

the smallest (λm) to the largest (λM) eigenvalues of K. In this regard, note that K

is symmetric, and hence, its eigenvalues are real. Moreover, one can readily verify

that K is positive-definite, and becomes singular only for the two values of θ given

above. We thus have the dexterity function D(θ) defined below:

D(θ) =
λm

λM

≥ 0, 0 ≤ D(θ) ≤ 1

Now, maximizing D(θ) is equivalent to minimizing f(θ) ≡ 1/D(θ), which will

be defined as the loss of dexterity, and becomes, then, the objective function of the

problem at hand. Given the form of the objective function, then, each experiment

involves four steps:

1. For a given value of θ, compute the two eigenvalues of K, a task that can be

readily implemented using an eigenvalue routine, a quadratic-equation solver,

or even the Mohr circle Angeles (2011).

2. Order the two eigenvalues in ascending order: λm, λM .

23

3. Compute D(θ) as

D(θ) =
λm

λM

≥ 0

4. Compute f(θ) as

f(θ) =
1

D(θ)
0 ≤ f(θ) <∞

An expert roboticist claims that the dexterity is maximum—the finger is at the

peak of its positioning accuracy—when θ lies “somewhere between 90◦ and 150◦.”

Find an estimate of θopt within an interval of uncertainty of 5% of the given interval

length of 60◦.

Solution: We implemented the dichotomous search in the Maple worksheet described

below, which is posted in the course Web page.

> restart: with(linalg):

We start by producing a procedure K that will allow us to evaluate matrix K for a

given value θ:

> K:=proc(theta)

matrix([[3+2*sqrt(2)*cos(th),1+sqrt(2)*cos(th)],

[1+sqrt(2)*cos(th), 1]])

end;

K := proc(θ)

matrix([[3 + 2 ∗ sqrt(2) ∗ cos(th), 1 + sqrt(2) ∗ cos(th)], [1 + sqrt(2) ∗ cos(th), 1]])

end proc

> argu:= 3*Pi/4; K(argu);

Testing procedure, which should yield the 2 by 2 identity matrix for

this value of argument theta:

argu :=
3

4
π

[

1 0

0 1

]

Apparently, procedure is OK.

24

We introduce now a transformation that maps θ, given in degrees, into the normal

interval [0, 1]. Let the associated “normal” variable be x, to be produced by a

second procedure x. By the same token, we need a third procedure θ to return the

angle in radians, for a given value of x. Thus,

> x:=proc(th)(th-Pi/2)/(5*Pi/6-Pi/2)

end;

x := proc(th) 3 ∗ (th− 1/2 ∗ π)/π end proc
> thet:=proc(x)(Pi/3)*x+Pi/2

end;

thet := proc(x) 1/3 ∗ π ∗ x+ 1/2 ∗ π end proc

Now we determine the number 2k of experiments needed to attain the prescribed

length of the i.o.u. We recall that the length L2k of this interval is given by

L2k =
1

2k
+ δ

(

1− 1

2k

)

(2.4)

> L[2*k]:=(1/2^k)+delta*(1-(1/2^k));

L2 k :=
1

2k
+ δ (1− 1

2k
)

Let 2k = N . Then,

> N:=solve(L_N= (1/N) + delta*(1 - 1/N), N);

N :=
−1 + δ

−L N + δ
We want the length of the final i.o.u. to be 5% of original length, for a value of

δ of 0.01:

> delta:=0.01; L_N:= 0.05;

δ := 0.01

L N := 0.05

> N:=subs((delta=0.01, L_N=0.05), N);

N := 24.75000000

25

Hence,

> k:=ceil(solve(2^k=N,k));

k := 5

where the Maple ceil(·) command has been used.

We thus need 2k = 10 experiments. Hence, the two points x 1 and x 2 within I0 are

defined as

> x[1]:= (1-delta)/2; x[2]:=(1+delta)/2;

x1 := .4950000000

x2 := .5050000000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1]));

K2:=evalf(K(theta[2]));

θ1 := 2.089159115

θ2 := 2.099631090

K1 :=

[

1.598631263 .2993156313

.2993156313 1.

]

K2 :=

[

1.572980385 .2864901922

.2864901922 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .8760194061, 1.722611857

µ := .8813318770, 1.691648508

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.966408330

f2 := 1.919422810

f1 > f2 ⇒ delete subinterval [0, x1]. Let l and r denote, respectively, the abscissae

of the left and right ends of the new subinterval:

> l:=x[1]; r:=1; L:=r-l;

l := .4950000000

r := 1

L := .5050000000

L is length of i.o.u. at the end of the first two experiments. Carry on:

26

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := 0.7425000000

x2 := 0.7525000000
> theta[1]:=evalf(thet(x1));

theta[2]:=evalf(thet(x2));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

θ1 := 2.348340509

θ2 := 2.358812484

K1 :=

[

1.015769486 .0078847430

.0078847430 1.

]

K2 :=

[

.994770873 −.002614564

−.002614564 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .9967340325, 1.019035453

µ := .9936878850, 1.001082988

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.022374495

f2 := 1.007442078

f1 > f2 ⇒ delete subinterval [l, x 1]. Redefine l and r :

> l:=x[1]; L:=r-l; #r remains unchanged

l := .7425000000

L := .2575000000

L is length of i.o.u. at the end of 3rd & 4th experiments. Carry on:

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := .8662500000

x2 := .8762500000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

27

θ1 := 2.477931206

θ2 := 2.488403181

K1 :=

[

.771929030 −.114035485

−.114035485 1.

]

K2 :=

[

.753805937 −.123097032

−.123097032 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .7246939855, 1.047235044

µ := .7028174767, 1.050988460

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.445072079

f2 := 1.495393178

The ensuing computations follow the same pattern. In the interest of brevity, we

record here only the last two experiments:

At the end of 7th and 8th experiments, we have

r := .8143750000

L := .0718750000

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := 0.7734375000

x2 := 0.7834375000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

θ1 := 2.380738183

θ2 := 2.391210159

K1 :=

[

.951519906 −.024240047

−.024240047 1.

]

K2 :=

[

.931208945 −.034395528

−.034395528 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .9414793498, 1.010040556

µ := .9169618507, 1.014247094

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

28

f1 := 1.072822847

f2 := 1.106095192

f2 > f1 ⇒ delete subinterval [x2,r]. Redefine l and r :

> r:=x[2]; L:=r-l; #l remains unchanged

r := .7834375000

L := .0409375000

L is length of i.o.u. at the end of 9th & 10th experiments. Since L is smaller than

0.05, we’re done. The best estimate of θopt is obviously the mid point of current

i.o.u., i.e.,

> x[opt]:=(l+r)/2; theta:=evalf(thet(x[opt]));

xopt := .7629687500

θ := 2.369775334

> K[opt]:=evalf(K(theta));

Kopt :=

[

.973023585 −.013488208

−.013488208 1.

]

> lambda:=eigenvals(K[opt]);

λ := .9674365862, 1.005586999

> f[o]:=lambda[2]/lambda[1];

fo := 1.039434536

> theta[opt]:=evalf(th*180/Pi);

θopt := 135.7781250

Note that optimum value of theta is 135◦, i.e., 3π/4 rad, which yields a value of

f =1.0.

2.3 Interval-Halving

To be included.

29

2.4 Fibonacci Numbers

Fibonacci numbers are named after the Italian mathematician Leonardo Pisano

(1175), son of Guglielmo Bonaccio, and hence, referred to as Filius Bonacci in Latin,

or Fibonacci for brevity (Livio, 2002). These numbers form a sequence, defined

recursively as

F0 = F1 = 1 (2.5a)

Fk = Fk−2 + Fk−1 (2.5b)

Remark: The sequence is monotonically increasing, for all numbers are positive

integers and the current one equals the sum of the two previous ones. From eq.(2.5b),

Fk − Fk−1 = Fk−2 (2.6)

Moreover, by virtue of the above remark,

Fk−1 > Fk−2 (2.7)

Upon addition of eq. (2.6) to inequality (2.7) sidewise, we obtain

Fk − Fk−1 + Fk−1 > 2Fk−2

i.e.,
Fk−2

Fk
<

1

2
(2.8)

Furthermore, from eq.(2.5b),

Fk−1

Fk
= 1− Fk−2

Fk
(2.9)

Now we outline the strategy to follow in this method:

• Let I0 ≡ [0, 1] be the initial interval of uncertainty, of length 1, where the

minimum is known to lie.

• Prescribe the number n of experiments to be conducted

• Define a length L∗
2 as1

L∗
2 ≡

Fn−2

Fn

L0 ≡
Fn−2

Fn

(

<
1

2

)

(2.10)

where L0 is the length of the original interval, which has been defined as unity.

1Length L∗

1
is skipped because we want to make the subscript of L∗ match that of the corre-

sponding Fibonacci number; since F1 = F0, the first two Fibonacci numbers are undistinguishable,

and we can arbitrary set L∗

1
= 1. L1 = L0 as well.

30

0 1x1 x2

f1
f2

L∗

2

1− L∗

2
L∗

2

L2

×××××××

0 1x1 x2

f1
f2

L∗

2

1− L∗

2
L∗

2

L2

×××××××

(a) (b)

Figure 2.3: Shrinking of the i.o.u. when: (a) right subinterval is eliminated; (b) left

subinterval is eliminated

• Let P1(x1) and P2(x2) be two points equidistant from the left and the right

ends of I0, respectively, by a distance L∗
2, i.e., with abscissae

x1 = 0 + L∗
2 =

Fn−2

Fn
<

1

2
(2.11a)

x2 = 1− L∗
2 = 1− Fn−2

Fn
>

1

2
> x1 (2.11b)

0 rx1 x2

L
∗

3

x2 − L
∗

3
L
∗

3

ℓ 1x1 x2

L
∗

3

L
∗

3
1− x1 − L

∗

3

1− L
∗

2

(a) (b)

Figure 2.4: Subdivision of the new interval into three subintervals when: (a) right

subinterval is eliminated; (b) left subinterval is eliminated

Note that

x2 = 1− Fn−2

Fn

=
Fn − Fn−2

Fn

=
Fn−1

Fn

(2.11c)

Use the unimodality assumption to eliminate the subinterval, left or right, where

the minimum cannot lie. Whether the subinterval eliminated is the right or the

left, the length L2 of the new, shorter interval I2—again, such as we do not define

L∗
1, we neither define I1—is given by

L2 = 1− L∗
2 = 1− Fn−2

Fn
=
Fn − Fn−2

Fn
=
Fn−1

Fn
< 1 (2.12)

31

as depicted in Fig. 2.3.

Once the first iteration is completed, and as illustrated in Fig. 2.3,

• Let l and r > l denote, respectively, the abscissae of the left and the right ends

of the current, smaller interval of uncertainty I2. The abscissa of one of the

ends of I2, left or right, is either x1 or x2;

• if x1 is the abscissa of one of the ends of I2, case of Fig. 2.3(b), then x2 ∈ I2;
else, as in Fig. 2.3(a), x1 ∈ I2. Let xI be the abscissa of point PI , the interior

point of I2, either P1 or P2;

• note that PI lies a distance L∗
3 from one of the ends of I2. Now, define x3 ∈ I2,

so that its associated point P3 also lies a distance L∗
3 from the other end, as

depicted in Fig. 2.4;

• the process is continued until the interval In, of length Ln, is obtained. Ln is

the length of the final interval of uncertainty.

The abscissa xj computed at the jth experiment is determined by length L∗
j , so

that its associated point Pj , as well as the interior point PI of interval Ij−1 are a

distance L∗
j from the ends of Ij , with L∗

j given by2

L∗
j =

Fn−j

Fn−(j−2)

Lj−1 (2.13a)

while the length Lj of the jth interval of uncertainty is3

Lj =
Fn−(j−1)

Fn
(2.13b)

Hence, for j = n,

Ln =
F1

Fn
(2.14)

which allows us to find n for a prescribed length Ln. Notice that, by virtue of

relations (2.8) and (2.10),

For n ≥ 2, L∗
n <

1

2
(2.15)

2see eq.(2.10), which is identical to eq.(2.13a) evaluated at j = 2; see also footnote 1.
3see eq.(2.12), which is identical to eq.(2.13b) evaluated at j = 2.

32

The Location of the Final Experiment

Let In−1 = [l, r], of length Ln−1, be the one-before-the-last interval of uncertainty.

According with eqs.(2.11a & b), the abscissae of the last two experiments, xn−1 and

xn, are given as

xn−1 = l + L∗
n (2.16a)

xn = r − L∗
n = l + Ln−1 − L∗

n (2.16b)

where L∗
n is given by eq.(2.13a), with j = n:

L∗
n =

F0

F2

Ln−1 =
1

2
Ln−1 (2.17)

Upon substitution of L∗
n, as given by eq.(2.17), into eq.(2.16b), it is apparent that

xn = l +
1

2
Ln−1 = xn−1

xn−1 and xn thus coinciding, and hence, the last experiment fails to produce two

distinct points in In−1. To cope with this outcome, we have to define points Pn−1

and Pn, of abscissae x1 and x2, in an alternative manner. For example, we can define

them as in the strategy employed by the dichotomous search, with a δ small enough

with respect to L∗
n.

Fibonacci numbers are tabulated in many manuals, with short tables available in

textbooks (Rao, 1996). Also note that scientific software is provided with Fibonacci

numbers. For example, Maple includes the command

with(combinat, Fibonacci):

that allows the user to invoke the Fibonacci number F(i) by typing

fibonacci(i)

However, note that not all Fibonacci sequences are identical. For example,

the first two Fibonacci numbers in Maple are defined as

f(0) = 0 and f(1) = 1

Example 2.4.1 (Finding the Maximum Dexterity Posture of a Two-Pha-

lanx Robotic Finger) For the problem of Example 2.2.1, apply the Fibonacci

search strategy using exactly 10 experiments.

33

Solution: We implement the Fibonacci search in a Maple worksheet:
> restart:

> with(linalg): with(combinat, fibonacci):

However, because of the way Maple defines the Fibonacci sequence, we must use

F (n + 1) when we would normally use F (n). Moreover, we shall also use K, θ and

x exactly as described in Subsection 2.2.

We want to have

L∗
2 =

F10−2

F10

, (2.18)

but must shift the subscript by 1:

> Lstar[2]:=evalf(fibonacci(9)/fibonacci(11));

Lstar2 := .3820224719
> l:=0; r:=1; L[0]:=r - l;
> # Abscissae of extremes of left- & right-hand

> sides of the initial (normal) interval, and length of this interval

l := 0

r := 1

L0 := 1

> x[1]:= l + L^star[2]; x[2]:= r - Lstar[2];

x1 := .3820224719

x2 := .6179775281
> theta[1]:=evalf(thet(x1));

> theta[2]:=evalf(thet(x2));
> K1:=K(theta[1]); K2:=K(theta[2]);

θ1 := 1.970849324

θ2 := 2.217940881

K1 :=

[

3− .7789343108
√

2 1− .3894671554
√

2

1− .3894671554
√

2 1

]

K2 :=

[

3− 1.205821535
√

2 1− .6029107675
√

2

1− .6029107675
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.8139310151

2.084489519

]

34

µ :=

[

.9389633883

1.355747444

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 2.561014976

f2 := 1.443876791

f1 > f2 ⇒ drop left end:

> l:=x[1]; L[2]:=L[0] - Lstar[2];

> Lstar[3]:=(fibonacci(8)/fibonacci(10))*L[2];

l := .3820224719

L2 := .6179775281

Lstar 3 := .2359550562

> x[1]:= l + Lstar[3]; x[2]:= r - Lstar[3];

x1 := .6179775281

x2 := .7640449438
> theta[1]:=evalf(thet(x[1]));

> K1:=K(theta[1]);
> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ1 := 2.217940881

K1 :=

[

3− 1.205821535
√

2 1− .6029107675
√

2

1− .6029107675
√

2 1

]

θ2 := 2.370902321

K2 :=

[

3− 1.434859867
√

2 1− .7174299337
√

2

1− .7174299337
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9389633883

1.355747444

]

µ :=

[

.9647545542

1.006047163

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

35

f1 := 1.443876791

f2 := 1.042801155

f1 > f2 ⇒ drop left end:

> l:= x[1]; L[3]:= L[2] - Lstar[3];

> Lstar[4]:= (fibonacci(7)/fibonacci(9))*L[3];

l := .6179775281

L3 := .3820224719

Lstar 4 := .1460674157

> x[1]:= l + Lstar[4]; x[2]:= r - Lstar[4];

x1 := .7640449438

x2 := .8539325843
> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);
> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ[1] := 2.370902321

K1 :=

[

3− 1.434859867
√

2 1− .7174299337
√

2

1− .7174299337
√

2 1

]

θ2 := 2.465032438

K2 :=

[

3− 1.559462054
√

2 1− .7797310268
√

2

1− .7797310268
√

2 1

]

> lambda:=<eigenvals(K1)>;
> mu:=<eigenvals(K2)>;

λ :=

[

.9647545542

1.006047163

]

µ :=

[

.7520453159

1.042542298

]

> f[1]:=lambda[2]/lambda[1];
> f[2]:=mu[2]/mu[1];

f1 := 1.042801155

f2 := 1.386275901

In the interest of brevity, we skip the intermediate results, and display only the last

two experiments:

36

> x[1]:= l + Lstar[8]; x[2]:= r - Lstar[8];

x1 := .7303370787

x2 := .7415730337

> theta[1]:=evalf(thet(x1)); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x2)); K2:=K(theta[2]);

θ1 := 2.335603527

K1 :=

[

3− 1.384795807
√

2 1− .6923979033
√

2

1− .6923979033
√

2 1

]

θ2 := 2.347369792

K2 :=

[

3− 1.401678651
√

2 1− .7008393253
√

2

1− .7008393253
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9913837386

1.050219250

]

µ :=

[

.9963286091

1.021398433

]

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.059346859

f2 := 1.025162204

> l:= x[1]; L[8]:= L[7] - Lstar[8];

> Lstar[9]:= (fibonacci(2)/fibonacci(4))*L[8];

l := .7303370787

L8 := .03370786516

Lstar 9 := .01123595505

Note that the length of the i.o.u. at the end of the 8th experiment is 3.4% of original

length, i.e., smaller than at the end of 10 experiments with the dichotomous search!

> x[1]:= l + Lstar[9]; x[2]:= r - Lstar[9];

x1 := .7415730338

x2 := .7528089888

> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);
> theta[2]:=evalf(thet(x[2]));

> K2:=K(theta[2]);

37

θ1 := 2.347369792

K1 :=

[

3− 1.401678651
√

2 1− .7008393253
√

2

1− .7008393253
√

2 1

]

θ2 := 2.359136057

K2 :=

[

3− 1.418367442
√

2 1− .7091837208
√

2

1− .7091837208
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9963286091

1.021398433

]

µ :=

[

.9929088850

1.001216643

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.025162204

f2 := 1.008367090

f1 > f2 ⇒ drop left end:

> l:= x[1]; L[9]:= L[8] - Lstar[9];

> Lstar[10]:= (fibonacci(1)/fibonacci(3))*L[9];

l := .7415730338

L9 := .02247191011

Lstar 10 := .01123595506

> x[1]:= l + Lstar[10]; x[2]:= r - Lstar[10];

x1 := .7528089889

x2 := .7528089887

As expected, x1 = x2. Let us estimate the optimum by dichotomous search over the

last i.o.u.: Let δ = Lstar10/10

> delta:= Lstar[10]/10;

δ := .001123595506
> x[1]:= (l + r - delta)/2;

> x[2]:= (l + r + delta)/2;

38

x1 := .7522471910

x2 := .7533707866

> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ1 := 2.358547744

K1 :=

[

3− 1.417537647
√

2 1− .7087688235
√

2

1− .7087688235
√

2 1

]

θ2 := 2.359724370

K2 :=

[

3− 1.419196745
√

2 1− .7095983727
√

2

1− .7095983727
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9943254329

1.000973602

]

µ :=

[

.9914931757

1.001459540

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.006686110

f2 := 1.010051874

f2 > f1 ⇒ delete [x2, r] and take as most likely estimate of the optimum the

midpoint of remaining interval [l, x1]:

> x[o]:=(l+x[1])/2; th_opt:=evalf(th(x[o]));
> K_opt:= K(th_opt);

xo := .7469101124

θopt := 2.352958768 −→ 134.8146◦

Kopt :=

[

3− 1.409630165
√

2 1− .7048150824
√

2

1− .7048150824
√

2 1

]

> lambda:=<eigenvals(Kopt)>;

λ :=

[

.9986575537

1.007824349

]

39

> f[opt]:=lambda[2]/lambda[1];

fopt := 1.009179118

2.5 Golden-Section Search

This method is similar to the method based on Fibonacci numbers, but its imple-

mentation is much simpler. The outcome is that its convergence is a bit slower than

that of the former. A major difference with the Fibonacci search is that the number

of elimination stages is not prescribed.

The basis of the golden-search method is the Fibonacci sequence. Indeed, the

golden-search strategy is derived from the Fibonacci search under the assumption

that n in the Fibonacci search is “large”; we denote a large n appropriately by N .

The length of the interval of uncertainty is shrunken at every iteration by the same

proportion, as opposed to the Fibonacci search.

In order to find the length Lk of the interval Ik at the kth iteration of the

golden search, we compute the corresponding lengths of the Fibonacci search for

n = N →∞, namely,

L2 = lim
N→∞

FN−1

FN

(2.19a)

L3 = lim
N→∞

FN−2

FN
= lim

N→∞

FN−2

FN−1

FN−1

FN
= lim

N→∞

(
FN−1

FN

)2

(2.19b)

In general,

Lk = lim
N→∞

(
FN−1

FN

)k−1

(2.19c)

Hence, all we need to implement this method is the above limit, which is computed

below:

Recall eq.(2.5b), for k = N :

FN = FN−1 + FN−2 (2.20a)

Therefore,
FN

FN−1
= 1 +

FN−2

FN−1
(2.20b)

Now we define the golden section or golden ratio φ as

φ ≡ lim
N→∞

FN

FN−1
(2.20c)

40

Upon taking limits, eq.(2.20b) can be rewritten as

φ = 1 +
1

φ

or

φ2 − φ− 1 = 0, φ > 0 (2.20d)

whence, with three decimals,

φ = 1.618 or φ = −0.618 (2.20e)

Obviously, we need only the positive root, and hence, Lk in eq.(2.19c) becomes

Lk =

(
1

φ

)k−1

= (0.618)k−1 (2.21)

Greeks in the classical period, around the fifth century B.C.E., coined the ex-

pression golden section to refer to a rectangle of divine proportions, whose base b

and height h observe the relation

b+ h

b
=
b

h
(2.22)

Figure 2.5: A rectangle with

sides obeying the divine pro-

portion

The foregoing equation readily leads to one on

the ratio b/h identical to eq.(2.20d), namely,

(
b

h

)2

− b

h
− 1 = 0

thereby showing that the positive solution to

eq.(2.22) is, indeed, φ, the golden section.

This relation is claimed to appear in the facade

of the Parthenon, although Livio (2002) disputed

brilliantly this claim and others along the same

lines. Nevertheless, the golden section is irrefutably

present in nature and in many artifacts4. Shown in Fig. 2.5 is a rectangle with sides

obeying the divine proportion.

To implement the search, we need the quantity L∗
2, which is defined below:

L∗
2 =

FN−2

FN
=
FN−2

FN−1

FN−1

FN
=

1

φ2
= 0.382 (2.23)

In general,

L∗
3 = x2 − x1, L

∗
4 = x3 − x2, . . . , L

∗
k = xk−1 − xk−2

4For example, Microsoft Word uses the golden-section ratio to proportion its margins.

41

Example 2.5.1 (Finding the Maximum Dexterity Posture of a Two-Pha-

lanx Robotic Finger) Repeat Example 2.2.1 using the golden-section search strat-

egy to reduce the i.o.u. to 5% of its original length.

Solution: We implement below the golden-section search strategy by means of a

Maple worksheet. We shall resort to the K, θ and x procedures introduced earlier.

Let us calculate φ:

> eq:=(x^2 - x - 1);

eq := x2 − x− 1

> racines:=<solve(eq, x)>;

racines :=







1

2
+

1

2

√
5

1

2
− 1

2

√
5







> phi:=evalf(racines[1]);

φ := 1.618033989

> ihp :=1.0/phi; #we’ll also need the reciprocal of phi

ihp := .6180339887

> Lstar[2]:=ihp ^2;

Lstar 2 := .3819660112

Now let us find n from the problem specification: Ln = 0.05, which, in light of

eq.(2.21), leads to
1

φn−1
= 0.05 (2.24)

> eq:= (n-1)*ln(ihp) - ln(0.05)=0;

eq := −.4812118251n+ 3.476944099 = 0

> n:=ceil(solve(eq, n));

n := 8
> l:=0; r:=1; #extremes of initial normal

> interval

l := 0

r := 1

> L[0]:= r - l; #length of initial interval

L0 := 1

42

> x[1]:=l+Lstar[2]; x[2]:=r-Lstar[2];

x1 := .3819660112

x2 := .6180339888
> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x2)); K2:=K(theta[2]);

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

θ1 := 1.970790199

K1 :=

[

3− .7788253964
√

2 1− .3894126982
√

2

1− .3894126982
√

2 1

]

θ2 := 2.218000007

K2 :=

[

3− 1.205915875
√

2 1− .6029579377
√

2

1− .6029579377
√

2 1

]

λ :=

[

.8138991148

2.084675447

]

µ :=

[

.9389910200

1.355586395

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 2.561343794

f2 := 1.443662789

f1 > f2 ⇒ drop the left end:

> L[2]:=L[0] - Lstar[2]; Lstar[3]:= x[2] - x[1];

> # You should be able to prove that ihp^3 = x_2 - x_1

L2 := .6180339888

Lstar 3 := .2360679776
> x[3]:= r - Lstar[3];

> # x[2] is now a distance Lstar_3 from new left end, x[1],

> to the left of x[3]

x3 := .7639320224
> theta[3]:=evalf(th(x[3])); K3:=K(theta[3]);

> lambda:=<eigenvals(K3)>;

θ3 := 2.370784070

43

K3 :=

[

3− 1.434695103
√

2 1− .7173475515
√

2

1− .7173475515
√

2 1

]

λ :=

[

.9650358237

1.005998904

]

> f[3]:=lambda[2]/lambda[1];f[2];

> #evaluate f[3] & recall f[2]

f3 := 1.042447212

f2 := 1.443662789

f2 > f3 ⇒ drop left end:

> L[3]:=L[2] - Lstar[3];

> Lstar[4]:= x3 - x2;

L3 := .3819660112

Lstar 4 := .1458980336

> x[4]:= r - Lstar[4];

x4 := .8541019664

> theta[4]:=evalf(thet(x[4])); K4:=K(th4);
> lambda:=<eigenvals(K4)>;

θ4 := 2.465209815

K4 :=

[

3− 1.559684146
√

2 1− .7798420728
√

2

1− .7798420728
√

2 1

]

λ :=

[

.7516661806

1.042607347

]

> f[4]:=lambda[2]/lambda[1];f[3];

> #evaluate f[4] & recall f[3]

f4 := 1.387061669

f3 := 1.042447212

Again, for brevity we introduce only the last two experiments. We have the interval

[x5, x6] and hence,

> L[6]:=L[5] - Lstar[6]; Lstar[7]:= x6 - x3;

L6 := .0901699440

Lstar 7 := .0344418544

44

> x[7]:= x[5] + Lstar[7];

x7 := .7426457872

> theta[7]:=evalf(thet(x[7]));

> K7:=K(theta[7]);lambda:=<eigenvals(K7)>;

θ7 := 2.348493177

K7 :=

[

3− 1.403280430
√

2 1− .7016402150
√

2

1− .7016402150
√

2 1

]

λ :=

[

.9967977596

1.018664025

]

> f[7]:=lambda[2]/lambda[1];f[3];

> #evaluate f[7] & recall f[3]:

f7 := 1.021936511

f3 := 1.042447212

f7 < f3 ⇒ drop right end and perform last experiment:

> L[7]:=L[6] - Lstar[7]; Lstar[8]:=x3-x7;

L7 := .0557280896

Lstar 8 := .0212862352

> x[8]:= x[5] + Lstar[8];

x8 := .7294901680

> theta[8]:=evalf(thet(x8)); K8:=K(theta[8]);

> lambda:=<eigenvals(K8)>;

θ8 := 2.334716645

K8 :=

[

3− 1.383515463
√

2 1− .6917577317
√

2

1− .6917577317
√

2 1

]

λ :=

[

.9910087350

1.052404934

]

> f[8]:=lambda[2]/lambda[1];f[7];

> #evaluate f[8] & recall f[7]:

f8 := 1.061953237

f7 := 1.021936511

45

f8 > f7 ⇒ delete left end and accept midpoint, of abscissa xo, as best estimate of

optimum:

> x[o]:= (x[8] + x[3])/2;

xo := .7467110952

Evaluate fo = f(xo):
> theta[o]:=evalf(thet(x[o]));

> Ko:=K(th[o]); lambda:=<eigenvals(Ko)>;

θo := 2.352750357

Ko :=

[

3− 1.409334444
√

2 1− .7046672222
√

2

1− .7046672222
√

2 1

]

λ :=

[

.9985709394

1.008329177

]

> L[8]:= x[3] - x[8];

> #Length of final i.o.u.

L8 := .0344418544

Notice that length of final i.o.u. is 3.4% the length of original i.o.u.

> f[opt]:=lambda[2]/lambda[1];

fopt := 1.009772203
> theta[opt]:= evalf(thet[o]*180/Pi);

> # theta_optimum in degrees

θopt := 134.8026657

46

Chapter 3

Numerical Equation Solving

3.1 Introduction

Multivariable optimization frequently calls for the solution of systems of equations

that can be linear, nonlinear, or a combination thereof. If linear, then a solution

can be found numerically by means of a direct method1, as opposed to iterative

methods. This is a major difference, because direct methods involve a fixed number

of operations; on the contrary, iterative methods involve a fixed number of operations

per iteration, but the number of iterations the method will take until convergence

is reached cannot be predicted. Furthermore, if the nonlinear equations of a system

are algebraic, i.e., multivariate polynomials, then the system can be reduced, at least

in principle, to a single univariate polynomial, if of a degree higher than that of any

of the individual equations.

When the objective function and the constraints are multivariate polynomials

in the design variables, the optimization problem leads to a system of multivariate

polynomials, if with extra variables, namely, the Lagrange multipliers, to be intro-

duced in Ch. 5. Under these conditions, it is possible to use elimination methods,

as implemented in computer-algebra code, to eliminate all but one of the design

variables, thereby ending up with a single univariate polynomial. Having reduced

the optimization problem to polynomial-root finding is advantageous, because the

roots of the polynomial provide all stationary points—as defined in Chs. 2 and 4,

these are points where the objective function ceases to change locally—and, hence,

1Some linear systems of a large number of unknowns and weakly coupled equations, frequently

arising in some contexts, like structural mechanics, can be solved to a great advantage using an

iterative method like Gauss-Seidel’s. Such methods are left out of this course.

47

all local minima. The global minimum can then be found by inspection.

As an alternative to univariate-polynomial reduction, the optimization problem

at hand can be reduced to two (or more) bivariate equations, polynomial or trigono-

metric, whose plots appear as contours in the plane of those two variables. All

solutions can then be obtained visually, by contour-intersection.

Prior to the discussion of equation-solving, we revisit the fundamental concepts

of linear algebra that will be needed in the sequel. Then, we recall the basic problem

of solving a system of n linear equations in n unknowns, what is called a determined

system. The issue of roundoff-error amplification is given due attention, which takes

us to the concept of condition number.

As a natural extension of the above problem, we undertake the problem of linear

least squares. That is, we now study the solution of a system of q linear equations in n

unknowns, when q > n, what is called an overdetermined system of linear equations.

In this case, in general, it is not possible to find a single vector x that verifies the

redundant and, most likely inconsistent, set of equations. Hence, we aim at finding

the best fit in the least-square sense, i.e., the vector x that approximates the whole

set of q equations with the minimum Euclidean norm. We derive a closed-form

expression, i.e., a formula, for the best fit x directly from the normality conditions

(NC) of the problem at hand. This derivation readily leads to the left Moore-Penrose

generalized inverse (LMPGI) of the coefficient matrix, which is rectangular, and for

which an inverse proper cannot be defined. It is shown that computing the best fit

directly from the NC is prone to ill-conditioning, a phenomenon characterized by a

“large” roundoff-error amplification. Hence, the reader is strongly advised against

computing the best fit with the said formula. Instead, orthogonalization algorithms

are to be used. The difference between a formula, like that giving the best fit in

terms of the LMPGI, and an algorithm is stressed here: The LMPGI is seldom

needed as such, in the same way that the inverse of a nonsingular (square) matrix is

seldom needed. Therefore, the verbatim computation of such a generalized inverse

is to be avoided.

3.2 Background Facts and Definitions

We begin by recalling the concept of vector and matrix norms:

A norm is to an array of numbers, be it a column vector, a row vector, or a matrix,

what the absolute value is to real numbers and the module is to complex numbers.

48

Vector norms can be defined in various ways:

The Euclidean norm: The best known. For a n-dimensional vector a with

components ai, for i = 1, . . . , n:

‖a‖E ≡
√

a2
1 + · · ·+ a2

n (3.1)

Computing this norm thus requires n multiplications, n additions, and one

square root. Not very “cheap” to compute!

The Chebyshev norm, a.k.a. the maximum norm, or the infinity norm:

‖a‖∞ ≡ max
i
{|ai|}n1 (3.2)

Notice that this norm requires no floating-point operations (flops), which

makes it quite economical in iterative processes that require a monitoring

of the norm of a vector or a matrix quantity as a convergence criterion.

The p-norm:

‖a‖p ≡
(

n∑

j=1

|ai|p
)1/p

(3.3)

This is the most general case. For p = 2, the p-norm becomes the Euclidean

norm; for p→∞, the p-norm becomes the Chebyshev norm.

Likewise, matrix norms can be defined in various ways:

• The Euclidean norm, a.k.a. the 2-norm: the square root of the largest (non-

negative) eigenvalue of the positive-semidefinite product of the matrix by its

transpose, regardless of the ordering of the factors. For example, for the n×n
matrix A,

‖A‖E ≡ max
i
{
√

λi} (3.4)

where { λi }n1 is the set of non-negative eigenvalues of AAT , or of ATA for

that matter. This norm is also called the spectral norm.

• The Frobenius norm: the square root of the sum of the squares of the entries

of the matrix. For the same matrix A,

‖A‖F ≡

√
√
√
√

n∑

j=1

n∑

i=1

a2
ij ≡

√

tr(AAT) (3.5)

49

• The Chebyshev norm or infinity norm: the maximum absolute value of the

entries of the matrix. For the above matrix A,

‖A‖∞ ≡ max
i,j
{|aij |} (3.6)

• The p-norm:

‖A‖p ≡
(

n∑

j=1

n∑

i=1

|aij |p
)1/p

(3.7)

For p = 2, the p-norm becomes the Frobenius norm; for p → ∞, the p-norm

becomes, such as in the vector case, the Chebyshev norm.

Remarks:

• The trace of A, tr(A), is defined as the sum of its diagonal entries:

tr(A) ≡∑n
i=1 aii.

• The counterpart of the vector Euclidean norm is not the Euclidean matrix

norm, but rather the Frobenius norm.

• The counterpart of the vector Chebyshev norm is the matrix Chebyshev norm.

Furthermore,

Definition 3.2.1 A n×n matrix A is symmetric if it equals its transpose: A = AT

Definition 3.2.2 A n × n matrix A is skew-symmetric if it equals the negative of

its transpose: A = −AT

Exercise 3.2.1 Prove that the eigenvalues of ATA, or of AAT for that matter, with

A defined as a n×n matrix, are the modules of the, in general complex, eigenvalues

of A.

Fact 3.2.1 (The Matrix Cartesian Decomposition) Every n×nmatrix A can

be decomposed into the sum of a symmetric and a skew-symmetric components:

A = As + Ass (3.8a)

As =
1

2
(A + AT) (3.8b)

Ass =
1

2
(A−AT) (3.8c)

50

Equation (3.8a) is termed the Cartesian decomposition of A, because of its re-

semblance with the Cartesian representation of a complex number z as x+ jy, with

x, y ∈ IR and j =
√
−1. Notice that the Cartesian decomposition is unique.

Exercise 3.2.2 Prove that the eigenvalues of a skew-symmetric matrix are either 0

or imaginary. Hint: Show first that, given any n × n matrix A, the eigenvalues of

A2 are the squares of the eigenvalues of A, and that the two matrices, A and A2,

share the same eigenvectors.

The eigenvalues of the symmetric component are real and its eigenvectors are

mutually orthogonal. As a consequence of Exercise 3.2.2, moreover, the eigenvalues

of Ass of the same equation are either 0 or imaginary.

Definition 3.2.3 A quadratic form q of a n-dimensional vector x is associated with

a n× n matrix A:

q ≡ xTAx (3.9)

Fact 3.2.2 The quadratic form associated with a skew-symmetric matrix vanishes

identically. That is, if A = −AT , then, for any n-dimensional vector x,

xTAx = 0 (3.10)

Proof: Note that, since q ≡ xTAx is a scalar, q = qT , and hence,

(xTAx)T = xTAx

Expanding the left-hand side,

xTATx = xTAx

However, by assumption, AT = −A, and hence,

−xTAx = xTAx

whence the proof follows immediately.

Definition 3.2.4 A n × n matrix A is positive-definite (positive-semidefinite) if it

is symmetric and, for every n-dimensional vector x, the quadratic form xTAx is

greater than (or equal to) zero.

51

Characterization of positive-definiteness (semidefiniteness): A n× n (sym-

metric) matrix A is positive-definite (positive-semidefinite) if and only if its eigen-

values are all positive (nonnegative).

Remarks:

• Negative-definiteness and negative-semidefiniteness are defined and character-

ized likewise;

• If a matrix is neither positive- nor negative-definite, or semidefinite, then it is

said to be sign-indefinite.

3.3 Background on Linear Transformations

The general form of a linear transformation mapping a vector space U of dimension

n into a m-dimensional vector space V is

v = Lu (3.11)

where u and v are n- and m-dimensional vectors, respectively, with u ∈ U and

v ∈ V. Apparently, L is a m× n matrix.

We distinguish two vector subspaces associated with L, namely,

The range of L, denoted by R(L): the set of vectors v that are images of

u under transformation (3.11). Notice that, if the n columns of L are not

linearly independent, then R(L) is not all of V, but only a proper subspace of

it, of dimension m′ < n, i.e., R(L) ⊂ V. The dimension of R(L), known as

the rank of L, is denoted by ρ(L).

The null space or kernel of L, denoted by N (L): the set of all vectors u

of U that are mapped by L into 0m, the zero of V. The dimension of N is

termed the nullity of L, and is denoted by ν(L). Obviously, ν < n, with ν = n

occurring only when L = Omn, Omn denoting the m× n zero matrix.

A fundamental result of linear algebra follows:

ρ(L) + ν(L) = n (3.12)

The most frequent linear transformations used in optimum design are studied in

the balance of this section. They all pertain to square matrices.

52

Example 3.3.1 Consider the linear transformation

L = 1− eeT

with e defined as a unit vector in IR3, the three-dimensional vector space defined

over the real field, a.k.a. the three-dimensional Euclidean space. That is, L maps

U = IR3 into itself, i.e., V = U in the above notation. More specifically, L maps

vectors in IR3 into vectors lying in a plane normal to e. By the same token, vectors

parallel to e are mapped into 03, the zero vector of IR3. Therefore, R(L) is a plane

normal to e and passing through the origin, while N (L) is a line parallel to e and

passing through the origin. Therefore, ρ = 2 and ν = 1, thereby verifying n = ρ+ ν.

3.3.1 Rotations

A rotation Q is an orthogonal transformation of U into itself, with a constraint on its

determinant, as we shall outline presently. Orthogonality requires that the inverse

of Q be its transpose, i.e.,

QQT = QTQ = 1 (3.13)

where 1 denotes the n× n identity matrix. Hence, taking the determinant of both

sides of the above equation,

det(QQT) = det(QTQ) = det(Q)T det(Q) = [det(Q)]2 = 1

whence

det(Q) = ±1

A proper orthogonal matrix Q is one whose determinant is positive, and hence,

det(Q) = +1 (3.14)

Proper orthogonal transformations of U into itself represent rotations about the

origin of U .

The best-known rotations are those in two and three dimensions. Thus, for two

dimensions, the 2 × 2 matrix Q rotating vectors through an angle φ ccw takes the

form

Q =

[
cosφ − sinφ

sinφ cos φ

]

(3.15a)

which can be expressed alternatively as

Q = (cosφ)12 + (sin φ)E2 (3.15b)

53

with 12 defined as the 2 × 2 identity matrix and E2 as a skew-symmetric matrix,

namely,

E2 ≡
[

0 −1

1 0

]

(3.15c)

The definition of the rotation matrix in three dimensions requires the concept of

cross-product matrix (CPM), which is introduced with the aid of the partial deriva-

tive of a vector with respect to another vector.

Partial differentiation with respect to vectors

Let u and v be vectors of spaces U and V, of dimensions n and m, respectively. The

partial derivative of a scalar function f(u,v) with respect to u is a m-dimensional

vector whose ith component is the partial derivative of f with respect to ui, with

a corresponding definition for the partial derivative of f with respect to v. The

foregoing derivatives, as all other vectors, will be assumed, henceforth, to be column

arrays. Thus,

∂f

∂u
≡








∂f/∂u1

∂f/∂u2
...

∂f/∂un







,

∂f

∂v
≡








∂f/∂v1

∂f/∂v2
...

∂f/∂vm








(3.16)

Furthermore, let v = v(u). In order to derive ∂u/∂v, first the differential dv

upon a differential du is is computed:

dv =
∂v

∂u1
du1 +

∂v

∂u2
du2 + . . .+

∂v

∂un
dun (3.17a)

or, in array form,

dv =
[∂v

∂u1

∂v

∂u2
· · · ∂v

∂un

]

︸ ︷︷ ︸

∂v

∂u








du1

du2
...

dun








︸ ︷︷ ︸

du

(3.17b)

That is, the partial derivative of v with respect to u is a m × n array whose (i, j)

entry is defined as ∂vi/∂uj , i.e.,

∂v

∂u
≡








∂v1/∂u1 ∂v1/∂u2 · · · ∂v1/∂un

∂v2/∂u1 ∂v2/∂u2 · · · ∂v2/∂un
...

...
. . .

...

∂vm/∂u1 ∂vm/∂u2 · · · ∂vm/∂un








(3.18)

54

Example 3.3.2 (The cross-product matrix (CPM) of a vector) Let the com-

ponents of v and u in a certain reference frame F be given as

[v]F =





v1

v2

v3



 , [u]F =





u1

u2

u3



 (3.19a)

Then,

[v × u]F =





v2u3 − v3u2

v3u1 − v1u3

v1u2 − v2u1



 (3.19b)

Hence,
[
∂(v × u)

∂u

]

F

=





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (3.19c)

Henceforth, the partial derivative of the cross product of any three-dimensional

vector v will be denoted by the 3× 3 matrix V, which is termed the cross-product

matrix of vector v. Thus, the foregoing cross product admits the alternative repre-

sentations

v × u = Vu (3.20)

Note that given any 3-dimensional vector a, its cross-product matrix A is uniquely

defined. Moreover, this matrix is skew-symmetric. The converse also holds, i.e.,

given any 3× 3 skew-symmetric matrix A, its associated vector is uniquely defined

as well. This result is made apparent from Example 3.3.2.

The cross-product matrix is defined only for three-dimensional vectors. Let a

and x be two arbitrary three-dimensional vectors. We define

CPM(a) ≡ ∂(a× x)

∂v
≡ A ∀ x ∈ R

3 (3.21)

Because of the relation a× x = −x× a, the CPM is skew-symmetric.

The rotation matrix in three dimensions

In three dimensions, the rotation matrix takes the form

Q = eeT + cosφ(13 − eeT) + sinφE3 (3.22a)

55

where e is the unit vector indicating the direction of the axis about which the

rotation takes place, 13 is the 3× 3 identity matrix, and E3 is defined as

E3 ≡ CPM(e) (3.22b)

Rotations in higher dimensions can be defined as well, but then, the axis and

the angle of rotation are not unique.

3.3.2 Reflections

Reflections are improper orthogonal matrices, preserving the distance between any

two points of the n-dimensional space. For any n× n reflection R, we have

det(R) = −1 (3.23)

In two dimensions, a reflection R about a line passing through the origin normal

to the unit vector e maps a vector p into p′ in the form

p′ = p− 2(pTe)e = (1− 2eeT)p ≡ Rp

and hence, the reflection R sought is given by

R = 1− 2eeT (3.24)

In three dimensions, the reflection about a plane passing through the origin,

of unit normal e, takes exactly the same form as R in the two-dimensional case,

eq.(3.24). However, in this case, e is three-dimensional, while R is of 3 × 3, and 1

is the 3× 3 identity matrix.

In all foregoing instances, the reflections are represented by symmetric matrices,

and are hence termed pure reflections. However, this need not always be the case,

for reflections can combine with rotations, thereby yielding a new reflection—notice

that the product of a rotation by a pure reflection is a reflection!—but this time,

the matrix representing the reflection is no longer symmetric. A rotation can be

distinguished from a reflection by the sign of its determinant.

Remark: A reflection, like a rotation, defined on a n-dimensional vector space,

preserves the inner product of any two vectors. That is, rotations and reflec-

tions preserve both the magnitude of vectors—their Euclidean norm—and the angle

between any two vectors. For this reason, reflections and rotations—orthogonal

transformations—are said to preserve the geometry of IRn.

56

3.3.3 Projections

Henceforth, a projection P means an orthogonal projection onto a plane in n di-

mensions, which we call the projection plane. When n = 2, the “projection plane”

becomes a line in the plane.

Let us consider a plane Π in a n-dimensional space, of unit normal n. Any point

P in this space is given by its n-dimensional position vector p. Let the projection

of P onto Π be P ′, which is given by its position vector p′, namely,

p′ = p− (nTp)n = (1− nnT)p ≡ Pp (3.25)

where P is obviously defined as

P ≡ 1− nnT (3.26)

Matrix P is also called a projector. A projector P is represented by a symmetric,

singular, idempotent matrix. Symmetry is obvious; singularity is less so, but rather

straightforward. To prove that P is singular, all we have to do is prove that its null

space is non-empty. However, this is so because all vectors r of the form αn, for a

scalar α 6= 0, are mapped by P onto the zero vector. Indeed,

Pr = αPn = α(1− nnT)n = α(n− n) = 0

A matrix is idempotent of degree k when it equals its kth power, but is different

from any lower power. When k = 2, the degree is self-understood and need not be

spelled out. To prove idempotency, let us calculate

P2 = (1− nnT)(1− nnT) = 1− 2nnT + nnTn
︸︷︷︸

=1

nT = 1− nnT ≡ P

thereby completing the proof.

The foregoing projection has a nullity of 1, its nullspace being spanned by vector

n. In three-dimensional space, we can have projections onto a subspace of dimension

1, namely, a line L passing through the origin and parallel to the unit vector e. In

this case, the projection P ′ of P onto L is given by

p′ = (pTe)e ≡ e(eT p) = (eeT)p

whence the projection P sought takes the form:

P = eeT (3.27)

57

Notice that this projection is symmetric, singular and idempotent as well, its null

space being of dimension two. Indeed, we can find two mutually-orthogonal unit

vectors f and g, lying in a plane normal to e, which are mapped by P onto the

zero vector. These two linearly-independent vectors lie in the null space of P. For n

dimensions, the projection “plane” can in fact be a subspace of dimension ν ≤ n−1.

Also notice that the projection of eq.(3.25) maps vectors in three-dimensional

space onto the null space of the rank-one matrix nnT , while that of eq.(3.27) does

so onto the range of the rank-one matrix eeT . Now, the range of this matrix is the

null space of a matrix A defined as

A ≡
[

fT

gT

]

(3.28)

where f and g are mutually orthogonal unit vectors normal to e. Then, we can

define a projector P in the form

P = 1−ATA = 1− (ffT + ggT) (3.29)

This projector maps three-dimensional vectors onto the null space of A, which is

vector e, as the reader can readily verify.

In general, if we have a full-rank m×n matrix A, with m < n, then, rank(A) =

min{m, n } = m. This means that the m n-dimensional rows of A are linearly

independent. By virtue of the basic relation (3.12), then, ν = n −m. A projector

that maps n-dimensional vectors onto the null space of A is defined below:

P = 1−AT (AAT)−1A (3.30)

Note that, by virtue of the definition of f and g, matrix A of eq.(3.28) produces

AAT = 12, the 2× 2 identity matrix.

Exercise 3.3.1 Prove that P, as given by eq.(3.30), is a projector; then prove that

its projection maps n-dimensional vectors onto the null space of A.

Example 3.3.3 Let

A =

[
1 0 1

0 1 −1

]

≡
[
aT

1

aT
2

]

The null space of A is spanned by a unit vector u that can be found as

u ≡ b

‖b‖ , b ≡ a1 × a2

58

The projector P mapping vectors in three-dimensional space onto the null space of

A, spanned by u, is given by

P = 1−AT (AAT)−1A =
1

3





1 −1 −1

−1 1 1

−1 1 1





In this case,

b =





−1

1

1



 , u =

√
3

3





−1

1

1





Notice that the image of any vector p = [x, y, z]T under P can be expressed as the

product of a scalar times u:

Pp =
1

3





x− y − z
−x + y + z

−x + y + z



 =
1

3
(−x+ y + z)





−1

1

1



 =

√
3

3
(−x+ y + z)u

which apparently lies in the null space of A.

3.4 The Numerical Solution of Determined Lin-

ear Systems of Equations

We consider the system

Ax = b (3.31)

where

A: n× n matrix of known coefficients,

b: n-dimensional right-hand side known vector,

x: n-dimensional vector of unknowns.

Definition 3.4.1 If

det(A) = 0 (3.32)

then A is said to be singular. Otherwise, A is nonsingular.

Fact 3.4.1 If A is nonsingular, then eq.(3.31) has a unique solution, which is given

by

x = A−1b (3.33)

59

Caveat: Never compute A−1 explicitly, . . . unless explicitly instructed to do so. The

inverse is seldom needed as such, and incurs a waste of precious CPU time! Instead,

find a good numerical approximation to the solution, while taking into account that

A and b are usually known only up to a random roundoff error.

Beware of roundoff-error amplification!

3.4.1 Roundoff Error of the Solution and Condition Num-

bers

Regarding the roundoff-error amplification when solving the system (3.31), let δA

be the matrix roundoff error in A, δb be the vector roundoff-error in b, and δx be

the vector roundoff-error incurred when solving eq.(3.31), by virtue of δA and δb.

The relative roundoff errors in the data, ǫA and ǫb, and in the computed solution,

ǫx, are defined as

ǫA ≡
‖δA‖
‖A‖ , ǫb ≡

‖δb‖
‖b‖ , ǫx ≡

‖δx‖
‖x‖ (3.34)

where ‖ · ‖ denotes any vector or matrix norm.

The relative roundoff error in the computed solution is known to be related to

the relative roundoff error in the data via the relation (Golub and Van Loan, 1983)

ǫx ≤ κ(A)(ǫA + ǫb) (3.35)

with κ(A) defined as the condition number of matrix A, which is defined, for non-

singular square matrices, as

κ(A) ≡ ‖A‖‖A−1‖ (3.36)

where ‖A‖ is a norm of a matrix A.

Now, if the Euclidean norm is adopted for the condition number, then we have

κ ≡ κE =

√

λl

λs
≡
√

λl

λs
(3.37)

in which λs is the smallest and λl is the largest eigenvalue of AAT . It is now

apparent that κE is bounded from below but unbounded from above:

κE ≥ 1 (3.38)

60

In fact, the above result holds for κ defined based on any norm. Moreover, if κ(A)

is based on the Frobenius norm ‖A‖F , then

κ = κF (A) =

√

1

n
tr(AAT)

√

1

n
tr(A−1A−T)

=
1

n

√

tr(AAT)tr[(AAT)−1] ≡ 1

n

√

tr(ATA)tr[(ATA)−1] (3.39)

Remarks:

• The condition number of a singular matrix is unbounded (tends to ∞)

• If a matrix AAT has all its eigenvalues identical, then A is said to be isotropic.

Isotropic matrices have a κ = 1 for κ defined in any matrix norm. Isotropic

matrices are optimally conditioned.

3.4.2 LU-Decomposition, a.k.a. Gaussian Elimination

Various methods for computing a good approximation to the solution (3.33):

Iteratively : Various types of methods, by the names Gauss-Jordan, Gauss-

Seidel, successive-overrelaxation (SOR), etc. Used mainly for “large” systems

(thousands of unknowns) that are weakly coupled; we will not handle such

systems.

Symbolically : Only possible for certain classes of A matrices, like tridiagonal,

and for arbitrary matrices of modest size (n is below 5 or so.)

LU-decomposition, a.k.a. Gaussian elimination: This is based on the observa-

tion that a triangular system is readily solved by either backward or forward

substitution. A is decomposed into a lower-triangular and an upper-triangular

factor, L and U, respectively.

If A is nonsingular, but otherwise arbitrary, of n× n, then, using Gaussian elim-

ination we decompose A into

A = LU (3.40a)

where L is lower-triangular and U is upper-triangular, namely,

L =








1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1







, U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn








(3.40b)

61

Now, eq.(3.31) is rewritten as

LUx = b ⇒
{

Ly = b

Ux = y
(3.41)

and hence, x is computed in two stages: First y is computed from a lower-triangular

system; then, x is computed from an upper-triangular system. The lower-triangular

system is solved for y by forward substitution; the upper-triangular system is solved

for x by backward substitution. Note that

det(A) = det(L)det(U) (3.42a)

But, apparently,

det(L) = 1, det(U) =

n∏

1

uii ⇒ det(A) = det(U) =

n∏

1

uii (3.42b)

Hence, A is singular iff any of the diagonal entries of U vanishes.

3.4.3 Cholesky Decomposition

If A is symmetric and positive-definite, then it admits the Cholesky decomposi-

tion:

A = LTL (3.43)

L =








l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

ln1 ln2 · · · lnn








(3.44)

where L is a real, lower-triangular matrix. Notice that, contrary to the lower-

triangular matrix L of the LU-decomposition of eqs.(3.40a), the diagonal entries of

L of the Cholesky-decomposition need not all be equal to unity!

The solution of system (3.31) proceeds as in the general case, in two steps:

LTy = b → Lx = y (3.45)

3.5 The Least-square Solution of Overdetermined

Linear Systems

We start with

62

Definition 3.5.1 A system of linear equations of the form

Ax = b (3.46)

is overdetermined if A is rectangular, of q × n, with q > n.

This means that the system has more equations than unknowns. In general, it is

not possible to find a x ∈ IRn that verifies all the q > n equations.

Definition 3.5.2 A is of full rank if its n (< q) q-dimensional columns are linearly

independent.

Remark: If A is of full rank, i.e., if rank (A) = n, then

• The product ATA is nonsingular, and hence, positive-definite;

• as a consequence,

det(ATA) > 0 (3.47)

For an arbitrary x, there will be an error e:

e ≡ b−Ax 6= 0q (3.48)

3.5.1 The Normal Equations for Plain Least Squares

Problem (Plain Least Square): find a particular x, xL, that minimizes the

Euclidean norm of the error, or its square, for that matter: ‖e‖2 = eT e.

Solution: Define the objective function f to be minimized as

f ≡ 1

2
‖e‖2 → min

x
(3.49)

This problem is termed “plain” to distinguish it from its “weighted” counterpart,

to be defined presently.

The normality conditions (NC) of Problem (3.49) are obtained upon zeroing the

gradient of f with respect to x:

∇f ≡ ∂f

∂x
= 0 (3.50)

Moreover, ∇f is obtained from the “chain rule”:

∂f

∂xi
=
∂ej

∂xi

∂f

∂ej
, i = 1, . . . , n

63

where the repeated index j indicates summation, for j = 1, . . . , q. The foregoing

relation can be written in compact form as

∇f ≡
(
∂e

∂x

)T
∂f

∂e
(3.51)

Apparently, from the definitions of f and e,

∂e

∂x
= −A,

∂f

∂e
= e ≡ b−Ax (3.52)

Upon plugging expressions (3.52) into eq.(3.50),

ATAx = ATb (3.53)

which is a system of n linear equations in n unknowns. This set of equations yields

the NC of the problem at hand; the set is known as the normal equations of the

given problem.

If A is of full-rank, then eq.(3.53) admits one unique solution—determined case—

which is the least-square solution of the given system:

xL = AIb (3.54a)

with AI , termed the left Moore-Penrose generalized inverse (LMPGI) of the rectan-

gular matrix A, defined as

AI ≡ (ATA)−1AT (3.54b)

Remarks:

• The condition number κE of the rectangular matrix A of q × n, with q > n,

based on the Euclidean norm, is defined in a similar way to that of a square

matrix, with the difference that, in the case at hand, this is done in terms of

the eigenvalues of ATA;

• The condition number κE of ATA is the square root of the ratio of the largest

to the smallest eigenvalues of (ATA)(ATA)T = (ATA)2;

• Hence, κE is given by the ratio of the largest to the smallest eigenvalues of

(ATA), i.e.,

κE(ATA) = κ2
E(A) (3.55)

64

• Thus, the roundoff-error amplification factor incurred in solving the normal

equations (3.53) is the square of that incurred when “solving” eq.(3.31) in the

determined case.

• Not only this. Formula (3.54a) is computationally expensive, for it involves:

– the multiplication of A by its transpose from the left, which consumes n2

scalar products of two q-dimensional vectors. Hence, ATA requires n2q

products and n2(q − 1) additions;

– the computation of the right-hand side of eq.(3.53), which entails, in turn,

n scalar products of two q-dimensional vectors, i.e., q×n multiplications

and (q − 1)n additions.

• In consequence,

solving numerically normal equations should be avoided!

• In some cases, the normal equations allow for handling them with computer

algebra, in which case roundoff-error amplification is not an issue. In these

cases it is safe to work with these equations.

Now we have an important result:

Theorem 3.5.1 (The Projection Theorem) Let eo denote the error vector of

minimum Euclidean norm, i.e.,

eo ≡ b−AxL (3.56)

Then, eo is orthogonal to the image of xL under A.

Proof: We have

eT
o AxL = (b−AxL)TAxL

Upon expansion,

eT
o AxL = bTAxL − xT

LATAxL

Plugging expressions (3.54a & b) into the above equation,

eT
o AxL = bTA(ATA)−1ATb− bTA(ATA)−1ATA(ATA)−1ATb

= bTA(ATA)−1ATb− bTA(ATA)−1ATb = 0 (3.57)

thereby completing the proof. The Projection Theorem is illustrated in Fig. 3.1.

65

eo

Figure 3.1: The Projection Theorem

3.5.2 The Normal Equations for Weighted Least Squares

If in Problem (3.54) the Weighted Euclidean norm is to be minimized instead, with

a weighting matrix W that is symmetric and positive definite, then the least-

square problem thus arising is termed, correspondingly, “weighted least square”.

The weighted norm is given by

‖e‖W ≡ eTWe (3.58)

and hence,

Problem (Weighted Least Squares): Find xWL that minimizes the square of the

weighted Euclidean norm of the error, i.e.,

f ≡ 1

2
‖e‖2W → min

x
(3.59)

The reader should be able to verify that the normal equations are now

ATWAx = ATWb (3.60)

whose solution xWL is, in symbolic form:

xWL = AI
Wb (3.61a)

with AI
W , termed the weighted left Moore-Penrose generalized inverse (LMPGI) of

A, defined as

AI
W ≡ (ATWA)−1ATW (3.61b)

66

3.5.3 The Numerical Solution of Least-square Problems

In the same way as the explicit numerical inversion of a square matrix coefficient

is advised against, the explicit numerical computation of the LMPGI of eq.(3.61b),

whether weighted or not—if W = 1, the LMPGI is said to be unweighted whenever

the qualifier is needed to avoid confusion—is also advised against. Then again,

similar to the LU-decomposition of square matrices, that obviates the numerical

inversion of a square matrix when solving a determined system of equations, the

QR-decomposition obviates the numerical computation of the LMPGI. Indeed, as

will be made apparent below, every q×n rectangular matrix A, with q > n, admits

the factoring

A = QR (3.62a)

where Q is an orthogonal q × q matrix, whether proper or improper, and R is an

upper-triangular q × n rectangular matrix. More specifically, these matrices are

represented below in block form:

QR ≡ [QL QR]
︸ ︷︷ ︸

Q

[
U

Onq′

]

︸ ︷︷ ︸

R

(3.62b)

In the above matrix partitionings, QL and QR are q × n and q × q′ blocks, with

q′ ≡ q − n, while U is a n × n upper-triangular matrix and, according to the

notation adopted at the outset, Onq′ is the n × (q − n) zero matrix. Therefore,

eq.(3.46) can now be cast in the form

QRx = b ⇒ Rx = QT b (3.63)

the second equation following by virtue of the orthogonality of Q. Upon taking into

account the block structures of Q and R the same equation leads to two systems of

equations, namely,

Ux = QT
Lb (3.64a)

Onq′x = QT
Rb 6= 0q′ (3.64b)

The computation of x from eq.(3.64a) is now straightforward: since U is upper-

triangular, x can be computed from this equation by backward substitution, in the

same way as the second of equations (3.41) is solved for x. However, eq.(3.64b)

poses an apparent problem: x, being pre-multiplied by the (q− n)× n zero matrix,

is bound to yield 0q′ as a product; however, the right-hand side of the same equation

is, by definition, non-zero. WWW?2 Nothing! This inconsistency is to be expected,

2What went wrong?

67

for, in general, no vector x ∈ IRn is capable of satisfying all q > n given linear

equations. The non-zero right-hand side of eq.(3.64b) is a result of the non-zero

nature of the least-square error.

All we need now is an algorithm for the computation of the QR-decomposition

of a rectangular matrix like A, i.e., with more rows than columns. Notice that

the assumed orthogonality of Q of eq.(3.63a) guarantees that the columns of A

are either rotated or reflected versions of the columns of R, depending on the sign

of det(Q). In either case, the magnitudes of all columns and the angles made by

any pair thereof are preserved. The outcome is that matrices A and Q bear the

same condition number if this is based on either the Euclidean or the Frobenius

norm. Two algorithms are described below: (i) Householder reflections and (ii)

Gram-Schmidt orthogonalization.

Householder Reflections

This method is based on a sequence of n orthogonal transformations, represented by

q× q improper orthogonal matrices3, termed Householder reflections (HHR), Hi, for

i = 1, . . . , n. Upon successively multiplying both sides of eq. (3.46) by the n HHR,

the effect is equivalent to multiplying both sides by the product H:

H ≡ HnHn−1 · · ·H1 (3.65)

equation (3.46) then becoming

HAx = Hb (3.66)

The set {Hi }n1 is chosen so that

HA =

[
U

O

]

(3.67)

in which U is a n× n upper-triangular matrix, while O the (q− n)× n zero matrix.

The procedure to find each Hi matrix is now described: Assume that we have

applied reflections H1, H2, . . ., Hi−1, in this order, to A, thus obtaining a new

matrix ′nigrAi− 1:

Ai−1 ≡ Hi−1 . . .H2H1A (3.68)

3Proper orthogonal matrices, characterized by a determinant equal to +1, represent rotations,

their improper counterparts, characterized by a determinant equal to −1, represent reflections.

68

which now has its first i− 1 columns in upper-triangular form, i.e., in the form4

Ai−1 =


















a∗11 a∗12 · · · a∗1,i−1 a∗1i · · · a∗1n

0 a∗22 · · · a∗2,i−1 a∗2i · · · a∗2n

0 0 · · · a∗3,i−1 a∗3i · · · a∗3n
...

...
. . .

...
...

. . .
...

0 0 · · · a∗i−1,i−1 a∗i−1,i · · · a∗i−1,n

0 0 · · · 0 a∗i,i · · · a∗i,n
...

...
. . .

...
...

. . .
...

0 0 · · · 0 a∗q,i · · · a∗qn


















(3.69)

The next Householder reflection, Hi, is determined so as to render the last q− i
components of the ith column of HiAi−1 equal to zero, while leaving its first i − 1

columns unchanged. We do this by setting

αi = sgn(a∗ii)
√

(a∗ii)
2 + (a∗i+1,i)

2 + · · ·+ (a∗qi)
2 (3.70a)

ui = [0 0 · · · 0 a∗ii + αi a∗i+1,i · · · a∗qi]
T (3.70b)

Hi = 1− 2
uiu

T
i

‖ui‖2
(3.70c)

where the signum of x, sgn(x), is defined as +1 if x > 0, as −1 if x < 0, and is left

undefined when x = 0. The reason for this provision lies in ensuring that | a∗ii + αi |
in eq.(3.70b) is never smaller than the absolute value of any of its two terms; else,

the denominator in eq.(3.70c) could become negligibly small and lead to roundoff

error amplification.

Notice that
1

2
‖ui‖2 = αi(ui)i = αi(a

∗
ii + αi) ≡ βi

and hence, the denominator appearing in the expression for Hi is calculated with

one single addition and one single multiplication.

Exercise 3.5.1 Show that HiH
T
i = HT

i Hi = 1 and det(Hi) = −1.

Remark: Hi reflects vectors in q-dimensional space onto a hyperplane of unit nor-

mal n ≡ ui/‖ui‖, as depicted in Fig. 3.2. It is noteworthy that

4The entries of Ai−1 are superscripted with an asterisk to distinguish them from the entries of

the original A.

69

Figure 3.2: The geometric interpretation of the ith Householder reflection

(a) αi is defined with the sign of a∗ii because βi is a multiple of the ith component

of ui, which is, in turn, the sum of a∗ii and αi, thereby guaranteeing that the

absolute value of this sum will always be greater than the absolute value of

each of its terms. If this provision were not made, then the resulting sum

could be of a negligibly small absolute value, which would thus render βi a

very small positive number, thereby introducing unnecessarily an inadmissibly

large roundoff-error amplification upon dividing the product uiu
T
i by βi;

(b) an arbitrary q-dimensional vector v is transformed by Hi with unusually few

flops, namely,

Hiv = v − 1

βi
(vTui)ui

Upon application of the n Householder reflections thus, matrix A becomes

HA =

[
U

Oq′n

]

(3.71)

with H defined as

H ≡ Hn . . .H2H1 (3.72)

Notice that HA is in upper-triangular form. That is,

HA =

[
U

Oq′n

]

(3.73)

where Oq′n is the (q − n)× n zero matrix.

Now, if HT ≡ Q and the right-hand side of eq.(3.71) is defined as R, i.e.,

R =

[
U

Oq′n

]

(3.74)

70

then A can be expressed as the product

A = QR (3.75)

which is the QR-decomposition of A.

Remarks:

• The solution of the weighted least-square problem proceeds likewise, if with

eq.(3.46) replaced with

VAx = Vb (3.76)

and V found from the Cholesky-decomposition of W:

W = VTV (3.77)

• Any q×n matrix admits the QR-decomposition eq.(3.75), provided that q > n,

which is the case of VA. Hence, for weighted least squares, rather that the

QR-decomopsition of A, that of VA is implemented.

• If Q is partitioned into a q × n left block QL and a q′ × n right block QR,

Q = [QL QR] (3.78)

then

VA = QLU (3.79)

• The least-square approximation xL eq.(3.46), displayed in eq.(3.54a), is now

readily found by backward substitution from the upper-triangular system

UxL = QLb (3.80)

with a similar expression for the solution xWL of the weighted least squares,

displayed in eqs.(3.61a & b),

The Gram-Schmidt Orthogonalization Procedure

This procedure consists in regarding the columns of A as a set of n m-dimensional

vectors { ak }n1 . From this set, a new set { ek }n1 is obtained that is orthonormal. The

first step consists in defining a normal vector—i.e, of unit norm—e1 as5

e1 =
a1

‖a1‖
(3.81)

5In the balance of this section only the Euclidian norm is used; for the sake of brevity, this

norm is simply referred to as “the norm”.

71

Further, we define e2 as the normal component of a2 onto e1, namely,

b2 ≡ (1− e1e
T
1)a2 (3.82a)

e2 ≡
b2

‖b2‖
(3.82b)

In the next step, we define e3 as the unit vector normal to the plane defined by

e1 and e2 and in the direction in which the inner product eT
3 a3 is positive, which

is possible because all vectors of the set { ak }m1 have been assumed to be linearly

independent—remember that A has been assumed to be of full rank. To this end,

we subtract from a3 its projection onto the plane mentioned above, i.e.,

b3 = (1− e1e
T
1 − e2e

T
2)a3 (3.83a)

e3 ≡
b3

‖b3‖
(3.83b)

and so on, until we obtain en−1. The last unit vector of the orthogonal set, en, is

obtained as

bn = (1− e1e
T
1 − e2e

T
2 − · · · − en−1e

T
n−1)an (3.84a)

whence,

en ≡
bn

‖bn‖
(3.84b)

In the next stage, we represent all vectors of the set { ak }n1 in orthogonal coordinates,

i.e., in the base O = { ek }n1 , which are then arranged in a m×n array Ao. By virtue

of the form in which the set { ek }n1 was defined, the last m−k components of vector

ak vanish. We thus have, in the said orthonormal basis,

[ak]O =















α1k

α2k
...

αkk

0
...

0















, k = 1, 2, . . . , n [b]O =








β1

β2
...

βm








72

Therefore, eq.(3.46), when expressed in O, becomes














α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...

0 0 · · · αnn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0






















x1

x2
...

xn








=















β1

β2
...

βn

βn+1
...

βm















(3.85)

whence x can be computed by backward substitution. It is apparent, then, that the

last m− n equations of the foregoing system are incompatible: their left-hand sides

are zero, while their right-hand sides are not necessarily so. What the right-hand

sides of these equations represent, then, is the approximation error in orthogonal

coordinates. Its Euclidean norm is, then,

‖e0‖ ≡
√

β2
n+1 + . . .+ β2

m (3.86)

Apparently, then, the QR-decomposition of A was implemented, with the upper-

triangular block of the matrix coefficient of eq.(3.85) playing the role of U, the block

of zeros being Oq′n in eq.(3.62b). The two foregoing blocks make up matrix R of

the QR-decomposition of A. While the factor Q is not apparent in eq.(3.85), it is

implicit, as it is responsible for the rendering of A in upper-triangular form.

The solution of linear least-square problems using commercial software is a stan-

dard feature. For example, in Maple, the LeastSquares(A, B) function returns a

vector that best fits eq.(3.46) in the least-square sense. The QR-decomposition of

a rectangular matrix with more rows than columns is standard in both computer-

algebra and numerical software.

Remark: A square matrix also admits the QR-decomposition, which can then be

used to solve determined systems of linear equations. However, the LU-decomposition

in these cases is by far more economical.

3.6 Nonlinear-equation Solving: the Determined

Case

Definition 3.6.1 A system of algebraic equations containing some that are not

linear is termed nonlinear. If the number of equations is identical to the number of

unknowns, the system is determined.

73

Unlike their linear counterparts, determined systems of nonlinear equations ad-

mit multiple solutions. Consider, for example, the intersection of the circle C and

the hyperbola H depicted in Fig. 3.3 and represented by the equations below:

Figure 3.3: Intersection of a circle and a hyperbola

C : φ1(x, y) ≡ x2 + y2 − 4 = 0

H : φ2(x, y) ≡ x2 − y2 − 1 = 0

The circle and the hyperbola intersect at four points {Pi}41, of coordinates (xi, yi),

as displayed in Table 3.1. The problem may have no real solution, e.g., the circle

Pi xi yi

1
√

5/2
√

3/2

2
√

5/2 −
√

3/2

3 −
√

5/2
√

3/2

4 −
√

5/2 −
√

3/2

Table 3.1: The four intersection points of the circle and the hyperbola of Fig. 3.3

and the hyperbola of Fig. 3.4 do not intersect. The system of equations from which

the coordinates of the intersection points are to be computed is given below:

C : φ1(x, y) ≡ x2 + y2 − 1 = 0

H : φ2(x, y) ≡ x2 − y2 − 16 = 0

74

This system of equations admits no real solution!

Figure 3.4: A circle and a hyperbola that do not intersect

In general, a determined nonlinear system of equations takes the form

φ(x) = 0 (3.87)

where x and φ are both n-dimensional vectors:

x ≡








x1

x2
...

xn







, φ ≡








φ1(x1, x2, . . . , xn)

φ2(x1, x2, . . . , xn)
...

φn(x1, x2, . . . , xn)








(3.88)

3.6.1 The Newton-Raphson Method

We outline below the method of solution of determined nonlinear systems using

the Newton-Raphson method. This is an iterative method, whereby a sequence of

approximations is obtained that, if converging, it approaches the solution in a finite

number of iterations within a prescribed tolerance.

A value x0 of x is given as an initial guess:

x0 ≡ [p1 p2 . . . pn]T

and φ is evaluated at x0:

φ0 ≡ φ(x0)

If the value x0 was chosen randomly, most likely it will not verify the given system

of equations, i.e.,

φ0 6= 0

75

Next, we look for a “small” increment ∆x of x (the increment is small if its norm—

any norm—is small):

∆x ≡ [∆x1 ∆x2 . . . ∆xn]T

Now, φ(x0 + ∆x) is evaluated up to its linear approximation (all quadratic and

higher-order terms are dropped from its series expansion):

φ(x0 + ∆x) ≈ φ(x0) +
∂φ

∂x

∣
∣
∣
x=x0

∆x (3.89)

The Jacobian matrix of φ with respect to x is defined as the matrix of partial

derivatives of the components of φ with respect to all the components of x:

Φ ≡ ∂φ

∂x
≡ ∇φ =








∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xn

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xn
...

...
. . .

...

∂φn/∂x1 ∂φn/∂x2 · · · ∂φn/∂xn








(3.90)

In the next step, we find ∆x that renders zero the linear approximation of

φ(x0 + ∆x):

φ0 + Φ(x0)∆x = 0

or

Φ(x0)∆x = −φ0 (3.91)

whence ∆x can be found using, for example, Gaussian elimination:

∆x = −Φ−1
0 φ

0, Φ0 ≡ Φ(x0) (3.92)

Next, x is updated:

x ← x0 + ∆x (3.93)

the procedure stopping when

‖∆x‖ ≤ ǫx (3.94)

for a prescribed tolerance ǫx.

Remarks:

• Use the maximum norm to test convergence in eq.(3.94), for it costs virtually

nothing;

• no guarantee that the Newton-Raphson method will converge at all;

76

• whether the Newton-Raphson method converges or not is dependent upon the

initial guess, x0;

• the boundary between regions of convergence and divergence is a fractal (Man-

delbrot, 1983; Gleick, 1988);

• when the Newton-Raphson method converges, it does so quadratically : At

every iteration, two decimal places of accuracy are gained (Dahlquist and

Björck, 1974).

Example 3.6.1 (Intersection of a circle and a hyperbola) The Newton-Raph-

son method is applied here to find one of the intersections of the circle and the hyper-

bola displayed in Fig. 3.3. The functions φ1 and φ2 describing the two curves were

given above. The corresponding Jacobian matrix is displayed below, with variables x

and y labelled x1 and x2, respectively.

Φ =

[
∂φ1/∂x1 ∂φ1/∂x2

∂φ2/∂x1 ∂φ2/∂x2

]

=

[
2x1 2x2

2x1 −2x2

]

Given the initial guess x0 = [1.0, 1.0]T , function φ and its Jacobian Φ are

evaluated at this value of x as

φ0 =

[
1.0

1.0

]

, Φ0 =

[
2 2

2 −2

]

which yield the increment ∆x0 = [0.75, 0.25]T . Successive iterations, recorded in

Circle-Hype.mw, are listed below:

x1 =




1.75

1.25



 , φ1 =




0.625

0.500



 , Φ1 =




3.5 2.5

3.5 −2.5





x2 =




1.5893

1.2250



 , φ2 =




0.0265

0.0252



 , Φ2 =




3.1786 2.4500

3.1786 −2.4500





x3 =




1.5812

1.2247



 , φ3 =




6.610

6.600



× 10−5, Φ3 =




3.162 2.449

3.162 −2.449





x4 =




1.581

1.225



 , ∆x4 =




−2.10× 10−5

−2.66× 10−8





77

In light of the small-enough increment, the procedure is stopped here. Figure 3.5a

illustrates the iteration sequence, with a zoom-in included in Fig. 3.5b.

The reader should notice that, given the quadratic nature of the Newton-Raphson

method, the norm of the error φk at the kth iteration is roughly two orders of mag-

nitude smaller than at the previous iteration in the proximity of a solution. The

error upon convergence can be computed from the exact results listed in Table 3.1.

(a) (b)

Figure 3.5: Iteration sequence in the Newton-Raphson procedure to find the inter-

section of a circle and a hyperbola: (a) the big picture; (b) a zoom-in close to the

solution

The Damping Factor

When implementing the Newton-Raphson method, the norm of the error φk may

increase upon correcting xk, i.e.,

f(xk+1) > f(xk) (3.95)

This increase gives rise to oscillations and sometimes even leads to divergence. One

way to cope with this situation is by introducing damping. Instead of using the

whole increment ∆xk, we use a fraction of it, i.e.

xk+1 = xk + α∆xk, 0 < α < 1 (3.96)

where α is known as the damping factor.

78

3.7 Overdetermined Systems of Nonlinear Equa-

tions

A system of nonlinear equations of the form

φ(x) = 0 (3.97)

where x is a n-dimensional vector and φ is a q-dimensional vector, is overdetermined

if q > n. Just as in the linear case, in general, no vector x can be found that verifies

all the q scalar equations of the system. However, approximations can be found that

minimize the least-square error of the approximation, as described in the balance of

this Section. The method of solution adopted here is the overdetermined counterpart

of the Newton-Raphson method.

3.7.1 The Newton-Gauss Method

Problem: Find an approximate solution to system (3.97) that verifies those equa-

tions with the least-square error :

f(x) =
1

2
φTWφ → min

x
(3.98)

where W is a q × q positive-definite weighting matrix.

Solution: We follow a procedure similar to Newton-Raphson’s, which is known as

the Newton-Gauss method, as described below:

First, an initial guess x0 of x is given; then, we produce the sequence

x1, x2, . . . , (3.99)

such that

xk+1 = xk + ∆xk (3.100)

Calculation of ∆xk:

• Factor W into its two Cholesky factors:

W = VTV (3.101)

which is possible because W is assumed positive-definite.

79

• Compute ∆xk as the weighted least-square solution of the unconstrained overde-

termined linear system

VΦ(xk)∆xk = −Vφ(xk) (3.102)

with Φ(x) defined as the q × n Jacobian matrix of the vector function φ(x),

i.e.,

Φ(x) =
∂φ(x)

∂x
(3.103)

Drop superscripts for the sake of notation-simplicity and recall eq.(3.61a):

∆x = −(ΦTWΦ)−1ΦTWφ (3.104)

This procedure is iterative, stopping when a convergence criterion is met.

3.7.2 Convergence Criterion

Calculate first ∇f(x):

∇f(x) ≡ ∂f

∂x
=

(
∂φ

∂x

)T
∂f

∂φ
(3.105)

∂φ

∂x
≡ Φ,

∂f

∂φ
= Wφ (3.106)

The condition for a stationary point is that ∇f(x) vanish, and hence,

ΦTWφ = 0 (3.107)

which is the normality condition of eq.(3.98).

It is thus apparent that, at a stationary point of f , φ(x) need not vanish, as

is the case of unconstrained optimization, to be discussed in Chapter 4; however,

φ(x) must lie in the null space of ΦTW. Moreover, from eqs.(3.104) and (3.107)

follows that, at a stationary point, ∆x vanishes. Hence, the convergence criterion is

‖∆x‖ < ǫ (3.108)

where ǫ is a prescribed tolerance.

Remarks:

• The normality condition (3.107) alone does not guarantee a minimum, but

only a stationary point.

80

• However, as it turns out, if the procedure converges, then it does so, to a

first-order approximation, to a minimum, and neither to a maximum nor a to

saddle point, as we prove below.

The sequence f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequence of

x values, evolves, to a first order, as ∆f(x), given by

∆f =

(
∂f

∂x

)T

∆x (3.109)

i.e.,

∆f = φTWΦ∆x (3.110)

Upon plugging expression (3.104) of ∆x into eq. (3.110), we obtain

∆f = −φT WΦ(ΦTWΦ)−1ΦTW
︸ ︷︷ ︸

M

φ = −φT Mφ (3.111)

where, apparently, M is a q × q positive-definite matrix. As a consequence, φTMφ

becomes a positive-definite quadratic expression of φ; hence, ∆f is negative definite.

Thus, the first-order approximation of ∆f(x) is negative-definite, and hence, the

sequence of f values decreases monotonically. That is, in the neighborhood of a

stationary point, the first-order approximation of φ(x) is good enough, and hence,

if the procedure converges, it does so to a minimum.

Example 3.7.1 (“Intersection” of a circle, a hyperbola and a parabola) Giv-

en the circle C, the hiperbola H and the parabola P displayed in Fig. 3.6, find one

point closest to the three curves in the least-square sense.

Solution: the three curves have the representations displayed below:

C : x2
1 + x2

2 − 4 = 0

H : x2
1 − x2

2 − 1 = 0

P : x2
1 − 2.4x2 = 0

The vector function φ and its gradient Φ are readily derived as

φ =





x2
1 + x2

2 − 4

x2
1 − x2

2 − 1

x2
1 − 2.4x2



 , Φ =





2x1 2x2

2x1 −2x2

2x1 −2.4





81

C

H

x2

x1

P

0
1

1

2

2

-1

-1

-2

-2

3

Figure 3.6: Finding the point closest to a circle C, a hyperbola H and a parabola P

Given the initial guess x0 = [1, 1]T , function φ and its gradient Φ are evaluated as

φ =








−2.0

−1.0

−1.4







, Φ =








2 2

2 −2

−0.4 0








which yield the increment ∆x0 = [0.6667, 0.2500]T . Successive iterations, recorded

in Circle-Hype-Para-plot.mw, are listed below:

x1 =




1.667

1.250



 , φ1 =








0.3403

0.2153

−0.2222







, Φ1 =








3.333 2.500

3.333 −2.500

0.933 0








x2 =








3.333 2.500

3.333 −2.500

0.9333







, φ2 =








0.0461

0.0449

−0.394







, Φ2 =








3.191 2.450

3.1901 −2.450

0.791 0








x3 =




1.596

1.225



 , φ3 =








0.0488

0.04878

−0.3906







, Φ3 =








3.193 2.449

3.193 −2.449

0.793 0








82

x4 =




1.596

1.225



 , φ4 =








0.0485

0.0485

−0.391







, Φ4 =








3.193 2.450

3.193 −2.450

0.793 0








x5 =




1.596

1.225



 , φ5 =








0.0485

0.0485

−0.391







, Φ5 =








3.193 2.450

3.193 −2.450

0.793 0








At this stage, the normality condition (3.107) is tested:

ΦT
5φ

5 =




7.243× 10−6

−5.412× 10−16





which shows that the second component is acceptably small, but the first could still

be improved. Therefore, one more iteration is conducted:

x6 =




1.596

1.225



 , φ6 =








0.0485

0.0485

−0.391







, Φ6 =








3.193 2.450

3.193 −2.450

0.793 0








the corresponding normality condition now being

ΦT
6φ

6 =




−4.532× 10−7

−5.551× 10−16





which is acceptably small, and hence, x6 is taken as the least-square approximation

sought.

Figure 3.7a illustrates the iteration sequence, with a zoom-in included in Fig. 3.7b.

The reader may wonder whether the Newton-Raphson method can be used to

solve nonlinear least-square problems. Although the answer is yes, the Newton-

Raphson method is not advisable in this case, as made apparent below.

Recall ∇f from eqs.(3.105) and (3.106):

∇f(x) =
∂f

∂x
= ΦT (x)
︸ ︷︷ ︸

n×q

W
︸︷︷︸

q×q

φ(x)
︸ ︷︷ ︸

q−dim

∇f(x) = 0 ⇒ ΦT (x)Wφ(x)
︸ ︷︷ ︸

≡ψ(x)∈IRn

= 0 (NC)

83

(a) (b)

Figure 3.7: Iteration sequence in the Newton-Raphson procedure to find the inter-

section of a circle and a hyperbola: (a) the big picture; (b) a zoom-in close to the

solution

thereby obtaining a determined system of n equations in n unknowns. This system

can be solved using Newton-Raphson method which requires ∇ψ(x):

∇ψ(x) =
∂ψ

∂x
=

∂

∂x
[ΦT (x)
︸ ︷︷ ︸

(∂φ/∂x)T

Wφ(x)]

That is, ∇ψ(x) involves second-order derivatives of φ with respect to x:

∂2φi

∂xj∂xi

, i = 1, . . . , n

In summary, the Newton-Raphson method is too cumbersome, besides being prone

to ill-conditioning, for it is based on the normality conditions of the problem at

hand.

The solution of nonlinear least-square problems is standard in commercial soft-

ware. For example, Maple features the LSSolve command to find one—of several—x

that best fits the overdetermined system of nonlinear equations (3.97) in the least-

square sense.

84

3.8 Computer Implementation Using ODA—

C-Library of Routines for Optimum Design

ODA is a C library of subroutines for optimization problems. The source file of

this package, implemented in C, consists of a number of subroutines designed and

classified based on their application. At the beginning of each subroutine a detailed

description of the purpose and usage of the subroutine is included. Moreover, data

validation has been considered in the software. In order to solve a problem, the user

simply calls one corresponding C subroutine.

Since the solutions for linear problems are direct—as opposed to iterative—the

use of ODA to solve linear problems requires only information on the problem pa-

rameters, such as matrices A, C, and W, as well as vectors b and d, as applicable.

For nonlinear problems, the solution is iterative, and hence, the user is required to

provide functions describing φ(x), h(x), Φ(x) and J(x), as needed. These func-

tions are provided via subroutines in forms that can be called by the package. In

addition to this information, the user is also required to provide an initial guess x0

of x, so that the iterative procedure can be started.

1. Unconstrained linear problems: Subroutine MNSLS is used to find the

minimum-norm solution of an underdetermined linear system, while subrou-

tine LSSLS is used to find the least-square approximation of an overdetermined

linear system. LSSLS can also handle determined systems, i.e., systems of as

many equations as unknowns.

2. Unconstrained nonlinear problems: Subroutine LSSNLS is used to solve

this type of problems. Since the nonlinear functions and their associated gra-

dient matrices are problem-dependent, the user is required to provide two

subroutines that are used to evaluate the foregoing items, namely,

• FUNPHI: This subroutine is used to evaluate the q-dimensional vector

function φ(x) in terms of the given n-dimensional vector x.

• DPHIDX: This subroutine is used to evaluate the q × n gradient matrix Φ

of the vector-function φ(x) with respect to x, at the current value of x.

Moreover, an initial guess of x is required when calling this subroutine.

3. Constrained linear problems: Subroutine LSSCLS is used to solve this type

of problems.

85

4. Constrained nonlinear problems: Subroutine LSSCNL is used for solving

this type of problems. Before calling LSSCNL, the user is required to provide

four problem-dependent subroutines: Two of these are FUNPHI and DPHIDX,

already derscribed in item 2 above. The other two are used to evaluate the

left-hand sides of the constraint equations and their gradient matrix, as listed

below:

• FUNH: This subroutine is used to evaluate the l-dimensional constraint

function h in terms of the given n-dimensional vector x.

• DHDX: This subroutine is used to evaluate the l × n gradient matrix J of

the vector-function h(x) in terms of the given n-dimensional vector x.

Moreover, an initial guess of x is required when calling LSSCNL.

5. Constrained problems with arbitrary objective function: Subroutine

ARBITRARY is used for solving this type of problems. Before calling ARBITRARY,

the user is required to provide four problem-dependent subroutines: Two of

these are FUNPHI and DPHIDX, as described in item 2 above. The other two

subroutines are used to evaluate the left-hand sides of the constraint equations

and their gradient matrix, as listed below:

• phi: Subroutine used to evaluate the objective function φ(x) in terms of

the given n-dimensional vector x.

• h: Subroutine used to evaluate the l-dimensional constraint function h

in terms of the given n-dimensional vector x.

• J: Subroutine used to evaluate the l×n gradient matrix J of the vector-

function h(x) at the current value of x.

• gradient: Subroutine used to evaluate the n-dimensional gradient ∇f
of the objective function f(x) at the current value of vector x.

• Hessian: Subroutine used to evaluate the n×n Hessian matrix ∇∇f of

the objective function f(x) at the current value of vector x. Moreover,

an initial guess of x is required when calling ARBITRARY.

86

Chapter 4

Unconstrained Optimization

4.1 Introduction

We start by studying the simplest problem in multivariable optimization, namely,

the unconstrained minimization of a smooth scalar objective function f(x) of the n-

dimensional design-variable vector, or design vector (DV) for brevity, that we denote

by x. The main result here is the normality conditions (NC) of the problem at

hand. We derive the first-order normality conditions (FONC), which are necessary

for a stationary point (SP); then, we derive the second-order normality conditions

(SONC), which are sufficient for a minimum, a maximum or a saddle point. These

three kinds of SP are duly characterized.

4.2 The Normality Conditions

Under the smoothness assumption, the objective function is continuous and has

continuous first- and second-order derivatives. The problem at hand is, moreover,

f(x) → min
x

(4.1)

Since the problem under study is unconstrained, the search of the minimum is

conducted over the whole design space Rn, which eases the search tremendously.

Notice that every point of the design space is characterized by a position vector

x, which defines a design, and hence, every such point represents one design. For

conciseness, we will refer to a point and the design that the point represents by its

position vector.

87

Now, for f(x) to attain a minimum at a certain point xo of the design space, the

point must be, first and foremost, stationary, i.e., the gradient ∇f of the objective

function with respect to the design vector must vanish:

∇f ≡ ∂f

∂x

∣
∣
∣
∣
xo

= 0 (4.2a)

which is known as the first-order normality condition. As a matter of fact, the above

relation is short-hand for n normality conditions, one for each component of the ∇f
vector, namely,

∇f ≡ ∂f

∂x
=








∂f/∂x1

∂f/∂x2
...

∂f/∂xn








(4.2b)

However, a stationary point can be a minimum, a maximum or a saddle point, to a

second-order approximation. To characterize each case, we expand, to this order of

approximation, f(x) around x = xo:

f(x) = f(xo) + (∇f |xo
)T (x− xo) +

1

2
(x− xo)

T∇∇f |xo
(x− xo) + HOT (4.3a)

where HOT stands for “higher-order-terms”, while ∇∇f , the Hessian of f with

respect to x, is a matrix of second derivatives, namely,

∇∇f ≡ ∂2f

∂x2
=








∂2f/∂x2
1 ∂2f/∂x1∂x2 · · · ∂2f/∂x1∂xn

∂2f/∂x2∂x1 ∂2f/∂x2
2 · · · ∂2f/∂x2∂xn

...
...

. . .
...

∂2f/∂xn∂x1 ∂2f/∂xn∂x2 · · · ∂2f/∂x2
n








(4.3b)

Notice that, by virtue of the smoothness assumption,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
, for i, j = 1, 2, . . . , n (4.4)

which follows after Schwartz’s Theorem: Given a continuous function f(x) with first-

and second-order continuous derivatives, the order of differentiation in computing

the second derivatives is immaterial.

As a consequence of eq.(4.4), then,

• The Hessian of f with respect to x is a symmetric n× n matrix, and

• the eigenvalues of the Hessian matrix are all real and its eigenvectors are

mutually orthogonal.

88

At a stationary point xo, then, and up to a second-order approximation, eq.(4.3a)

leads to

∆f ≡ f(x)− f(xo) ≈
1

2
(x− xo)

T∇∇f |xo
(x− xo) (4.5)

Now we have that

• If, for any ∆x ≡ x − xo, ∆f(x) > 0, then the stationary point (SP) xo is a

local minimum of f(x);

• if, for any ∆x ≡ x − xo, ∆f(x) < 0, then the SP xo is a local maximum of

f(x); and

• otherwise, the SP xo is a saddle point.

It is not practical to test a stationary point for the sign of ∆f for every possible

∆x. However, it is possible to characterize the nature of the stationary point xo

by means of the signs of the eigenvalues of the Hessian matrix. To this end, we re-

call the characterization of positive-definite, positive-semidefinite and sign-indefinite

matrices given above. In this light, then,

• the stationary point xo is a local minimum if the Hessian evaluated at this

point is positive-definite;

• the SP is a local maximum if the Hessian evaluated at this point is negative-

definite;

• the SP is a saddle point if the Hessian evaluated at this point is sign-indefinite.

4.3 Methods of Solution

The variety of methods available is immensely rich. In a nutshell, the various meth-

ods can be classified according to one criterion: the requirement of partial derivatives

of the objective function. We thus have:

(i) Direct methods: No derivatives are required.

(ii) Gradient Methods: Only first-order derivatives of the objective function

with respect to all design variables are required.

(iii) Newton methods: First- and second-order derivatives of the objective func-

tion with respect to all all design variables are required.

89

Needless to say, direct methods are the most general—the least demanding—and

simplest to implement, the price to be paid for the lack of information on deriva-

tives being the speed of convergence. These methods are the slowest to converge.

Gradient methods are faster, with a linear convergence rate, which means that the

error between the current iterate xk and the closest local minimum decreases by one

order of magnitude at each iteration. The Newton-Raphson method, and variations

thereof, generically termed Newton methods, resort to first- and second-order deriva-

tives. Newton methods converge quadratically, which means that the aforementioned

error decreases by two orders of magnitude per iteration.

4.4 Direct Methods

Direct methods are based on function evaluations and nothing else. While these

methods are slow to converge, they can handle discontinuous functions. There are

various of these: random (random jumps, random walks); Hooke and Jeeves; Powell;

and the simplex (Nelder-Mead) method. We outline the last three of these methods

below.

The main concept behind direct methods is the pattern directions, namely, the

directions of search, along which the minimum is approached. These three methods

differ on the way of defining the pattern directions.

4.4.1 The Hooke and Jeeves Method

In this method, the search directions are fixed. The method thus starts by defining

a set of unit vectors {ui}n1 in the directions of the n design variables, along which

the search is conducted.

Hooke & Jeeves Algorithm

1. Define starting base point x1 and prescribed length ∆x of search

step

2. fk ← f(xk); 1← i; yk,0 ← xk, where yk,j denotes a temporary base point

obtained from xk upon perturbing (xk)j

3. For i = 1 to n do

f+ ← f(yk,i−1 + ui∆xi)

f− ← f(yk,i−1 − ui∆xi)

90

if f+ < f(yk,i−1) then yk,i ← yk,i−1 + ui∆xi

if f− < f(yk,i−1) then yk,i ← yk,i−1 − ui∆xi

else yk,i ← yk,i−1

enddo

4. if yk,n = xk then ∆x← 1
2
∆x go to 3

else xk+1 ← yk,n

5. s← xk+1 − xk % pattern direction

Find λ that minimizes f(xk+1 + λs)

yk+1,0 ← xk+1 + λs

6. k ← k + 1, fk ← f(yk,0), 1← i

go to 3

if f(yk,n) < f(xk) then xk+1 ← yk,n

else xk+1 ← xk; ∆x← 1
2
∆x go to 2

7. if ‖∆x‖ < ǫ then stop

else go to 2

4.4.2 The Powell Method (Conjugate Directions)

Let A = AT ∈ IRn×n be positive-definite. Vectors x, y ∈ IRn are said to be

A-conjugate if

xTAy = yTAx = 0 (4.6)

In the area of mechanical systems under linear vibrations, for n degrees of freedom,

the ith and jth modal vectors ui and uj are K- and M-conjugate, i.e.,

(ui)TKuj = 0, and (ui)TMuj = 0

where K and M are the n× n positive-definite stiffness and mass matrices, respec-

tively.

Theorem 4.4.1 (cf. Theorem 6.1 of (Rao, 1996)) Let x ∈ IRn and

f(x) =
1

2
xTAx + bT x + c, A = AT > O (4.7)

91

Further, let Π1 and Π2 be two hyperplanes in IRn parallel to each other. If xi is the

minimum of f(x), with xi ∈ Πi, i = 1, 2, then x2 − x1 is A-conjugate with any

vector y ∈ IRn parallel to Π1 and Π2, i.e.,

(x2 − x1)TAy = 0

Proof : Π1 and Π2 are defined by

Πi : Cx = di, i = 1, 2; C ∈ IRp×n, p < n (4.8)

The algebraic interpretation of y parallel to Π1 and Π2 is that y ∈ N (C) and hence,

if L is an orthogonal complement of C, i.e., if

C
︸︷︷︸

p×n

L
︸︷︷︸

n×n′

= O
︸︷︷︸

p×n′

, n′ ≡ n− p

then we can write

y = Lu, u ∈ IRn−p

Now, xi is found as the solution to

min
x
f(x)

subject to eq.(4.8). We solve the foregoing problem as an unconstrained problem by

means of the Lagrangian1

Fi ≡ f(x) + (λi)T (Cx− di)→ min
x,λ

i
, i = 1, 2

subject to no constraints, and denote the solution xi. The normality conditions of

the foregoing problem are, for i = 1, 2,

∇Fi = Ax + b + CTλi = 0n, (4.9a)

Cx− di = 0p (4.9b)

which yield a system of p + n equations for the p + n unknowns x and λi. Upon

solving for x = xi from eq.(4.9a), for i = 1, 2, we obtain

xi = −A−1(CTλi + b) (4.10)

1Constrained optimization is the subject of Chapter 5.

92

Substitution of the foregoing expression into eq.(4.8) yields, always for i = 1, 2,

−CA−1(CTλi + b) = di

or

CA−1CTλi = −CA−1b− di

Hence,

λi = −(CA−1CT)−1(CA−1b + di) (4.11)

Further, substitution of eq.(4.11) into eq.(4.10) leads to

xi = A−1[CT (CA−1CT)−1(CA−1b + di) + b]

= A−1[CT (CA−1CT)−1CA−1 + 1]b + A−1[CT (CA−1CT)−1di

Therefore,

x2 − x1 = A−1CT (CA−1CT)−1(d2 − d1)

Hence,

(x2 − x1)TAy ≡ (x2 − x1)TALu = (d2 − d1)T (CA−1CT)−1 CA−1A
︸ ︷︷ ︸

1

L

︸ ︷︷ ︸

CL=Opn′

u

That is,

(x2 − x1)TAy = 0

thereby completing the proof.

The Powell Algorithm

One iteration of the basic procedure of the Powell algorithm (Powell, 1964) is sum-

marized below:

1. For i = 1, 2, . . . , n, calculate λi that minimizes f(xi−1 + λiξi); then xi ←
xi−1 + λiξi.

2. For i = 1, 2, . . . , n− 1, replace ξi by ξi+1.

3. Replace ξn by xn − x0.

4. Find λ that minimizes f(xn + λ(xn−x0)), and replace x0 by x0 + λ(xn−x0).

Powell includes, in the same paper, an improvement of this method to accelerate

its convergence. The improved algorithm follows:

93

Data: A set of linearly independent directions D = {ξi}n1 , which, in the absence

of any background information, can be taken as the coordinate axes, and an initial

guess x0

1. For k = 1 to n do

find minimizer λk of f(xk−1 + λkξ
k)

xk ← xk−1 + λkξ
k

enddo

2. Find m ∈ {1, . . . , n} such that f(xm−1)− f(xm) is a maximum; then

∆ ← f(xm−1)− f(xm)

3. f1 ← f(x0), f2 ← f(xn), f3 ← f(2xn − x0)

4. if







f3 ≥ f1, or

(f1 − 2f2 + f3)(f1 − f2)
2 ≥ 1

2
(f1 − f3)

2∆

then keep D; else

5. ξ ← xn − x0

find λ that minimizes f(xn + λξ)

D ← {ξ1, . . . , ξm−1, ξm+1, . . . , ξn, ξ}
x0 ← xn + λξ

if x0 is a minimum, stop; else, go to 1.

We shall prove presently that, if the function to be minimized is quadratic in its

n arguments, then the Powell Algorithm converges to the minimum in at most n

steps. In the sequel, we shall need a previous result:

Lemma 4.4.1 Let y = Λx denote a linear transformation, with Λ ∈ IRn×n

nonsingular, and Q(x) a quadratic function of x ∈ IRn, of the form of eq.(4.7), with

A positive-definite. Under the foregoing transformation, Q = Q(y), its minimum

being found at yopt = Λxopt, with xopt denoting the minimizer of Q(x).

Proof: The minimizer of Q(x) =
1

2
xTAx + bT x + c is found upon zeroing the

gradient of Q with respect to x:

∇Q = Ax + b ⇒ Ax + b = 0 (4.12)

whence,

xopt = −A−1b (4.13)

On the other hand,

Q(y) =
1

2
yTΛ−TAΛ−1y + bTΛ−1y + c

94

whence,

∇Q(y) = Λ−T AΛ−1y + Λ−Tb

which, upon zeroing, yields

yopt = −ΛA−1b = Λxopt

thereby completing the proof. Now we have

Theorem 4.4.2 If the quadratic function Q(x), of the form (4.7), with A positive-

definite is minimized sequentially, along each direction of a set D = {ξi}n1 of A-

conjugate directions, then the minimum of Q(x) will be found in at most n steps,

irrespecive of the initial guess.

Proof: Since A is positive-definite, it admits a real Cholesky decomposition, namely,

A = BTB (4.14)

Alternatively, A can be factored into its two real square roots, A =
√

A
√

A—an

arbitrary n × n matrix has 2n square roots, one of which is positive-definite if the

matrix is so. Now let us introduce the linear transformation

y = Bx (4.15)

under which Q becomes

Q(y) =
1

2
‖y‖2 + (B−Tb)T y + c (4.16)

which is a quadratic form associated with the n × n identity matrix. Hence, a set

of 1-conjugate directions is obviously the set E = {ei}n1 , with ei denoting the unit

vector in the yi-direction, i.e., a n-dimensional array with zeros everywhere, except

for the ith entry, which is unity. 1-conjugacy can thus be readily verified, as

eT
i ej = 0, i 6= j

We shall prove the theorem for n = 3. For n > 3, the proof follows the same pattern,

although the pattern cannot be visualized. The set of vectors y verifying

Q(y) = Q0 = const

defines a sphere with centre C of position vector c, not to be confused with the

scalar c of eq.(4.16) and radius r, to be determined presently. Vector c and scalar r

thus verify

‖y− c‖2 = r2

95

Upon comparing the above expression with its counterpart of eq.(4.16), it is apparent

that

c = −B−Tb & r2 = 2(Q0 − c) + ‖c‖2

Under a search along the set E of conjugate directions, let y0 be the initial guess,

the position vector of point P0. The first search direction e1 thus takes place along

the y1-axis. Along this direction, Q(y) reaches a minimum at a point P1, of position

vector y1, such that (y1 − c)Te1 = 0. That is, P1 lies on a line L1 passing through

P0 and parallel to the y1-axis. P1 is found as the point of L1 tangent to a sphere of

centre C.

The second search takes places along a line L2 passing through P1 and parallel

to the y2-axis. Along this line, a point P2 is determined, at which L2 is tangent to a

sphere centred at C. Notice that L1 and L2 define a plane Π12 parallel to the y1-y2

plane.

The third search thus takes place along a line L3 passing through P2 and parallel

to the y3-axis. A sketch should help the reader visualize that the orthogonal pro-

jection of point C onto Π12, labelled C ′, is exactly point P2. Consequently, P3, the

point at which L3 is tangent to a sphere centred at C is exactly C, the minimum

of Q(y) finding itself at C, thereby completing the search in exactly n = 3 steps.

Apparently, the optimum xopt is given by

xopt = B−1c (4.17)

Exercise 4.4.1 (cf. Example 6.6 of (Rao, 1996)) Using the Powell Algorithm,

find the minimum of

Q(x) = 6x2
1 + 2x2

2 − 6x1x2 − x1 − 2x2

To this end, transform the above quadratic form into one associated with the 2× 2

identity matrix. Hint: For 2× 2 positive-definite matrices, their square root can be

found graphically using the Mohr circle, as explained in Angeles (2011).

4.4.3 The Nelder-Mead Simplex Method

With a few changes in the notation, this subsection is taken from (Rao, 1996). This

method, first proposed by Spendley et al. (1962), and later improved by Nelder and

Mead (1965), is based on the concept of simplex Sn. A simplex is a (n + 1)-vertex

hyperpolyhedron in IRn. The search for the minimum of the objective function f(x)

96

is conducted by means of function evaluations at all n + 1 vertices of the simplex.

The strategy followed is outlined below.

We start by defining an initial simplex, which is done by means of a base point

P0 ∈ IRn, of position vector x0. The remaining n vertices of Sn are generated so as

to yield a regular hyperpolyhedron of unit-length edges. To this end, let

p =
1√
2n

(
√
n + 1 + n− 1), q =

1√
2n

(
√
n + 1− 1) (4.18a)

Then, if ei denotes the unit vector in the direction of the ith coordinate axis, corre-

sponding to xi, let

xi = x0 + pei +
n∑

j=1,j 6=i

qej, i = 1, 2, . . . , n (4.18b)

Shown in Fig. 4.1 are displays of the simplexes in IR2 and IR3, respectively,

defined as described in eqs.(4.18a & 4.18b), with the base point at the origin.

Figure 4.1: The initial simplex in IR2 The initial simplex in IR3

The search strategy is based on three operations: a) reflection; (b) contraction;

and (c) expansion.

Reflection

Let fi = f(xi), for i = 0, 1, . . . , n, and

fM = max
i
{ fi }n0 , fm = min

i
{ fi }n0 (4.19)

97

the corresponding vertices being PM and Pm, of position vectors xM and xm, respec-

tively. With the foregoing information, we now seek a new simplex, by replacing the

worst vertex PM of the current simplex by a new one, Pn+1, of position vector xn+1.

The new vertex is found by means of a reflection of PM about the centroid P , of

position vector x, of all the simplex vertices, except for PM , namely,

x =
1

n

n∑

i=0, i6=M

xi (4.20)

Let, moreover, α > 0 be the user-prescribed reflection coefficient, which is used to

define the new vertex a distance α‖x−xM‖ from the centroid P , the position vector

xn+1 of the new vertex thus being

xn+1 = x + α(x− xM) (4.21)

The intended effect is that Pn+1 lie the farthest from the worst vertex PM , so

that this new vertex, Pn+1, will very likely be the best of all the vertices of the

new simplex, {Pi }n+1
i=0, i6=M . An unlikely, although quite possible scenario, is that

fn+1 = fM , and hence, no gain will be made by defining the new simplex. In this

case, we can define the new vertex in one of two possible ways:

1. PM is preserved, the rejected vertex being PM ′ , which is the next worst vertex,

i.e., with the subscript M ′ defined such that

fM ′ = max
i
{ fi }ni=0, i6=M (4.22)

2. Alternatively, redefine α—make it either larger or smaller—while rejecting

always the same worst vertex PM .

Expansion

If the outcome of the reflection stage yields fn+1 ≡ f(xn+1) < fm, then the direction

defined by the vector difference xn+1−x is very likely to point towards the minimum,

and hence, it may be advisable to place a new vertex Pe away from P in the said

direction, i.e., by defining the position vector xe of the new vertex Pe in the form

xe = x + γ(xn+1 − x) (4.23)

with γ > 1, for expansion.

Now, there are two possible outcomes:

98

• If fe ≡ f(xe) < f(xm), then replace PM by Pe and start a new reflection;

• if fe > f(xm), then the expansion failed, and the new simplex obtained by the

reflection, with PM replaced by Pn+1, is kept, and a new reflection is started.

An alternative outcome of the reflection is described below.

Contraction

We have two possible outcomes of the reflection: (i) fn+1 > fi ≡ f(xi), for i =

0, 1, . . . ,M − 1,M + 1, . . . , n, but fn+1 < fM , and (ii) fn+1 > fM . In case (i), the

reflection failed to give a direction towards the minimum, but a slightly improved

simplex is obtained upon replacing PM with Pn+1. In this case, we contract the

simplex by finding a new vertex Pc, of position vector xc, a distance β‖xM − x‖
from P , with 0 ≤ β ≤ 1:

xc = x + β(xM − x) (4.24)

which can be readily proven to yield a Pc lying between PM and P , for xc has been

defined as a convex combination2 of xc and x. In case (ii), PM is kept and proceed

according with one of two outcomes, as described below:

• if fc ≡ f(xc) < min{fM , fn+1}, then PM is replaced by Pc, a new simplex thus

being obtained, and a new reflection operation is started;

• if fc > min{fM , fn+1}, then the contraction failed, in which case Pi is replaced

by P i, of position vector xi, halfway between Pi and Pm, i.e.,

xi =
1

2
(xi + xm), i = 0, 1, . . . , n, i 6= m (4.25)

thereby defining a new simplex, and a new reflection is started.

Convergence criterion

The method converges when the rms value frms of the objective function is smaller

than a prescribed tolerance ǫ, i.e., when

frms ≡

√
√
√
√ 1

n+ 1

n+1∑

1

(fi − f)2 < ǫ (4.26)

2See Section 5.4 for a definition of this term.

99

where (i) a relabelling of the vertices has been assumed, with the order f1 ≤ f2 ≤
. . . ≤ fn+1 and (ii) f is the mean value of the objective function evaluated at all the

vertices of the current complex, i.e.,

f ≡ 1

n+ 1

n+1∑

1

fi (4.27)

4.5 Gradient Methods

4.5.1 The Method of Steepest Descent(Cauchy)

Algorithm:

1. Pick up an initial guess x0 to start the iterations. Set the iteration

counter i at i = 0

2. Define the ith search direction si as

si = −∇f |x=xi (4.28)

3. Define the next test point, xi+1, as

xi+1 = xi + λsi = xi − λ∇f |x=xi (4.29)

To find λ, conduct a one-dimensional search along the direction si

so that λopt is the value of λ that minimizes F (λ) = f(xi−λ∇f |x=xi)

4. If xi+1 satisfies the convergence criteria adopted at the outset,

stop; else, go to step 5.

5. Update the iteration counter: i+ 1 ← i. Go to step 2.

Convergence criteria: Use one or more of those applicable, namely,

|f(xi+1)− f(xi)| ≤ ǫ1|f(xi)| (4.30a)

‖∇f |x=xi ‖ ≤ ǫ2 (4.30b)

‖xi+1 − xi‖ ≤ ǫ3 (4.30c)

Remark: In criteria (4.30b & c), any norm can be used ⇒ Use the most economic

one, i.e., the Chebyshev or maximum norm.

100

4.5.2 The Conjugate-Gradient Method (Fletcher-Reeves)

We use here the concept of A-conjugacy introduced in Subsection 4.4.2, for a sym-

metric, positive-definite A. Preliminary Remarks:

• The conjugate-gradient method of Fletcher and Reeves (1964), the FR method,

is aimed at minimizing a C2-continuous function f(x) under no constraints.

• The FR method works on the concept of sequential quadratic programming

(SQP).

• The FR method is based on the quadratic approximation of f(x): It is assumed

that

f(x) ≈ f0 + (∇f)Tx + HOT =
1

2
xTAx + bTx + f0 + HOT (4.31)

where HOT stands for higher-order terms

• It is assumed that A in eq.(4.31) is positive-definite

Algorithm Overview: The FR algorithm works on the base of two items:

• A search direction si at each iteration, and

• a step of optimum length λ∗ in direction si that minimizes f in that direction

Begin with an initial guess x0

Next, a search direction s0 is defined in the direction of steepest descent of f(x), i.e.,

along −∇f at x0, namely,

s0 ≡ −∇f |x=x0 (4.32)

Further, a new iterate x1 is sought along the above direction, from the current iterate

x0:

x1 ≡ x0 + λs0 (4.33)

where λ is a real number, as yet to be determined. This is done by imposing that

∇f , when evaluated at x = x1, be normal to s0, i.e.,

(∇f
∣
∣
x=x1)T s0 = 0 (4.34)

Now substitute x1 as given by eq.(4.33) and the quadratic approximation of f(x)

given in eq.(4.31) into eq.(4.34), to obtain, with ∇f ≈ Ax + b,

[A(x0 + λs0

︸ ︷︷ ︸

x1

) + b]T s0 = 0 (4.35)

101

whence the optimum value of λ, λ∗, is readily derived3:

λ∗ =
−(Ax0 + b)T s0

(s0)TAs0
≡ −(s0)T∇f |x=x0

(s0)TAs0
(4.36)

where, from the assumed positive-definiteness of A,

(s0)TAs0 > 0

and hence, s0 can be expressed, upon recalling eq.(4.33), as

s0 =
1

λ∗
(x1 − x0) (4.37)

The new search direction, s1, is defined as a linear combination of s0 and −∇f |x=x1 ,

i.e.,

s1 ≡ −∇f
∣
∣
x=x1 + β1s

0 (4.38)

where β1 is chosen so as to make s1 conjugate to s0 with respect to A:

(s0)TAs1 = 0 ⇒ (s0)TA(−∇f |x=x1 + β1s
0) = 0

or

(−∇f |x=x1 + β1s
0)TAs0 = 0 (4.39)

Recall eq.(4.37) and substitute that expression into eq.(4.39), to obtain

(−∇f |x=x1 + β1s
0)TA

[
1

λ∗
(x1 − x0)

]

= 0 (4.40)

Next, we find an expression for the difference x1 − x0 in terms of the gradients at

x0 and x1. Indeed, recalling the quadratic approximation, eq.(4.31),

∇f |x=x1 −∇f |x=x0 ≈ Ax1 − b− (Ax0 − b) = A(x1 − x0) (4.41)

Substitute expression (4.41) into eq.(4.40), after clearing the denominator:

(−∇f |x=x1 + β1s
0)T (∇f |x=x1 −∇f |x=x0) = 0 (4.42)

Upon expansion,

−(∇f |x=x1)T∇f |x=x1 +(∇f |x=x0

︸ ︷︷ ︸

−s0

)T∇f |x=x1

︸ ︷︷ ︸

0

+β1 (∇f |x=x1)T s0

︸ ︷︷ ︸

0

−β1(∇f |x=x0)T s0 = 0

3Although A is apparently needed to compute λ∗, in reality the latter can be computed as the

root of (s0)T∇f |
x=x

1 = 0, which is linear in λ

102

where we have recalled eqs.(4.32) and (4.34). Hence, the above equation simplifies

to

(∇f |x=x1)T∇f |x=x1 + β1(∇f |x=x0)T s0
︸︷︷︸

−∇f|
x=x

0

= 0

whence we can solve for β1 as

β1 =
(∇f |x=x1)T∇f |x=x1

(∇f |x=x0)T s0
≡ (∇f |x=x1)T∇f |x=x1

(∇f |x=x0)T∇f |x=x0

or

β1 =
‖∇f |x=x1 ‖2
‖∇f |x=x0 ‖2 (4.43)

whence x2 = x1 + λs1; find λ = λ∗ that makes (s1)T∇f |x2 = 0.

A third search direction s2 is now defined as a linear combination of s1 and−∇f |x=x2 :

s2 = −∇f |x=x2 + β2s
1 (4.44)

Now impose the conjugacy condition (4.6):

(s1)TAs2 = 0 ⇒ β2 =
(∇f |x=x2)T∇f |x=x2

(∇f |x=x1)t∇f |x=x1

=
‖∇f |x=x2 ‖2
‖∇f |x=x1 ‖2 (4.45)

In general, we have

si = −∇f |x=xi + βis
i−1, βi =

‖∇f |x=xi ‖2
‖∇f |x=xi−1 ‖2 , i = 1, 2, , . . . (4.46)

The procedure stops when ‖∇f |x=xi ‖ < ǫ, for a user-prescribed tolerance ǫ, which

indicates that the normality condition (4.2a) has been satisfied.

Summary of the Fletcher-Reeves Algorithm

1. Choose an initial guess x0

2. Let s0 = −∇f |x=x0

3. Let

x1 = x0 + λ∗s0 (4.47)

where λ∗ is the value of λ that makes (s0)T∇f |x=x1 = 0

4. Let i = 1

103

5. Let

si = −∇f |x=xi +
‖∇f |x=xi ‖2
‖∇f |x=xi−1 ‖2 s

i−1

6. Find the value of λ, λ∗, that makes (si)T∇f |x=xi+1 = 0. Then,

xi+1 = xi + λ∗si

7. If ‖∇f |x=xi+1 ‖ < ǫ, stop; else i← i+ 1 and go to step 5

Example 4.5.1 Shown in Fig. 4.2 is a three-joint robot with every pair of neigh-

bouring joint axes at right angles and a distance a apart (Angeles, 2007). In de-

signing this robot for a given maximum reach rM , it is necessary to find rM as a

function of a, namely, rM = Ra. The problem thus reduces to finding the coefficient

R. N.B.: it is known that the position vector c of the end-point C, for arbitrary

values of the joint angles { θi }31, where θi is the angle made byXi andXi+1, measured

positive in the direction of Zi, is given by

Figure 4.2: Manipulator configuration for C(0, a, 0).

104

c = a








cos (θ1) + cos (θ1) (cos (θ2) + cos (θ2) cos (θ3) + sin (θ2)) + sin (θ1) (1 + sin (θ3))

sin (θ1) + sin (θ1) (cos (θ2) + cos (θ2) cos (θ3) + sin (θ2))− cos (θ1) (1 + sin (θ3))

sin (θ2) + sin (θ2) cos (θ3)− cos (θ2)








As rM is reached when C lies farthest from the Z1 axis, the (nondimensional)

distance to maximize is

r =

√

c21 + c22
a

The objective function is thus defined as

f(x) =
1

2
r2

which, upon expansion, shows that it is independent of θ1. This is not surprising,

as this joint variable does not play any role in the distance from the Z1 axis to C.

That is, if the second and third joints are locked, and the first joint goes through a

full revolution, at a given robot posture, the distance of C from Z1 remains constant.

The Fletcher-Reeves conjugate-gradient method is chosen to solve the problem.

However, this method was introduced above as applicable to function-minimization.

For this reason, the objective function has to be redefined as the negative of that

given above:

f(x) = −1

2
r2

which is displayed below:

f =− 2− cos (θ2) cos (θ3) sin (θ2)− (cos (θ2))
2 cos (θ3)− (1/2) (cos (θ2))

2 (cos (θ3))
2

+ (1/2) (cos (θ3))
2 − cos (θ2)− sin (θ2)− sin (θ3)− cos (θ2) sin (θ2)− cos (θ2) cos (θ3)

The above function is thus a function of only two variables, θ2 and θ3, which then

become the two components of the vector x of design variables.

Now let us compute ∇f = ∂f/∂x, with x = [θ2, θ3]T :

∂f

∂θ2
=(sin (θ2))

2 cos (θ3)− (cos (θ2))
2 cos (θ3) + 2 cos (θ2) cos (θ3) sin (θ2)

+ cos (θ2) (cos (θ3))
2 sin (θ2) + sin (θ2)− cos (θ2) + (sin (θ2))

2 − (cos (θ2))
2

+ sin (θ2) cos (θ3)

105

∂f

∂θ3
=cos (θ2) sin (θ3) sin (θ2) + (cos (θ2))

2 sin (θ3) + (cos (θ2))
2 cos (θ3) sin (θ3)

− cos (θ3) sin (θ3)− cos (θ3) + cos (θ2) sin (θ3)

Since we have a symbolic expression for ∇f , and this is given by two scalar

functions of two variables, we can plot the contour defined by each function in the

θ2-θ3 plane, all real stationary points, maxima, minima and saddle points, being

found at the intersections of the two contours, which are plotted in Fig. 4.3.

P1

P2

P3

P4

P5

P6 P7
P8

P9

P10

C1

C2

Figure 4.3: Contours C1 and C2 defined by the plots of ∂f/∂θ2 = 0 and ∂f/∂θ3 = 0,

respectively, which yield all the real SPs of f(x)

Apparently, the two contours intersect at 10 points, although the two at the left-

most end, P5 and P6, bear coordinates with values that differ from those of the points

at the rightmost end, P1 and P10, by exactly 2π. Therefore, only eight intersections

lead to distinct SPs. Some of these are local maxima, some are local minima, and

some are saddle points. In order to gain insight into the nature of the SPs, the

surface z = r2(θ2, θ3) is plotted in Fig. 4.4a, its projection onto the θ2-θ3 plane be-

ing displayed in Fig. 4.4b. From these plots it is apparent that P2 is the maximum

maximorum, i.e., the global maximum in the case at hand.

106

(a) (b)

Figure 4.4: Plots of the isocontours—equal values of z—for the distance of C from

Z1 of Fig. 4.2

Within the Fletcher-Reeves (FR) method, point P2 is targeted by defining the

initial guess as θ2 = θ3 = 0, which yielded:

f0 = −5.0, (∇f)0 =

[−3.0

−1.0

]

, s0 =

[
3.0

1.0

]

⇒ λs0 = λ

[
3.0

1.0

]

and hence, x1 = [3.0λ, λ]T . Next, a value of λ is sought that satisfies

F ≡ (s0)T (∇f)1 = 0

The equation thus resulting is transcendental, in powers of the harmonic functions

of products of the form λθi, for i = 2, 3. For this reason, a closed-form solution

is not possible. Using the plotting capabilities of computer-algebra software, a plot

of F (λ) vs. λ is obtained, as displayed in Fig. 4.5, in the interval [−1, +1]. The

smallest positive root, estimated by inspection as λ∗ = 0.18, is adopted here. With

this value, an updated x1 is calculated as

x1 = x0 + λs0 ==

[
0.54

0.18

]

whence updated values (∇f)1, s1 and λs1 follow, with a new equation F (λ) = 0. Its

smallest positive value is found, again, by inspection of the F (λ)-vs.-λ plot. The

procedure was conducted for seven iterations, with the results

107

Figure 4.5: Plot of F = (s0)T (∇f)1 vs. λ, showing its intersections with the λ-axis

x7 =

[
0.4851

0.4594

]

, (∇f)7 =

[−0.001162

−0.0605

]

which was accepted as the optimum value, given that the Chebyshev norm of the

gradient dropped from 3.0 to 0.06, i.e., to 2% of its original value. The objective

function and the maximum value of r are

f7 = −5.9836 ⇒ rM =
√

−2f7a = 3.4594a

A more precise value of rM will be calculated in Example 5.3.2 using a constrained-

minimization approach. A plot of the isocontours of the objective function and the

iterative FR-sequence is included in Fig. 4.6

For the record, an alternative sequence is displayed in Fig. 4.7, generated with

a faulty code: the norms in numerator and denominator of the expression for βi in

eq.(4.46) were left unsquared! The sequence appears, after the 7th iteration, to be

converging to the minimum sought. However, the convergence is rather slow, for, at

the same iteration, the procedure yields

108

Figure 4.6: Sequence of iterations of the FR method for Example 4.5.1

x7 =

[
0.4700

0.5116

]

, (∇f)7 =

[−.1647

0.15222

]

where, apparently, the Chebyshev norm of the gradient has gone down only to slightly

over 5% of its original value. The details of the procedure are included in RRRorthoConGrad.mw,

those of the faulty code in RRRorthoConGradGlitch.mw.

4.5.3 Quasi-Newton Methods

As we will see in Section 4.6, Newton methods rely on the normality conditions,

which lead to a determined system of n nonlinear equations in n unknowns. In

applying those methods it is assumed that the Hessian of the objective function,

which is the Jacobian Φ of the Newton-Raphson method, is available, and hence,

the Hessian can be used to update the iterations. Quasi-Newton methods replace

the update ∆x = −Φ−1
0 φ

0 of eq.(3.92) by an expression that a) does not rely

on the Hessian, but only on the gradient of the objective function and b) does

not require any matrix inversion. These features make quasi-Newton methods quite

109

Figure 4.7: Sequence of faulty iterations of the FR method for Example 4.5.1

attractive, and many times, preferable over Newton methods. The two quasi-Newton

methods outlined below differ only in the form in which the update of the solution

is computed. These two methods aim to find an approximation to (∇∇f)−1 using

only information on ∇f .

Moreover, while the Newton-Raphson method is known to have a quadratic con-

vergence rate, quasi-Newton methods show a convergence rate that lies between

gradient methods and Newton methods. That is, quasi-Newton methods have a

superlinear convergence rate.

The Davidon-Fletcher-Powell Method

The method is summarized below:

Algorithm

1. Give an initial guess: x0; 0← i

2. Define an initial search direction: s0 = −∇f |x=x0

3. Define an initial Hessian-inverse: B0 = 1, the n×n identity matrix

110

4. Let

xi+1 = xi + λis
i

Then find λi that minimizes4 f(xi+1).

5. gi = ∇f |x=xi+1 −∇f |x=xi

6.

Mi = λi
si(si)T

(si)Tgi
, Ni = −Big

i(Big
i)T

(gi)TBigi
, Bi+1 = Bi + Mi + Ni

7. si+1 = −Bi+1∇f |x=xi+1

8. if convergence criterion reached, stop; else, go to 4

The Broyden-Fletcher-Goldfarb-Shanno Method

This is an improved DFP method, but still with superlinear convergence. Only

difference with the DFP Algorithm lies in step 6, which is replaced by:

M′
i = αi

si(si)T

(si)Tgi
, αi = 1 +

(gi)TBig
i

(si)Tgi

N′
i = −si(gi)TBi

(si)Tgi

Bi+1 = Bi + M′
i + N′

i + (N′
i)

T

4.6 Newton Methods

4.6.1 The Newton-Raphson Method

Here, we resort to the normality condition (4.2a), and let

φ(x) ≡ ∇f

the normality condition thus leading to a system of n nonlinear equations in n

unknowns of the form of eq.(3.87), repeated below for quick reference:

φ(x) = 0

4In this step, any of the methods studied in Chapter 2 can be applied. A thorough discussion

of univariable minimization is available in (Brent, 1972).

111

which can be solved using the Newton-Raphson method because, by assumption,

second-order derivatives of the objective function are available, and hence, the Ja-

cobian Φ of φ(x) with respect to x is nothing but the Hessian matrix of f(x),

i.e.,

Φ = ∇∇f

Let us introduce the notation

Φk ≡ Φ(xk), φk ≡ φ(xk) (4.48)

at the kth iteration

This method, while offering a quadratic convergence, is not as favoured as meth-

ods of the gradient type. One reason argued in the past is the cost of solving a

system of linear equations, namely, eq.(3.91) at each iteration, although with fast

processors this argument loses weight. Another reason why Newton methods are

not popular is the inherent requirement of a Hessian. In many practical problems,

e.g., structural optimization, the objective function is not an analytic function of

the design parameters. This is the case when the objective function is the maximum

von Mises stress in a structure. As this function is not analytic, its gradient, not

to speak of its Hessian, is not available. That is, not even with finite differences

is it possible to approximate the gradient of a non-anaytic function of the design

variables.

4.6.2 The Levenberg-Marquardt Method

The Levenberg-Marquardt method aims at enhancing the robustness of the Newton-

Raphson method, when the Hessian becomes ill-conditioned, by adding to the Hes-

sian, which is assumed positive-definite, a symmetric, isotropic matrix α1, where

α > 0 and 1 is the n× n identity matrix:

∇∇f ← ∇∇f + α1 (4.49)

Notice that the eigenvalues5 of ∇∇f , denoted by { λi }n1 , and those of ∇∇f , denoted

by {µi }n1 , are related by

µi = λi + α, i = 1, 2, . . . , n

5By virtue of the assumed positive-definiteness of the Hessian, its eigenvalues are identical to

their singular values.

112

If we denote by κ the 2-norm condition number of ∇∇f and by κ that of ∇∇f , we

have

κ =
λM

λm
, κ =

λM + α

λm + α
(4.50)

the result being that κ < κ, and hence, the numerical behaviour of the Hessian is

stabilized.

113

114

Chapter 5

Equality-Constrained

Optimization:

Normality Conditions

5.1 Introduction

In this chapter we introduce the simplest class of constrained-optimization problems,

namely, those subject to equality constraints. The problem statement at hand is

f(x) → min
x

(5.1a)

subject to

h(x) = 0l (5.1b)

where h is a smooth1 l-dimensional vector function of the n-dimensional vector

argument x, 0l denoting the l-dimensional zero vector.

Moreover, l < n, for a n-dimensional design vector x, as otherwise x would be

either fully constrained or overconstrained, thereby leaving no room for optimization!

The main outcome is the derivation of the two normality conditions of the prob-

lems at hand. We derive the first of these in two forms: (i) the primal form, in

terms of the gradients of the objective function f(x) to be minimized and of the

constraint functions of (5.1b), h; and (ii) the dual form, in terms of an orthogonal

complement of the gradient of h with respect to x, and ∇f(x).

1Smoothness implies that each component of h(x), i.e., each constraint, is continuous and has

a continuous gradient and a continuous Hessian with respect to x.

115

As a special case, that lends itself to a closed-form solution, we study minimum-

norm problems, whereby a weighted Euclidean norm of the design vector is to be

minimized subject to l linear equality constraints. In this vein, we introduce the

right Moore-Penrose generalized inverse.

5.2 The First-Order Normality Conditions

5.2.1 The Primal Form

We derive here the first-order normality conditions of problem (5.1a) in primal form.

To this end, we resort to Lagrange multipliers λ1, λ2, . . ., λl, one for each scalar

constraint hi(x) = 0, and group them in the l-dimensional array λ. Upon adjoining

the l constraints to the objective function f(x), we obtain the Lagrangian F (x;λ)

that we aim to minimize under no constraints, while choosing λ in such a way that

the l equality constraints are satisfied. That is,

F (x;λ) ≡ f(x) + λTh → min
x, λ

(5.2)

subject to no constraints. We have thus transformed the equality-constrained mini-

mization problem into an unconstrained one. We derive now the first-order normality

conditions (FONC) of the problem at hand by recalling those of Ch. 4, requiring

that the gradient of the objective function with respect to the whole set of design

variables—x and λ in the case at hand—vanish. However, note that we now have

l additional variables besides the original n design variables. Hence, the design-

variable vector must be augmented correspondingly, which we do by defining an

augmented (n + l)-dimensional design vector y:

y ≡
[
x

λ

]

(5.3)

Therefore, the unconstrained minimization problem (5.2) can be formulated in

a more compact form, namely,

F (y) → min
y

(5.4)

subject to no constraints. The FONC of the above problem are, thus,

∂F

∂y
=

[
∂F/∂x

∂F/∂λ

]

= 0n+l (5.5a)

116

where 0n+l denotes the (n + l)-dimensional zero vector. The above equation can

thus be broken down into two, namely,

∂F

∂x
= 0n (5.5b)

∂F

∂λ
= 0l (5.5c)

To gain insight into the geometric significance of the foregoing normality condi-

tions, we expand the left-hand side of eq.(5.5b) componentwise:

∂F

∂x1

≡ ∂f

∂x1

+ λ1
∂h1

∂x1

+ λ2
∂h2

∂x1

+ · · ·+ λl
∂hl

∂x1

= 0

∂F

∂x2

≡ ∂f

∂x2

+ λ1
∂h1

∂x2

+ λ2
∂h2

∂x2

+ · · ·+ λl
∂hl

∂x2

= 0

...
∂F

∂xn
≡ ∂f

∂xn
︸︷︷︸

∇f

+λ1
∂h1

∂xn
+ λ2

∂h2

∂xn
+ · · ·+ λl

∂hl

∂xn
= 0 (5.6)

where the first term of the ith equation can be readily identified as the ith component

of ∇f = ∂f/∂x. The sum of the remaining terms of the same equation can be

identified as the ith component of an inner product pi defined as

pi ≡ [∂h1/∂xi ∂h2/∂xi · · · ∂hl/∂xi]








λ1

λ2
...

λl







≡
(
∂h

∂xi

)T

λ

Therefore, if we let p =
[

p1 p2 . . . pn

]T

, then

p =








∂h1/∂x1 ∂h2/∂x1 · · · ∂hl/∂x1

∂h1/∂x2 ∂h2/∂x2 · · · ∂hl/∂x2
...

...
. . .

...

∂h1/∂xn ∂h2/∂xn · · · ∂hl/∂xn








︸ ︷︷ ︸

(∇h)T : n×l








λ1

λ2
...

λl








︸ ︷︷ ︸

λ

(5.7)

whose first factor can be readily identified as (∇h)T . Indeed, compared with ex-

pression (3.90) for the partial derivative ∇φ of a vector function φ(x) with respect

to its vector argument, this factor is the transpose of ∇h, henceforth represented as

117

the Jacobian J, or J(x), whenever the argument should be explicitly stated. The

first n normality conditions, displayed in eq.(5.5b), thus amount to

∇f + JTλ = 0n (5.8a)

Since variables x and λ are independent at the outset, the second term of the left-

hand side of eq.(5.8a) is the gradient of hTλ, i.e.,

JTλ = ∇(hTλ) (5.8b)

The remaining l normality conditions, displayed in eq.(5.5c), yield nothing but the

constraints themselves, namely

h(x) = 0l (5.8c)

The FONC can thus be rewritten in a more illustrative form, namely,

∇f +∇(hTλ) = 0n (5.8d)

which states that, at a SP, the two above gradients must cancel each other. This

representation lends itself to a mechanical interpretation: as the gravity force is

the gradient of a potential field, eq.(5.8d) can be interpreted as a force-equilibrium

condition.

Equation (5.8a) is the vector representation of the first-order normality condi-

tions (FONC) sought. What eq.(5.8a) represents has a geometric significance that

will be made apparent upon rewriting it in the alternative form

JTλ = −∇f (5.9)

The foregoing equation states that, at a stationary point xo, −∇f , or ∇f for that

matter, lies in the range of the transpose of the gradient of the constraints. Notice

that the range J ′ of JT is a subspace of the n-dimensional space of design variables.

In fact, dim(J ′) = l < n, for this subspace is spanned by l linearly independent

vectors, the columns of JT , or the n-dimensional rows of J.

Algebraically, eq.(5.9) represents an overdetermined system of n linear equations

in the l < n unknowns { λi }l1. The normality condition then states that the least-

square approximation of this overdetermined system yields a zero error. That is, at

a stationary point, the n (> l) equations (5.9) become all consistent. Note that the

least-square approximation λo of the foregoing equations can be expressed in terms

of the left Moore-Penrose generalized inverse of JT , namely,

λo = −(JJT)−1J∇f (5.10)

118

The least-square error eo of this approximation is thus

eo = JTλo − (−∇f) = −JT (JJT)−1J∇f +∇f = [1− JT (JJT)−1J]∇f (5.11)

with 1 denoting the n× n identity matrix.

We can now express the first-order normality condition (5.9) in an alternative

form:

[1− JT (JJT)−1J]∇f = 0n (5.12)

The matrix inside the brackets in the foregoing equation can be readily identified as

a projector, of the form of P introduced in eq.(3.30). This projector maps vectors

in Rn onto the null space of J, as the reader is invited to verify. In other words, at

a stationary point Po the gradient of the objective function need not vanish; only its

projection onto the null space of the gradient of the constraints must vanish, which

is an alternative form of stating the first-order normality condition. Sometimes the

product ∇f , defined as

∇f ≡ [1− JT (JJT)−1J]∇f ∈ R
n (5.13)

is referred to as the constrained gradient. The FONC (5.12) can then be simply

stated as:

At a stationary point of the equality-constrained problem (5.1a & b), the

constrained gradient vanishes.

Exercise 5.2.1

Prove that

P ≡ 1− JT (JJT)−1J (5.14)

(i) is a projector, and

(ii) indeed maps vectors in Rn onto the null space of J.

5.2.2 The Dual Form

One alternative representation of the FONC of the problem under discussion is now

derived in what can be termed the dual form. This can be obtained rather simply if

the concept of orthogonal complement of the Jacobian J of the constraint function

h(x) of eq.(5.1b) is invoked. An orthogonal complement L of a full-rank2 J—or of

2An orthogonal complement can also be defined for rank-deficient matrices, but such matrices

wil be left aside, for the sake of brevity.

119

any rectangular l × n full-rank matrix, with l < n, for that matter—is a n × n′

matrix, for n′ ≡ n− l, whose columns span the null space of J. That is,

JL = Oln′ (5.15)

If now both sides of eq.(5.8a) are multiplied from the left by LT , the second term

of the left-hand side disappears, and hence, the alternative form of the FONC is

obtained:

LT∇f = 0n′ (5.16)

That is, at a stationary point, the gradient of f need not vanish; however, it must

lie in the null space of LT , i.e., in the range of JT —both spaces are of dimension n.

The latter is, in fact, a restatement of the primal form of the FONC, as per eq.(5.9).

We can thus call LT∇f the feasible gradient, and represent it by ∇uf , i.e.,

∇uf = LT∇f (5.17)

which is a (n− l)-dimensional vector. Sometimes the feasible gradient is also called

the reduced gradient.

A geometric interpretation of the range and the null space of each of each of JT

and LT , and their relations with the two gradients ∇f and ∇h = JT , for a simple

case in which n = 2 and l = 1, is shown in Fig. 5.1.

A differential interpretation of L can be obtained if we realize that the solution

sought xo must lie in a subset F of the space Rn of design variables, of reduced

dimension n − l. This subset contains all design vectors satisfying the constraints.

Such vectors will be labelled xF , to distinguish them from all other vectors of the

design space. Now, this set need not be a vector space, and in general it is not.

Indeed, if the constraints are nonlinear, then a linear combination of two distinct

feasible vectors x1 and x2, i.e., which satisfy the constraint eqs.(5.1b), will most

likely not satisfy the constraints, even if these two designs do so independently.

Neither need the zero vector satisfy the constraints, which thus disqualifies F from

being a subspace of Rn. What we have as a feasible subset of the design space is a

manifold, i.e., a smooth surface embedded in Rn. We shall term the subset F the

feasible manifold.

Finding F may be a tremendous task when the constraints are nonlinear and

algebraically complicated. The good news is that we do not actually need the feasible

manifold to obtain a feasible solution. What we really need is a feasible subspace

TF tangent to the said manifold at a feasible point PF , of position vector xF . This

120

x1

x2

f(x) = c2

f(x) = c3

f(x) = c1

h = 0

N (J)

R(L)

∇f

∇h = JT

N (LT)

R(JT)

Figure 5.1: Geometric interpretation of the subspaces associated with matrices J

and L and the gradients ∇f and ∇h, for n = 1 and l = 1.

121

subspace is nothing but the null space of JT . Indeed, since xF is a feasible design

vector, it verifies the constraints, i.e.,

h(xF) = 0l (5.18)

An arbitrary “move” ∆x from xF will most likely take PF away from the constraints

h(x) = 0l. What we would like to find is a feasible move, i.e., a vector ∆xF such

that xF + ∆xF still verifies the constraints, i.e.,

h(xF + ∆xF) = h(xF) + J(xF)∆xF + HOT = 0l (5.19)

Since we assumed at the outset that xF is feasible, as per eq.(5.18), we have, from

the foregoing equation and to a first-order approximation, i.e., neglecting HOT,

J(xF)∆xF = 0l (5.20)

i.e., ∆xF lies in N [J(xF)], the null space of J(xF). In light of eq.(5.15), then, an

arbitrary ∆u ∈ Rn′

is mapped by L into N [J(xF)]. That is, a feasible move ∆xF

can be produced as

∆xF = L∆u (5.21a)

for

J∆xF = JL∆u = 0n′ (5.21b)

A geometric interpretation of the subspaces associated with J and L, and their

transposes, is illustrated in Fig. 5.1.

Notice that, from eq.(5.21a), L has the differential interpretation

L =
∂x

∂u
(5.22)

and hence, the FONC (5.16) can be restated as

(
∂x

∂u

)T (
∂f

∂x

)

≡ ∂f

∂u
= 0n′ or ∇uf = 0n′ (5.23)

thereby justifying the subscript in ∇u. That is, the FONC (5.23) states that, at

a stationary point of problem (5.1a & b), the gradient of f(x) with respect to the

vector of independent design variables u vanishes.

Remark: When comparing the two forms of the FONC, eqs.(5.12) and (5.16),

the simplicity of the latter with respect to the former is apparent. This simplic-

ity, however, is more than formal, for eq.(5.12) involves n scalar equations, while

eq.(5.16) involves only n− l scalar equations.

122

5.3 The Second-Order Normality Conditions

The second-order normality conditions (SONC) of the problem at hand are now

derived. To this end, the second variation ∆∆F of the Lagrangian at a stationary,

feasible point yo = [xT
o , λ

T
o]T is first derived. This is defined up to second-order

terms, i.e.,

∆∆F ≡ ∂F

∂y

∣
∣
∣
∣
y=yo

∆y +
1

2
∆yT ∂

2F

∂y2

∣
∣
∣
∣
y=yo

∆y (5.24)

where

∆y = [∆xT
F ∆λT

F]T (5.25)

As we have assumed that the above variation is computed at a stationary point

yo, the first variation, i.e., the first term in the right-hand side of eq.(5.24), vanishes.

Moreover, let us assume that the variation ∆xF of the design-variable vector is

feasible, and hence, verifies the constraints (5.1b) to a first order, i.e.,

h(xo + ∆xF) = h(xo) + J∆xF = 0l (5.26a)

Now, since xo is feasible, the first term of the above expression vanishes, and hence,

the feasible move ∆xF verifies

J(xo)∆xF = 0l (5.26b)

Moreover, upon expansion of ∆∆F , as given by eq.(5.24),

∆∆F ≡ 1

2
∆yT ∂

2F

∂y2
∆y

=
1

2
[∆xT

F ∆λT]

[∇∇f + ∂(JTλ)/∂x JT

J Ol

] [
∆xF

∆λ

]

=
1

2
∆xT

F

[

∇∇f +
∂(JTλ)

∂x

]

∆xF + ∆xT
FJT (xo)∆λ

where, as usual, ∇∇f represents the Hessian of f(x) with respect to x, and Ol

denotes the l × l zero matrix.

Further, by virtue of eq.(5.26b), the second term of the above expansion vanishes,

the expansion thus reducing to

∆∆F =
1

2
∆xT

F

[

∇∇f +
∂(JTλ)

∂x

]

∆xF (5.27)

123

which is a quadratic form associated with the n× n matrix Hc, defined as

Hc ≡ ∇∇f +
∂(JTλ)

∂x
(5.28)

which thus plays the role of the Hessian of the objective function under constrained

minimization. For this reason, we term this matrix the constrained Hessian. Notice

that Hc can be expressed in a more illustrative form, namely,

Hc = ∇∇f +∇∇(hTλ) (5.29)

Moreover, in light of the smoothness assumptions on both f and h, the two Hes-

sians appearing in the right-hand side of eq.(5.29) are symmetric. Therefore, the

constrained Hessian is necessarily symmetric as well, its eigenvalues thus being real

and its eigenvectors mutually orthogonal. Hence, the SONC can be stated in terms

of the sign-definition of the constrained Hessian, to read:

A stationary point xo of the constrained problem (5.1) is

(i) a local minimum if the constrained Hessian is positive-definite;

(ii) a local maximum if the constrained Hessian is negative-definite;

Remarks:

1. The above conditions are sufficient, but not necessary, as we have to ensure

that xF is feasible3;

2. the verification of the SONC requires the computation of: the unconstrained

Hessian ∇∇f of the objective function; the Hessian of each scalar constraint;

and the Lagrange multipliers;

3. the verification of the SONC requires, additionally, the solution of an eigen-

value problem associated with a n×n symmetric matrix, although the problem,

in fact, involves only n− l independent variables.

4. if the constrained Hessian is sign-indefinite, no conclusion can be drawn about

the nature of the SP at hand, as the Hessian eigenvalues are distributed be-

tween the feasible and the unfeasible regions.

3This point is made apparent in Example 5.3.1

124

We can ensure that ∆xF is feasible if we define it as the image of a (n − l)-

dimensional vector ∆u under an orthogonal complement L of J:

∆xF = L∆u (5.30)

If now this expression is substituted into eq.(5.27), an alternative expression for the

second variation is derived, namely,

∆∆F =
1

2
∆uT LT

[
∇∇f +∇∇(hTλ)

]
L∆u (5.31)

where we have recalled that the second term inside the brackets in eq.(5.27) is the

Hessian of hTλ, thereby deriving the (n− l)× (n− l) matrix Hu, that we shall call

the reduced Hessian:

Hu ≡ LT
[
∇∇f +∇∇(hTλ)

]
L (5.32)

Therefore, Hu is a (n − l) × (n − l) symmetric matrix. The reduced Hessian can

be regarded, in fact, as a projection of the constrained Hessian onto the space of

increments ∆u of the feasible variables. We can thus state the SONC as:

At a feasible, stationary point xo, the objective function f(x) attains

(i) a local minimum iff Hu is positive-definite;

(i) a local maximum iff Hu is negative-definite;

(i) a saddle point iff Hu is sign-indefinite.

Notice that the above conditions are necessary and sufficient.

Example 5.3.1 (Taken from Luenberger (1984)) Find all the stationary points

(SPs) of

f = x1x2 + x2x3 + x1x3

subject to

h(x) = x1 + x2 + x3 − 3 = 0

and identify the nature of each SP, i.e., maximum, minimum or saddle point.

Solution: We start by calculating ∇f , JT = ∇h and ∇∇f :

∇f =





x2 + x3

x1 + x3

x1 + x2



 ,∇∇f =





0 1 1

1 0 1

1 1 0



 , ∇h = JT =





1

1

1





125

whence J is constant. The four FONC of the Lagrangian are

x2 + x3 + λ = 0

x1 + x3 + λ = 0

x1 + x2 + λ = 0

x1 + x2 + x3 = 3

with only one Lagrange multiplier, given that there is one single constraint. More-

over, the FONC form a determined system of linear equations, and hence, they

admit, if the coefficient matrix is not singular, one unique solution.

Summation of the first three equations leads to

2(x1 + x2 + x3) = −3λ

which, by virtue of the fourth equation, leads to λ = −2. Hence, x1 = x2 =

x3 = 1 is the solution of the foregoing equations. Now we verify the FONC in dual

form. To this end, we first find an orthogonal complement of J. Given that J is a

1 × 3 matrix in this case, i.e., a row vector, an orthogonal complement L of J is

a 3 × 2 matrix, whose two three-dimensional columns are orthogonal to the single

row of J. A suitable candidate is given below, normalized so that its two columns

be unit vectors, although this normalization is not essential. It is convenient from

a numerical viewpoint, though, in order to avoid multiplication by too large or too

small numbers. Thus,

L =

√
2

2





1 0

−1 1

0 −1





Further,

JTλ =





1

1

1



λ =





λ

λ

λ



 ⇒ ∂(JTλ)

∂x
= O33

It is noteworthy that the second term of the constrained Hessian vanishes because

J is constant, a consequence of the linearity of the constraint h in the design vector

x. We can thus state that

In the case of linear equality constraints h(x), the constrained Hessian

is identical to its unconstained counterpart.

126

Therefore,

∇∇f +
∂(JTλ)

∂x
=





0 1 1

1 0 1

1 1 0





whose eigenvalues are {-1,-1,2}, and hence, the constrained Hessian is sign-indefinite.

We cannot thus decide on the nature of the SP, for which reason we resort to the

reduced Hessian, which is

Hu = LT

(

∇∇f +
∂(JTλ)

∂x

)

L

=
1

2

[
1 −1 0

0 1 −1

]




0 1 1

1 0 1

1 1 0









1 0

−1 1

0 −1





︸ ︷︷ ︸







−1 0

1 −1

0 1








=
1

2

[−2 1

1 −2

]

and is hence constant throughout the whole feasible manifold. Moreover, notice

that: a) Hu is a 2 × 2 symmetric matrix, and hence, has two real eigenvalues; b)

tr(Hu) = −2 < 0; and c) det(Hu) = 3/4 > 0. From b) it is apparent that the larger

eigenvalue is negative; from c), it is apparent that the two eigenvalues bear the same

sign, and hence, the two eigenvalues of Hu are negative, the reduced Hessian thus

being negative-definite, and the unique SP is, consequently, a maximum. Moreover,

this is the global maximum of the given f(x).

Example 5.3.2 (The Design of a Positioning Robot for a Given Reach)

We revisit here the design of the three-joint robot of Fig. 4.2, reproduced as Fig. 5.2

for quick reference. In Example 4.5.1, an expression was found for the maximum

reach of the robot as a linear function of a. The same reach is found here using a

constrained-optimization approach, with the purpose of finding the value of the length

a that will produce the maximum reach of a Puma 560 robot, namely, 0.8772 m.

Thus, the global maximum of the distance d of the robot operation point C from the

Z1-axis has to be found. This can be done by: (i) finding all stationary points of d;

(ii) identifying each SP as a local maximum, minimum or saddle point; and (iii)

upon comparing all local maxima, select the maximum maximorum.

Solution: It is apparent that the maximum reach is independent of θ1, the angle of

rotation of the first joint, for motions about the first joint do not affect the reach. So,

127

Figure 5.2: Manipulator configuration for C(0, a, 0).

we lock the first joint and, in the posture of Fig. 5.2, rotate the third joint through

one full turn, point C thus describing a circle C of radius a lying in the Y1-Z1 plane,

with centre at point O′
3 of coordinates (0, a, −a). Next, upon going through a full

rotation of the second joint, the circle describes a toroid—not a torus, for this is

generated by a circle turning about an axis contained in the plane of the circle—of

axis Z2, the problem now reducing to one of finding the point of the surface of the

toroid lying the farthest from the Z1 axis. Figure 5.3 includes side views of circle C.
Let the trace of the toroid with the X2-Z2 plane be the contour T of Fig. 5.4.

It is most convenient to represent this contour with the aid of the non-dimensional

variables u and v, which are defined as

u ≡ x2

a
, v ≡ z2

a
(5.33)

In terms of these new variables, the equation of T becomes

T : h(u, v) ≡ (u2 + v2)(u2 + v2 − 4v)− 4(u2 − v2 − 1) = 0 (5.34)

The contour T defined by the implicit function h(u, v) = 0 is displayed in Fig. 5.4.

The distance of point C from the Z1-axis can be shown to be, in non-dimensional

128

Figure 5.3: Side views of circle C: (a) and (b) at the position of Fig. 5.2; and (c) at

an arbitrary position for a given value of θ2

coordinates u and v, d = (u+ 1)2 + v2. Now, the maximum distance rM of O1 to T
can be found as the solution of the optimization problem defined below:

f(u, v) ≡ 1

2
[(u+ 1)2 + v2] → max

u,v
(5.35)

subject to eq.(5.34). Notice that, rather than maximizing d, we aim to maximize

d/2, which amounts exactly to the same goal, the difference being that, upon dif-

ferentiation, the factor 1/2 will help eliminate an inconvenient factor of 2 in the

gradient of f(x).

We thus have an equality-constrained maximization problem. In order to find

the normality conditions of this problem, we resort to Lagrange multipliers, thus

defining a new, unconstrained, maximization problem:

F (u, v, λ) ≡ f + λh → max
u,v,λ

(5.36)

The normality conditions of the foregoing problem are, thus,

∂F

∂u
≡ u+ 1 + 4λu(u2 + v2 − 2v − 2) = 0 (5.37a)

∂F

∂v
≡ v + 4λ(v − 1)(u2 + v2 − 2v) = 0 (5.37b)

∂F

∂λ
≡ (u2 + v2)(u2 + v2 − 4v)− 4(u2 − v2 − 1) = 0 (5.37c)

129

the last equation being just a restatement of the constraint, eq.(5.34). Now we

eliminate λ, the Lagrange multiplier, dialytically (Salmon, 1885) from eqs.(5.37a &

b). We do this by rewriting these two equations in linear homogeneous form in the

“variables” λ and 1, namely,
[

4u(u2 + v2 − 2v − 2) u+ 1

4(v − 1)(u2 + v2 − 2v) v

] [
λ

1

]

=

[
0

0

]

(5.38a)

Obviously, the foregoing equation requires a nontrivial solution—note that one com-

ponent of the vector of “unknowns” is unity!—which in turn requires that the coef-

ficient matrix be singular, i.e.,

det

[
4u(u2 + v2 − 2v − 2) u+ 1

4(v − 1)(u2 + v2 − 2v) v

]

= 0 (5.38b)

Upon expansion,

4u(u2 + v2 − 2v − 2)v − 4(v − 1)(u2 + v2 − 2v)(u+ 1) = 0

or

S : u3 − v3 − u2v + uv2 + u2 + 3v2 − 4uv − 2v = 0 (5.38c)

Now, the maximum reach is found via the solution of the system of polynomial

equations (5.34) and (5.38c). The former is a quartic equation, the latter cubic. The

Bezout number4 of the foregoing system of equations is defined as the product of

the degrees of those equations, i.e., 4 × 3 = 12, which gives an upper bound of 12

for the number of solutions, both real and imaginary, of the problem at hand. One

graphical means of obtaining estimates of the real solutions of this system consists in

plotting the two corresponding contours in the u-v plane, as shown in Fig. 5.5. The

global maximum reach occurs apparently, at point A, of approximate coordinates

(2.2, 1.4), estimated by inspection, which leads to a visual estimate of rM , namely,

rM ≈ 3.5a (5.39)

The four intersections of these two curves correspond to four stationary values of

the distance from a point in the trace T to the point O1 in the u-v plane. Of these

four intersections, two are local maxima and two local minima. The normality of

∇f—which in this case is identical to the vector from O1 to T—at the intersection

points, is to be highlighted.

4To define the Bezout number of a system of p polynomial equations in p variables x1, x2,

. . ., xp, we look first at the ith equation: A typical term of this equation involves the product

xd1i

1
xd2i

2
· · ·xdpi

p . The degree di of this equation is the maximum of d1i + d2i + . . . + dpi, for

i = 1, . . . , Ni, where Ni denotes the number of terms of the ith equation. The Bezout number NB

of this system is defined as NB = d1d2 . . . dp.

130

T T

Figure 5.4: Contour of the trace T of the toroid on the u-v plane

The foregoing system is solved more precisely using computer algebra, thus ob-

taining the four real solutions given below:

(u)A = 2.132242, (v)A = 1.4689944

(u)B = −1.578095, (v)B = 1.975316

(u)C = −1.132242, (v)C = 0.116796

(u)D = 1.025308, (v)D = 0.366325

which lead to stationary reach values of

rA = 3.459606a, rB = 2.058171a, rC = 0.176435a, rD = 2.058171a

for a global maximum reach of

rM = 3.459606a

131

T T

S

Figure 5.5: Plots of the two contours, S and T

The value of a that will yield the foregoing maximum reach is thus found as

3.460a = 0.8772 ⇒ a = 0.2535 m

thereby completing the solution.

The first- and second-order normality conditions are next verified. It is apparent

that points A and B yield local maxima, C and D local minima. We verify the

normality conditions for each point. First, we list below the general expressions for

the various items needed in the sequel:

∇f =

[
u+ 1

v

]

, J = (∇h)T = [4u(u2 + v2 − 2v − 2) 4(v − 1)(u2 + v2 − 1)] ,

∇∇f = 1,
∂(JTλ)

∂x
≡ ∂λ∇h

∂x
= λ∇∇h

132

i.e.,

∂(JTλ)

∂x
= λ

[
12u2 + 4v2 − 8v − 8 2u(2v − 4) + 4uv

2u(2v − 4) + 4uv 4u2 + 4v2 − 8v + 4v(2v − 4) + 8

]

the expression for ∂(JTλ)/∂x in terms of the Hessian ∇∇h following in this partic-

ular case because λ is a scalar. Moreover, numerical values for λ, at each of the four

stationary points, will be needed. These are computed from the FONC in primal

form, eq.(5.9):
[

4u(u2 + v2 − 2v − 2)

4(v − 1)(u2 + v2 − 1)

]

λ = −
[
u+ 1

v

]

which is, as expected, an overdetermined system of two linear equations in one single

unknown, λ. The latter is computed by means of the left Moore-Penrose generalized

inverse of JT , as in eq.(5.10)5, using computer algebra,

λ = −1

4

N

D

where

N = u4 + u3 + 2vu2v2 + uv2 − 3vu2 − 2uv − 2u2 − 2u+ v4 − 3v3 + 2v2

D = u6 + 3u4v2 − 6u4v − 3u4 + 3u2v4 − 12u2v3 + 4vu2 + 4u2 + 13v4

+ 4v2 + v6 − 6v5 − 12v3 + 10u2v2

At this stage the only outstanding item is an orthogonal complement of J. As J

is of 1×2, it can be regarded as a two-dimensional vector, and hence, an orthogonal

complement thereof is readily obtained as a 2 × 1 matrix, i.e., a two-dimensional

column vector premultiplied by the 2×2 matrix E2 introduced in eq.(3.15c). Indeed,

this matrix rotates two-dimensional vectors through 90◦ counterclockwise. We thus

define

L = E2J
T =

[−4(v − 1)(u2 + v2 − 1)

4u(u2 + v2 − 2v − 2)

]

(5.40)

which, upon normalization (division by ||L||), becomes

L← 1

D

[−4(v − 1)(u2 + v2 − 1)

4u(u2 + v2 − 2v − 2)

]

(5.41)

with D given by

D ≡ 4
√

((v − 1)(u2 + v2 − 1))2 + (u(u2 + v2 − 2v − 2))2

5While the verbatim use of the formula of this equation is not recommended for numerical

computations, because of the inherent round-off error amplification, the use of the formula here is

safe, as all computations are done symbolically, and hence, without roundoff error.

133

Table 5.1: Summary of FONC & SONC for Example 5.3.2

SP A B

f 5.984442 2.118034

h 0.000033 −0.000002

∇f [3.132242, 1.468994]T [−0.578095, 1.975316]T

J [15.065669, 7.065704] [−2.787706, 9.525424]

LT (norm’zed) [−0.424615, 0.905374] [−0.959744,−0.280878]

∇∇f 122 122

Hc

[−8.030863 −1.663262

−1.663262 −2.498075

] [−3.497832 2.553411

2.553411 −2.603403

]

Hu −2.216791 −2.050618

SP C D

f 0.015565 2.118033

h 0.000001 0.000002

∇f [−0.132242, 0.116796]T [2.025308, 0.366325]T

J [4.248076,−3.751926] [−6.345424,−1.147713]

LT (norm’zed) [0.661981, 0.749521] [0.177985,−0.9840333]

∇∇f 122 122

Hc

[
1.202463 0.249038

0.249038 1.326504

] [
1.708971 −1.658981

−1.658981 2.603399

]

Hu 1.519277 3.156182

Using the above expressions, the various items appearing in the FONC and SONC

are now calculated at each SP. These are displayed in Table 5.1.

From the numerical results recorded in Table 5.1, it is apparent that:

The constraint is respected to the precision of the data, as the values of h at

the four stationary points is smaller than 10−4;

the maximum maximorum, i.e., the global maximum of the distance d is found

at the SP A;

∇f does not vanish at any of the SPs, but it need not vanish anyway; however,

this vector lies in the range of J at the four SP, which is reflected by the

proportionality between the two components of the two arrays;

134

∇∇f equals the 2 × 2 identity matrix everywhere in the u-v plane, but this

value alone doesn’t give information on the nature of each SP. What gives this

information is the reduced Hessian Hc, which turns out to be a 1× 1 matrix,

i.e., a scalar; this is negative at SPs A and B, thereby indicating local maxima,

and positive at the two other SPs, which indicates local minima. The global

minimum is attained at C. Interestingly, for this example, the smaller local

maximum equals the greater local minimum, up to the ninth digit. This means

that both SPs are, in fact, identical.

A 3D visualization of the toroid defining the curve T is included in Fig. 5.6, while

the intersection of the paraboloid f(u, v) = (1/2)[(u+ 1)2 + v2 with the cylindrical

surface generated by h = (u2 + v2)(u2 + v2 − 4v) − 4(u2 − v2 − 1) is illustrated in

Fig. 5.7.

A Maple worksheet, x5-3-1-fonc+sonc.mw, is available on the course website

with all calculations leading to the results of the above table.

Example 5.3.3 (The Equilibrium Configuration of a Four-Link Chain)

We consider here the problem of determining the equilibrium configuration of a chain

composed of four identical links of length ℓ each, suspended at two points located at

the same level, a distance d apart, as illustrated in Fig. 5.8. This problem was pro-

posed by Luenberger (1984) to illustrate methods of nonlinear programming. Here,

we use a simplified version of this problem with the purpose of obtaining a solution

by simple equation-solving. The principle determining the equilibrium configuration

is one of minimum energy. This leads to the need of finding the stationary points of

its potential energy, and then finding the nature of these points.

At the outset, we exploit the symmetry of the problem, which enables us to

reduce the number of design variables to only two, namely, the inclination of the

two links on the left half of the chain. Let θi, for i = 1, 2, denote the angle made

by the axis of the ith link from the vertical and µ denote the mass distribution per

unit length, while g represents the gravity acceleration. The potential energy V of

the whole chain is, thus, for an arbitrary configuration of the chain,

V (θ1, θ2) = −2µgℓ

(
1

2
cos θ1 + cos θ1 +

1

2
cos θ2

)

which attains a minimum at an equilibrium configuration. However, notice that the

two design variables are not independent, for their horizontal span must be exactly

135

f(u, v)

v u

O

Figure 5.6: The torus generated by the last two joints of the given robot

136

f(u, v)

v u

O

A

D

C

B

Figure 5.7: The distance paraboloid and its intersection with the cylindrical surface

generated by h(x) = 0

137

d

θ1

θ2

θ3

θ4

ℓ

ℓ
ℓ

ℓ
g

Figure 5.8: A four-link chain

d/2, i.e.,

ℓ(sin θ1 + sin θ2)−
d

2
= 0

The optimum design problem at hand now has the form

f(θ1, θ2) ≡
V

µgℓ
= −3 cos θ1 − cos θ2 → min

θ1,θ2

subject to

h(θ1, θ2) = sin θ1 + sin θ2 − p = 0, p ≡ d

2ℓ

The Lagrangian of the problem is to be minimized, i.e.,

F (θ1, θ2) = −3 cos θ1 − cos θ2 + λ(sin θ1 + sin θ2 − p) → min
θ1,θ2,λ

subject to no constraints. The normality conditions of the unconstrained problem

are, thus

∂F

∂θ1
= 3 sin θ1 + λ cos θ1 = 0

∂F

∂θ2
= sin θ2 + λ cos θ2 = 0

∂F

∂λ
= sin θ1 + sin θ2 − p = 0

The problem has thus been reduced to solving the foregoing system of three nonlinear

equations in three unknowns, θ1, θ2 and λ. While this nonlinear system can be solved

using the Newton-Raphson method, the simplicity of the equations lends itself to

a more comprehensive approach. Indeed, the Newton-Raphson method yields one

single solution at a time, the user never knowing whether any other solutions exist.

138

Moreover, there is no guarantee that the solution found is a minimum and not a

maximum or a saddle point.

For starters, we can eliminate λ from the above equations, for it appears linearly

in the first two of those. We thus rewrite those two equations in the form

Aλ = 02

with 02 denoting the two-dimensional zero vector, while A and λ are defined as

A ≡
[

cos θ1 3 sin θ1

cos θ2 sin θ2

]

, λ ≡
[
λ

1

]

6= 02

Since the solution λ sought cannot be zero, the above homogeneous system must

admit a nontrivial solution, which calls for A to be singular, i.e.,

∆(θ1, θ2) ≡ det(A) = 0

Upon expansion,

∆(θ1, θ2) = cos θ1 sin θ2 − 3 sin θ1 cos θ2 = 0

which we shall call the reduced normality condition. We thus have eliminated λ

dialytically (Salmon, 1885), the problem thus reducing to a system of two equations

in two unknowns, h(θ1, θ2) = 0 and ∆(θ1, θ2) = 0. We can further reduce the same

system to one single equation in one single unknown, which can be done by dialytic

elimination as well. However, notice that dialytic elimination is applicable to systems

of polynomial equations, while the two equations at hand are not polynomial; they

are trigonometric. Nevertheless, by application of the well-known trigonometric

“tan-half” identities:

cosx ≡ 1− T 2

1 + T 2
, sin x ≡ 2T

1 + T 2
, T ≡ tan

(x

2

)

the two equations can be transformed into polynomial equations. We will not pursue

here this elimination procedure. Instead, we plot the two foregoing functions in the

θ1-θ2 plane, the solutions sought being found visually at the intersection of the

corresponding contours. In order to plot the contours, however, we must assign a

numerical value to parameter p. By assuming d = 1.25 m and ℓ = 0.5 m, we obtain

p = 1.25. These contours are plotted in Fig. 5.9.

The contours apparently intersect at two points, of coordinates estimated visually

at

θ1 = 0.45, θ2 = 1.00 and θ1 = 2.70, θ2 = 2.20

139

321-1-2-3

3

2

1

-1

-2

-3

θ2

θ1

Figure 5.9: The reduced normality condition and the equality constraint (dashed

contour)

with all values in radians. These values are quite rough. More precise values can

be obtained by means of Newton-Raphson’s method applied to the two nonlinear

equations, using the foregoing estimates as initial guesses. Alternatively, the two

equations can be solved dialytically by means of computer algebra. For example,

upon invoking Maple’s solve procedure, the real roots below were reported:

θ1 = 0.4449420670, θ2 = 0.9607027573 and θ1 = 2.696650587, θ2 = 2.180889896

Translated into degrees, the foregoing angles read:

θ1 = 25.49330256◦, θ2 = 55.04421335◦ and θ1 = 154.5066974◦, θ2 = 124.9557866◦

The first solution corresponds, apparently, to a minimum, the second to a maximum.

If this is the case, then the sum of the corresponding roots for the two solutions

should be π, which is the case. Moreover, upon evaluation of the objective function

at the two solutions, we obtain

f(0.4449420670, 0.9607027573) = −1.640425478

f(2.696650587, 2.180889896) = 1.640425479

which clearly shows that the first solution is a minimum, the second a maximum.

Notice the symmetry of the objective function at the two foregoing extrema.

140

The reader is invited to verify the first- and second-order normality conditions.

The chain at its lower equilibrium configuration is displayed in Fig. 5.10. A similar

display of the second stationary point should show that the two stationary points

are symmetric with respect to the line joining the two supports. The difference

between the two equilibrium—stationary—points lies in the sign-definition of the

Hessian: that associated with the lower equilibrium of Fig. 5.10 is positive-definite,

which means a stable equilibrium, or a minimum. The Hessian associated with the

second SP is negative-definite, which means an unstable equilibrium, or a maximum.

Figure 5.10: The equilibrium configuration of a four-link chain

5.3.1 A Mechanical Interpretation of the Lagrange Multi-

pliers

The Lagrange multipliers bear a mechanical interpretation, as illustrated below.

This is done with the aid of Example 5.3.3.

The force f of constraint acting at the bottom joint is first calculated. To this

end, the chain is cut into two halves, the left half being illustrated in Fig. 5.11,

which depicts the force f required to balance the weight of the links. This force is

provided by the right half. By symmetry, this force is bound to be horizontal.

The constraint force is found by application of the Principle of Virtual Work :
∑
πi = 0, where πi is the power developed by the ith external force. Further, let π1

and π2 denote the power developed by the weight of the first and the second links,

respectively, while π3 denotes the power developed by the constraint force, i.e.,

π1 = µℓg · ċ1, π2 = µℓg · ċ2, π3 = f · ȯ2

141

O0

θ1

ċ1

C1

O1

θ2 ȯ1

ȯ1

ȯ1

µℓg

µℓg
O2

ċ2

ċ2/O1

ȯ2

ȯ2/O1

C2

f

Figure 5.11: The left-hand half of a four-link chain

where, as illustrated in Fig. 5.11, ċi denotes the velocity of the centre of mass Ci of

link i, while ȯi denotes the velocity of the ith joint Oi, for i = 1, 2. In the same

figure, the velocity triangles of C2 and O2 are included.

The power developed by each of the external forces is calculated as the scalar

product of the corresponding force by its velocity, and hence,

g · ċ1 = −g ℓ
2
θ̇1 sin θ1

g · ċ2 = g · (ȯ1 + ċ2/o1
) = 2g · ċ1 + g · ċ2/o1

= −gℓ
(

θ̇1 sin θ1 +
1

2
θ̇2 sin θ2

)

f · ȯ2 = f · (ȯ1 + ȯ2/o1
) = Fℓ(θ̇1 cos θ1 + θ̇2 cos θ2)

where F ≡ ‖f‖. The Principle of Virtual Work thus yields

−µg ℓ
2

2
θ̇1 sin θ1 − µgℓ2

(

θ̇1 sin θ1 +
1

2
θ̇2 sin θ2

)

+ Fℓ(θ̇1 cos θ1 + θ̇2 cos θ2) = 0

or
[

−µgℓ
(

1

2
sin θ1 + sin θ1

)

+ F cos θ1

]

θ̇1 +

(

−1

2
µgℓ sin θ2 + F cos θ2

)

θ̇2 = 0

142

Since θ̇1 and θ̇2 are independent, the foregoing relation holds if and only if their

respective coefficient vanishes, namely,

−µgℓ3
2

sin θ1 + F cos θ1 = 0 and − µgℓ1
2

sin θ2 + F cos θ2 = 0

or, with λ defined as

λ ≡ F

µgℓ/2

a simpler form of the foregoing equations is obtained, namely,

3 sin θ1 − λ cos θ1 = 0 and sin θ2 − λ cos θ2 = 0

which are identical to the first two of the FONC of Example 5.3.3. Hence the

mechanical interpretation:

The Lagrange multiplier of the optimization problem under study is pro-

portional to the force required to keep the two halves of the chain together.

5.4 Linear-Quadratic Problems

5.4.1 The Minimum-Norm Solution of Underdetermined Sys-

tems

We start by recalling a concept of paramount importance in optimization:

Definition 5.4.1 (Convex set) A set of points C is convex if, given any two dis-

tinct points P1 and P2 of the set, then any point P of C comprised between P1 and

P2 also belongs to the set. Otherwise, the set is nonconvex.

More formally, if xi denotes the position vector of Pi, for i = 1, 2, and x that of P ,

then, for any scalar α comprised in the interval [0, 1], we can express the position

vector of P as a convex combination of those of P1 and P2, namely,

x = αx1 + (1− α)x2, 0 ≤ α ≤ 1 (5.42)

We can thus rephrase the definition of convex set as

Definition 5.4.2 (Convex set—an alternative definition) A set of points C is

convex if, given any two distinct points of position vectors x1 and x2, then the point

whose position vector is a convex combination of x1 and x2 also belongs to C.

143

Germane to the concept of convex set is that defined below:

Definition 5.4.3 (convex function) A function f(x) is convex if, for any x1 and

x2, and a x defined as a convex combination of x1 and x2, and given, e.g., as in

eq.(5.42),

f(x) ≤ αf(x1) + (1− α)f(x2) (5.43)

Now we study the underdetermined system of linear equations

Cx = d (5.44)

where C is a p×n matrix with p < n, all equations being assumed linearly indepen-

dent. As a consequence, C is of full rank, i.e., rank(C) = p. Apparently, the system

admits infinitely-many solutions. Notice that the set of solutions of this equation

does not form a vector space. Indeed, since 0 is not a solution, the solution set does

not include the origin, which disqualifies the set from being a vector space. However,

the same set has a quite interesting property:

Fact 5.4.1 The set of solutions of the system (5.44) is convex.

Proof : Assume that x1 and x2 are two distinct solutions of eq.(5.44), i.e.,

Cx1 = d (5.45a)

Cx2 = d (5.45b)

Now, for a real α such that 0 ≤ α ≤ 1, we have

C(αx1) = αd (5.46a)

C[(1− α)x2] = (1− α)d (5.46b)

Upon adding sidewise eqs.(5.46a & b), we obtain

C[αx1 + (1− α)x2] = d (5.47)

thereby completing the proof.

Geometrically, eq.(5.44) represents a plane embedded in n-dimensional space,

offset from the origin. Each point of the plane thus has a position vector that is a

solution of eq.(5.44). Out of the infinity of solutions satisfying the equation, then,

144

there is one that lies closest to the origin. This is the minimum-norm solution of

eq.(5.44). We derive below this solution upon solving the problem:

f(x) ≡ 1

2
‖x‖2 → min

x
(5.48)

subject to eq.(5.44). As before, we transform the above constrained problem into

an unconstrained one. We do this by means of Lagrange multipliers:

F (x) ≡ f(x) + λT (Cx− d) → min
x,λ

(5.49)

subject to no constraints. The normality conditions of this problem are, thus,

∂F

∂x
≡ ∇f + CTλ = x + CTλ = 0n (5.50a)

∂F

∂λ
≡ Cx− d = 0p (5.50b)

the second set of the above equations thus being just a restatement of the system

of underdetermined equations (5.44). Solving for x from eq.(5.50a) yields

x = −CTλ (5.51a)

which, when substituted into eq.(5.50b), leads to

−CCTλ− d = 0p (5.51b)

Since we assumed at the outset that the given eqs.(5.44) are linearly-independent,

C is of full rank, and hence, the p× p symmetric matrix CCT is nonsingular. As a

result, this matrix is, in fact, positive-definite, the outcome being that eq.(5.51b) can

be solved for λ by means of the Cholesky decomposition. The result is, symbolically,

the minimum-norm solution xo sought:

xo = C†d (5.52a)

where

C† = CT (CCT)−1 (5.52b)

which is the right Moore-Penrose generalized inverse (RMPGI) of the rectangular

matrix C. One can see that the straightforward evaluation of C† by its definition,

eq. (5.52a), involves the inversion of a matrix product, which is computationally

costly and prone to ill conditioning, similar to the case of the left Moore-Penrose

generalized inverse of eq.(3.54b). Moreover, the solution of eq. (5.52a) does not hold

when C is rank-deficient.

145

Exercise 5.4.1 Let the QR-decomposition of CT be

CT = QR = [QL QR]

[
U

On′p

]

, n′ = n− p (5.53)

whence CT = QLU with QL of n × p, QR of n × (n − p), U of p × p and On′p

representing the (n − p) × p zero matrix. Devise a two-step algorithm to compute

the minimum-norm solution of eq.(5.44) à la eq.(3.41).

Exercise 5.4.2 (An orthonormal basis for the null space of C) Show that

the columns of QR span N (C), the null space of C, and hence, form a basis for

N (C). Moreover, show that this basis is orthonormal. Hint: show that QT
LQR =

Opn′, the p× (n− p) zero matrix.

An efficient and robust method to computing explicitly the RMPGI relies on the

QR-decomposition of CT , as explained below:

First, notice that by virtue of the orthogonality of Q,

CCT = RTQTQR = RTR = UTU

whence,

(CCT)−1 = U−1U−T (5.54)

Upon substitution of eqs.(5.53) and (5.54) into eq.(5.52b), C† is obtained as

C† = Q

[
UU−1U−T

On′p

]

= [QL QR]

[
U−T

On′p

]

Therefore,

C† = QLU
−T (5.55a)

which means that C† is to be computed numerically, once the QR-decomposition of

CT is available, by forward substitution from the lower-triangular system

UTC† = QL (5.55b)

Example 5.4.1 (The Solution of a× x = b)

Let a, b, and x be three 3-dimensional Cartesian vectors. We would like to solve

the equation

a× x = b

for x.

146

Solution: It is well known, however, that the foregoing equation contains only two

linearly independent scalar equations, which prevents us from finding “the x” that

verifies that equation. Thus, we can proceed by finding a specific x, xo, that verifies

any two of these three equations and that is of minimum norm, for example. To this

end, we expand that equation into its three components:

a2x3 − a3x2 = b1

a3x1 − a1x3 = b2

a1x2 − a2x1 = b3

Note that the foregoing equation can be cast in the form of eq.(3.31) if we define

matrix A as CPM(a)—see eq.(3.19c)—namely,

A ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0





which is known to be singular, the given equations then becoming

Ax = b

Picking up, for example, the first two the three foregoing scalar equations, we obtain

an underdetermined system of the form (5.44), with

C ≡
[

0 −a3 a2

a3 0 −a1

]

, d =

[
b1

b2

]

and hence, the corresponding minimum-norm solution xo is given by eqs.(5.52a &

b), with

CCT =

[
a2

2 + a2
3 −a1a2

−a1a2 a2
1 + a2

3

]

Hence,

(CCT)−1 =
1

∆

[
a2

1 + a2
3 a1a2

a1a2 a2
2 + a2

3

]

where

∆ ≡ det(CCT) = (a2
2 + a2

3)(a
2
1 + a2

3)− a2
1a

2
2 = a2

3‖a‖2 > 0

a relation that shows that CCT is singular if a3 happens to vanish. If this is not the

case, then

C† =
a3

∆





a1a2 a2
2 + a2

3

−(a2
1 + a2

3) −a1a2

a2a3 −a1a3





147

whence,

xo =
a3

∆





a1a2b1 + (a2
2 + a2

3)b2

−(a2
1 + a2

3)b1 − a1a2b2

a2a3b1 − a1a3b2



 (5.57)

Notice that the foregoing solution depends on the condition a3 6= 0. If a3 = 0, or very

close to 0, then C becomes either rank-deficient or, correspondingly, ill-conditioned,

which is bad news. Apparently, the foregoing solution has an element of arbitrariness

that may lead either to rank-deficiency or to ill-conditioning. There is no guarantee

that the two equations singled out are the best choice from the condition-number

viewpoint. Besides, that approach leaves aside useful information, that of the deleted

equation. The alternative approach uses all three equations, to which one fourth

equation is adjoined, namely, the minimum-norm condition, as described below.

First we observe that, if x has been found that verifies the given cross-product

equation, then any other vector x+αa, for α ∈ R, verifies that equation. Apparently,

then, the minimum-norm x is that whose component along a vanishes, i.e.,

aTx = 0

Upon adjoining the foregoing equation to the original three, we end up with an ap-

parently overdetermined system of four equations with three unknowns, of the form

Mx = n

where M and n are given by

M =

[
A

aT

]

, n =

[
b

0

]

Hence, M is a 4 × 3 matrix, while n is a 4-dimensional vector. The least-square

approximation of the new system is, then, the minimum-norm solution of the orig-

inal system, provided that the latter is verified exactly, which it is, as will become

apparent. Indeed, the least-square approximation of the new system takes the form

xL = (MTM)−1MT n (5.58)

While we have strongly advised against the explicit computation of generalized in-

verses, our advice is valid only as pertaining to numerical computations. In the case

at hand, we will pursue not a numerical, but rather a symbolic computation of the

solution sought.

148

The first issue now is whether MTM is invertible, but it is so and, moreover, its

inverse is extremely simple to find:

MTM = [AT a]

[
A

aT

]

= ATA + aaT

But, since A is skew-symmetric,

MTM = −A2 + aaT

as the reader can readily verify; moreover,

A2 = −‖a‖21 + aaT

Hence,

MTM = ‖a‖21
which means that M is isotropic, i.e., κ(M) = 1, and hence, M is optimally-

conditioned. Therefore,

(MTM)−1 =
1

‖a‖21

That is ,

xL =
1

‖a‖21 [AT a]

[
b

0

]

=
1

‖a‖2A
Tb

which can be further expressed as

xL = −a× b

‖a‖2 (5.59)

thereby obtaining a much simpler, and robust, expression than that displayed above

as xo. Robustness, in this case, means that the above expression does not break

down under any special value of any specific component of a. This is a benefit of an

invariant expression, as opposed to one depending on components.

Exercise 5.4.3 Find the number of floating-point operations (flops) required to

compute x0 as given by eq.(5.57) and compare them with those required to compute

xL as given by eq.(5.59).

5.4.2 Least-Square Problems Subject to Linear Constraints

Given the system of linear equations

Ax = b (5.60)

149

where A is a full-rank q × n matrix, with q > n, and b is a q-dimensional vector,

find a n-dimensional vector x that verifies the above system with the least-square

error, subject to the linear equality constraints

Cx = d (5.61)

with C a full-rank p × n matrix and d a p-dimensional vector. Moreover, W is a

q × q positive-definite weighting matrix, with q, p and n subject to

q + p > n and n > p (5.62)

The error-squared of eqs.(5.60) is defined as

f ≡ 1

2
(Ax− b)TW(Ax− b) (5.63)

As usual, we solve this problem by introducing Lagrange multipliers:

F (x;λ) ≡ f(x) + λT (Cx− d) → min
x,λ

(5.64)

subject to no constraints.

The first-order normality conditions of the foregoing problem are

∂F

∂x
≡ ATW(Ax− b) + CTλ = 0n (5.65a)

∂F

∂λ
≡ Cx− d = 0p (5.65b)

Since A is assumed of full rank and W is positive-definite, we can solve eq.(5.65a)

for x in terms of λ, namely,

x = (ATWA)−1(ATWb−CTλ) (5.66)

Upon substituting the above expression into eq.(5.65b), we obtain

C(ATWA)−1CTλ = C(ATWA)−1ATWb− d

whence,

λ = [C(ATWA)−1CT]−1[C(ATWA)−1ATWb− d] (5.67)

ow, the foregoing expression for λ is substituted, in turn, into eq.(5.66), thereby

obtaining the optimum value of x, xo, namely,

xo = PBb + Dd (5.68a)

150

where P, B and D are the n× n-, n×m- and n× p matrices given below:

P = 1n −DC (5.68b)

B = (ATWA)−1ATW (5.68c)

D = (ATWA)−1CT [C(ATWA)−1CT]−1 (5.68d)

with 1n standing for the n × n identity matrix. The solution derived above, while

being exact, for it is symbolic, is unsuitable for numerical implementation. Indeed,

this solution contains inversions of products of several matrices times their trans-

poses, which brings about ill-conditioning. Various approaches to the numerical

solution of this problem will be studied in Ch. 6.

Exercise 5.4.4 Using nothing but: a) the Cholesky-decomposition of positive-definite

matrices; b) the QR-decomposition of rectangular matrices with more rows than

columns; and c) forward and backward substitutions in triangular systems of linear

equations, devise an algorithm to compute numerically the solution xo of eq.(5.68a).

5.5 Equality-Constrained Nonlinear Least Squares

We consider here the problem of finding the least-square error f of an overdetermined

system of q nonlinear equations in the n-dimensional vector of unknowns x, namely,

φ(x) = 0q (5.69a)

subject to the l nonlinear constraints

h(x) = 0l (5.69b)

whereby

q > n, n > l (5.70)

The problem thus consists in finding a x that makes φ as close as possible to zero,

while observing strictly eqs.(5.69b).

In general, moreover, the various scalar equations of eq.(5.69a) have different

relevance and are, hence, assigned different weights, which then leads to a problem

of weighted least squares, namely,

f(x) =
1

2
φTWφ → min

x
(5.71)

151

subject to eq.(5.69b).

The normality conditions of the problem at hand are derived directly from those

of the general equality-constrained problem, namely, eq.(5.12) or its dual counter-

part, eq.(5.16). In our case,

∇f =

(
∂φ

∂x

)T
∂f

∂φ
(5.72a)

where
∂φ

∂x
≡ Φ(x),

∂f

∂φ
= Wφ(x) (5.72b)

i.e., Φ(x) denotes the q × n gradient of φ(x) with respect to x. Hence,

∇f = ΦTWφ (5.72c)

where we have dispensed with the argument x for the sake of simplicity.

The normality condition (5.12) thus reduces to

[1− JT (JJT)−1J]ΦTWφ = 0n (5.73)

with J defined, as usual, as J = ∂h/∂x = ∇h. What the foregoing condition states

is that, at a stationary point, ∇f = ΦTWφ need not vanish6; only the projection

of ∇f onto the null space of the gradient of the constraints must vanish.

The dual form of the same normality conditions, in turn, reduces to

LT ΦTWφ = 0n′ (5.74)

with L indicating a n× (n− l) orthogonal complement of J, as defined in eq.(5.15),

and 0n′ denoting the (n− l)-dimensional zero vector.

The second-order normality conditions of f(x) are now derived by assuming that

we have found a stationary value of the design-variable vector, xo. This means that

the FONC are satisfied at x = xo. More specifically, the FONC in dual form are

verified at the given SP, which means that

LT (xo)Φ
T (xo)Wφ(xo) = 0n′ (5.75)

Now, in order to set up the SONC, we need the constrained Hessian Hc of the

problem at hand, namely,

Hc = ∇∇f +
∂(JTλ)

∂x
(5.76)

6Certainly, φ need neither vanish, as the system of nonlinear equations (5.69a) is overdeter-

mined.

152

Given the form (5.72c) of ∇f , its gradient, i.e., the unconstrained Hessian ∇∇f ,

requires partial derivatives of matrix Φ, leading to a three-dimensional array. To

avoid the encumbrance of such arrays, we calculate the unconstrained Hessian in

two steps: first, we differentiate the rightmost-hand factor φ of ∇f in eq.(5.72c)

with respect to x; then, upon fixing x at xo in φ, a constant vector φo = φ(xo)

is obtained; finally, differentiation of the whole product ΦTWφo with respect to x

yields a matrix, which is just added to the first term:

∇∇f = ΦTWΦ +
∂(ΦTWφo)

∂x
(5.77)

We recall that the constrained Hessian Hc as well as its unconstrained counterpart

is symmetric, and takes the form

Hc = ΦTWΦ +
∂(ΦT Wφo)

∂x
+
∂(JTλ)

∂x
(5.78)

Furthermore, the reduced Hessian Hu of f is now

Hu = LT

[

ΦTWΦ +
∂(ΦTWφo)

∂x
+
∂(JTλ)

∂x

]

L (5.79)

In summary, then, the optimization problem at hand can have local minima,

local maxima or saddle points, depending on the sign-definition of Hu.

5.6 Linear Least-Square Problems Under Quadratic

Constraints

An important family of design problems lends itself to a formulation whereby the

objective function is quadratic in a linear function of the design vector x, while the

constraints are quadratic in x. Contrary to the case of linear least-squares subject

to linear constraints, this family of problems does not allow, in general, for closed-

form solutions, the reason being that their normal equations are nonlinear. Let us

consider

f(x) ≡ 1

2
(b−Ax)TW(b−Ax) → min

x
(5.80a)

subject to

h(x) = 0l (5.80b)

where A is a q × n full-rank matrix, with q ≥ n, W is a q × q positive-definite

weighting matrix, while h, x and b are l-, n- and q-dimensional vectors, respectively,

with

q + l > n, n > l (5.80c)

153

Moreover, in this particular case, the ith component of vector h is quadratic, namely,

hi(x) ≡ 1

2
xT Pix + qT

i x + ri, i = 1, 2, . . . , l (5.80d)

in which Pi is a known n × n symmetric matrix, while qi is a n-dimensional given

vector and ri is a given scalar. Apparently, then, the ith row of J, the Jacobian of

h with respect to x, takes the form

(
∂hi

∂x

)T

= Pix + qi, i = 1, 2, . . . , l (5.81)

Therefore,

JT = [P1x + q1 P2x + q2 · · · Plx + ql] (5.82)

whence J is linear in x. To derive the FONC, we need ∇f , which is readily derived

as

∇f = −ATW(b−Ax) (5.83)

the first-order normality conditions (5.12) thus taking the primal form

[1n − JT (JJT)−1J]ATW(b−Ax) = 0n (5.84)

It is thus apparent that, although J is linear in x, the normality conditions are

rational7

The FONC in dual form are, then,

LT ATW(b−Ax) = 0n′ (5.85)

The SONC are now derived. Differentiation of ∇f with respect to x leads to the

unconstrained Hessian, namely,

∇∇f = ATWA (5.86)

which is, apparently, positive-definite, but this Hessian does not tell the nature

of a SP. We need the constrained Hessian, as defined in eq.(5.76), which calls for

7A rational function of a real variable x bears the form P (x)/Q(x), with P and Q denoting

polynomials in x of degrees p and q, respectively. A similar definition follows for a n-dimensional

vector x, instead of x, P and Q then changing to multi-variable polynomials., stemming from the

inverse of JJT , thereby leading to a problem lacking a closed-form solution, except for special

cases, like the example included in this section.

154

the computation of an additional term, namely, ∂(JTλ)/∂x; this term is computed

below. First, we have the product

JTλ = [P1x + q1 P2x + q2 · · · Plx + ql]








λ1

λ2
...

λl








=
l∑

1

λi(Pix + qi) (5.87)

whence,

∂(JTλ)

∂x
= λ1P1 + λ2P2 + . . .+ λlPl =

l∑

1

λiPi =
l∑

1

λiPi (5.88)

Therefore,

Hc = ATWA +
l∑

1

λiPi (5.89)

which is the sum of a positive-definite term plus one that is sign-indefinite. However,

notice that the two terms are symmetric, and hence, the constrained Hessian is

symmetric as well, similar to the general case. Now, the reduced (n − l) × (n − l)
Hessian Hu is readily obtained as

Hu = LT (ATWA +

l∑

1

λiPi)L (5.90)

In conclusion, then, a SP is a local minimum if, at this SP, Hu is positive-definite;

it is a local maximum if negative-definite; it is a saddle point if sign-indefinite.

Example 5.6.1 (A Quadratic Objective Function with a Quadratic Cons-

traint)

Find all the SPs of the objective function

f(x) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) → min

x1, x2

subject to the quadratic constraint

h(x) = x2
1 + x2

2 − 1 = 0

and determine the nature of each SP.

155

Solution: The objective function can be shown to be associated to a positive-definite

matrix Q:

Q = ∇∇f =

[
9 −4

−4 3

]

Moreover, f(x) can be factored as

f(x) =
1

2
(b−Ax)TW(b−Ax)

with8

A = 12, b = 02, W =

[
9 −4

−4 3

]

x =

[
x1

x2

]

where W is, apparently, identical to ∇∇f in this case, and hence, positive-definite,

which means that the problem belongs to the least-square class.

Upon adjoining the constraint to the objective function, we obtain the La-

grangian F (x;λ), namely,

F (x;λ) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) + λ(x2

1 + x2
2 − 1)

which we want to minimize subject to no constraints. The normality conditions of

the unconstrained problem are, thus

∂F

∂x1
= 9x1 − 4x2 + 2λx1 = 0

∂F

∂x2
= −4x1 + 3x2 + 2λx2 = 0

∂F

∂λ
= x2

1 + x2
2 − 1 = 0

Let us now eliminate λ from the first and the second of the above equations. We do

this dialytically, i.e., we write these two equations in linear homogeneous form in λ

and 1, i.e.,

My = 02

where

M =

[
2x1 9x1 − 4x2

2x2 −4x1 + 3x2

]

, y =

[
λ

1

]

6= 02

8Actually, the choice of A and W in the factoring of the quadratic form is not unique. An

alternative definition of these matrices could be W = 12 and A one of the Cholesky factros of

Q, as in this case, q = n. For q > n, the factoring of ∇∇f into the product ATA becomes

indeterminate.

156

with 02 denoting the 2-dimensional zero vector. Now, the above linear homogeneous

equation in y cannot be zero, for y 6= 02, and hence, matrix M must be singular,

which is stated as

∆ ≡ det(M) = 0

Upon expansion, the foregoing equation leads to

∆ = 2x1(−4x1 + 3x2)− 2x2(9x1 − 4x2) = 0

or, after simplification,

x2
1 +

3

2
x1x2 − x2

2 = 0

thereby reducing the problem to the solution of two quadratic equations in two un-

knowns, the above equation and the third normality condition, i.e., the constraint.

While it is not too difficult to manipulate two quadratic bivariate equations to derive

one single monovariate equation, one must avoid cumbersome algebraic manipula-

tions. Notice that

∆− h =
3

2
x1x2 − 2x2

2 + 1 = 0

which is linear in x1, and hence, readily yields an expression for x1 in terms of x2,

namely,

x1 =
2

3

2x2
2 − 1

x2

Substitution of the above expression into h = 0 yields, after simplifications,

25x4
2 − 25x2

2 + 4 = 0

which is a quadratic equation in x2
2, its four roots being

(x2)1 =

√
5

5
, (x2)2 = −

√
5

5
, (x2)3 =

2
√

5

5
, (x2)4 = −2

√
5

5

which lead to the corresponding values of x1, namely,

(x1)1 = −2
√

5

5
, (x1)2 =

2
√

5

5
, (x1)3 =

√
5

5
, (x1)4 = −

√
5

5

In fact, ∆ = 0 is a degenerate conic, that breaks down into the product of two linear

equations. The four foregoing solutions of the problem at hand are thus the four

intersections of two lines passing through the origin with the unit circle centred at

the origin, as shown in Fig. 5.12.

157

P2

P3

P1

P4
∆ = 0

h = 0

∆ = 0

Figure 5.12: The intersection of ∆ = 0, a degenerate conic, with h = 0

Now we determine the nature of the SPs. To this end, we need an orthogonal

complement L of J. This is readily derived, by regarding J as a two-dimensional

vector row array, namely,

J = [2x1 2x2]

Upon rotating this vector through 90◦ ccw, normalizing the array thus resulting so

that it will be of unit norm, and casting it in column form, we obtain

L =
1

√

x2
1 + x2

2

[−x2

x1

]

Moreover, upon adding the first two normality conditions for the Lagrangian, one

expression for λ is obtained in terms of the design variables, namely,

λ =
−5x1 + x2

2(x1 + x2)

Further, a general expression for Hc is

Hc =

[
9 + λ −4

−4 3 + λ

]

158

SP1: The first SP is x = (
√

5/5)[2, −1]T , whence

λ = −11

2
, L =

√
5

5

[
1

2

]

Therefore,

Hu =
1

5
[1 2]

[
7/2 −4

−4 −5/2

] [
1

2

]

= −9

2
< 0

which indicates a local maximum. A quick calculation shows that fmax =

37/10.

SP2: The second SP is x = (
√

5/5)[−2, 1]T , for which

λ = −11

2
, L =

√
5

5

[−1

−2

]

Therefore,

Hu =
1

5
[−1 −2]

[
7/2 −4

−4 −5/2

] [−1

−2

]

= −9

2
< 0

which indicates a local maximum as well.

SP3: The third SP is x = (
√

5/5)[1, 2]T , for which

λ = −1

2
, L =

√
5

5

[−2

1

]

Therefore,

Hu =
1

5
[−2 1]

[
17/2 −4

−4 5/2

] [−2

1

]

=
21

2
> 0

thereby identifying a local minimum. Again, a quick calculation leads to

fmin = 1/2.

SP4: The fourth SP is x = (
√

5/5)[−1, −2]T , for which

λ = −1

2
, L =

√
5

5

[
2

−1

]

Therefore,

Hu =
1

5
[2 −1]

[
17/2 −4

−4 5/2

] [
2

−1

]

=
21

2
> 0

which indicates a local minimum as well.

The four stationary points and the ellipses they define, tangent to the unit circle,

are displayed in Fig. 5.13.

More general problems of this family can be solved using the methods discussed

in Ch. 6 for arbitrary objective functions subject to nonlinear equality constraints.

159

P2

P3
P1

P4

Figure 5.13: The four stationary points of Example 5.6.1

160

Chapter 6

Equality-Constrained

Optimization:

The Orthogonal-Decomposition

Algorithm

6.1 Introduction

The main objective of this chapter is the development of the orthogonal-decomposition

algorithm (ODA), which is derived first in the context of equality-constrained linear

least-square problems; then, it is applied to equality-constrained nonlinear least-

square problems. Several numerical techniques, such as the QR-decomposition, the

Cholesky-decomposition, the Newton-Gauss method, etc., are applied in order to ob-

tain numerical solutions by means of procedures that are both efficient and robust.

What we mean by the former is procedures that use as few floating-point opera-

tions (flops) as possible; by the latter we mean procedures that keep the roundoff

error in the solution as low as possible with respect to that of the data, an item

that falls in the realm of numerical conditioning, a subject that was introduced in

Subsection 3.4.1.

The orthogonal-decomposition algorithm is implemented in a C library of rou-

tines called ODA and its Matlab version; both are available at

www.cim.mcgill.ca/~rmsl/index/index.htm

In Section 6.4, two methods applicable to arbitrary objective functions, not stem-

161

ming from a least-square problem, are developed. In the first method, the assump-

tions are made that i) the objective function is C2-continuous and ii) its second

partial derivatives with respect to the design variables are available. Assumption i)

depends both on the nature of the problem and on the objective function to mini-

mize (or maximize). For example, in structural optimization, as long as the stress

levels are below rupture, stress values are smooth functions of the loads, and hence,

C2-continuous. If the objective function, under these conditions, is the von Mises

stress, which is a smooth scalar function of the stress tensor, then C2-continuity is

guaranteed. However, if the Tresca stress is the objective function, then the na-

ture of the latter changes dramatically, as this function is not even C1-continuous.

Moreover, even in the presence of C2-continuity, assumption ii) may not hold, as

second-order derivatives may be prohibitively expensive to compute. In FEA1, even

first-order derivatives are usually out of the question. Thus, in practice both C2-

continuity and second derivatives are seldom found. We propose therefore a second

method that relies only on C1-continuity and first-order derivatives of the objective

and the constraint functions.

6.2 Linear Least-square Problems Subject to

Linear Equality Constraints: the ODA

We recall below the linear least-square problem subject to linear equality constraints:

Given the overdetermined system of linear equations

Ax = b (6.1)

find a vector x that verifies the above system with the least-square error. For the

sake of generality, the error in the approximation is defined as in the case of weighted

least-square problems—see Subsection 3.5.2—i.e., as

f ≡ 1

2
(Ax− b)TW(Ax− b)→ min

x
(6.2)

subject to the linear constraints

Cx = d (6.3)

Here, x is the n-dimensional vector of design variables, while A and C are q × n
and p× n matrices, while b and d are q- and p-dimensional vectors. Moreover, W

is a q × q positive-definite2 weighting matrix, with q, p and n subject to

1Finite element analysis.
2Should W fail to be positive-definite, we wounldn’t have a least-square problem!

162

q > n and p < n (6.4a)

Note that the first of the foregoing inequalities excludes the possibility of a unique

solution upon solving for x from eq.(6.1), the second preventing a unique solution

from eq.(6.3). Moreover, for the foregoing constrained problem to be overdeter-

mined, the number q of eqs.(6.1) must be greater than the degree of freedom3 allowed

by the constraints (6.3), and hence, p, q and n must obey one more constraint:

q > n− p (6.4b)

If A and C are full-rank matrices, then the forgoing problem was shown to

have a unique solution, given by eqs.(5.68a–d), which is reproduced below for quick

reference:

x = PBb + Dd (6.5a)

where,

P = 1n −DC (6.5b)

B = (ATWA)−1ATW (6.5c)

D = (ATWA)−1CT [C(ATWA)−1CT]−1 (6.5d)

and 1n is, as usual, the n× n identity matrix.

As pointed out in Subsection 5.4.2, the above expression is unsuitable for nu-

merical implementation. A popular approach to obtaining the solution under study

consists in partitioning C into a p × p and a p × (n − p) submatrices, where care

should be taken so as to choose a well-conditioned p× p matrix, for safe inversion.

Correspondingly, vector x should be partitioned into a master part xM , of n − p

components, and a slave part xS of p components. Thus, the constraint equations

would be solved for the slave part in terms of the master part and the problem would

reduce to an unconstrained least-square problem of dimension n − p. However, an

arbitrary partitioning of C may lead to an ill-conditioned p × p block, even if C

itself is well-conditioned. This situation can be prevented if, out of all N possible

partitionings of C, the one with the lowest condition number is chosen. Note that

the number of partitionings is given by

N =
n!

p!(n− p)!
3The degree of freedom in question is obviously the difference between the number n of variables,

unknowns in the case at hand, and that of constraints, p.

163

and hence, N can become quite large, even for modest values of n and p. Since

calculating the condition number of a matrix is a computationally costly procedure,

this approach is to be avoided.

Alternatively, by introduction of the singular values of C (Strang, 1988), a sub-

system of p equations in p unknowns, which are linear combinations of the compo-

nents of x, can be found that is optimally conditioned. The computation of singular

values, however, similar to that of eigenvalues, is a problem even more difficult

to solve than the one at hand, for it is nonlinear and must be solved iteratively.

Therefore, the singular-value approach is strongly recommended against.

One more approach is introduced here, which stems from the geometric inter-

pretation of the solution (6.5a). Indeed, vector Bb of that solution represents the

unconstrained weighted least-square approximation of eq.(6.2). The second term of

the right-hand side of eq.(6.5a) is the minimum-norm solution of the underdeter-

mined system (6.3), based on the weighted norm of x, i.e.,

‖x‖2W = xTATWAx (6.6)

in which the weighting matrix is the positive-definite product ATWA. Moreover,

P is a projector4 onto the null space of C. Indeed, one can readily prove that every

n-dimensional vector x is mapped by P onto the null space of C. Moreover, P2 can

be proven to equal P, thereby making apparent that P is, in fact, a projector.

Exercise 6.2.1 Prove that, under the assumptions spelled out above, (a) ATWA

is positive-definite, and (b) P, as given by eq.(6.5b), is a projector.

Furthermore, for any p×n matrix C, R(C) and N (C) are orthogonal subspaces5 of

Rn, their direct sum producing all of Rn; i.e., every n-dimensional vector x can be

uniquely decomposed into a vector lying in the range of CT and a second one lying

in the null space of C. Now let L be a n× (n − p) matrix spanning the null space

of C, i.e., its n− p n-dimensional columns lie in N (C), which means that

CL = Opn′ (6.7)

with Opn′ representing the p× (n− p) zero matrix. Matrix L is thus an orthogonal

complement of matrix C. Now, the solution to the above problem can be decomposed

into two parts, namely,

4Note that P is apparently not symmetric!
5Note that, for two subspaces to be orthogonal, they must be embedded in the same space. In

our case, R(C) ⊆ Rp ⊂ Rn and N (C) ⊂ Rn.

164

x = xo + xu (6.8)

in which xo represents the minimum-norm solution to the constraint equation (6.3),

i.e., xo lies in the range of CT , while xu lies in the null space of C. Vector xo is

computed by means of the QR-decomposition of CT , as discussed in Subsection 5.4.1,

while vector xu is computed by means of a linear least-square problem. We outline

below the computation of xu.

Let us define a q×q matrix V as the right Cholesky factor of the given weighting

matrix W, i.e.,

W = VTV (6.9)

Moreover, with xo known, xu is found as the least-square approximation of

VAxu = V(b−Axo) (6.10)

subject to the constraints

Cxu = 0p (6.11)

Further, let us represent xu as the image of a (n − p)-dimensional vector under a

transformation given by a n× (n− p) matrix L, namely,

xu = Lu (6.12)

with L defined, in turn, as introduced in eq.(6.7). Equation (6.10) thus becomes

VALu = V(b−Axo) (6.13)

which is an overdetermined system of q linear equations in n − p unknowns. It is

thus apparent that u can be computed as the unconstrained least-square solution of

eq.(6.13).

However, matrix L, an orthogonal complement of C, is not unique. We have thus

reached a crucial point in the solution of the constrained linear least-square problem

at hand: how to define L. While L can be defined in infinitely many forms—notice

that, once any L has been found, a multiple of it also satisfies eq.(6.7)—we invoke

here Exercise 5.4.2, and hence, define L as the n× (n− p) QR block of matrix Q of

the QR-decomposition of CT , namely,

L = QR (6.14)

In this way, L has an extremely simple LMPGI, namely,

LI = LT = QT
R (6.15)

165

which is a consequence of the orthogonality of Q: its columns, or its rows for that

matter, form an orthonormal set. In particular, the columns of QL and QR are

orthonormal subsets of p and n − p vectors in Rn, respectively. In this light, both

QL and QR are isotropic matrices, i.e., of κ = 1, whose weighted Frobenius norms,

with weighting matrices WL = (1/p)1p and WR = (1/n′)1n′, respectively—n′ is

defined as n− p—are, moreover, unity.

Once L is known, eq.(6.13) can be solved for u as the least-square approximation

of that system. Then, xu is calculated from eq.(6.12). Notice that, in calculating u,

the QR-decomposition of the product VAL will be needed, rather than the one of

A alone.

As the reader can readily prove, the two components of x, xo and xu, are or-

thogonal. For this reason, the foregoing procedure is known as the Orthogonal-

Decomposition Algorithm (ODA).

6.3 Equality-Constrained Nonlinear Least-Square

Problems

The solution of nonlinear least-square problems by means of the ODA is now straight-

forward: The problem consists in finding the least-square error f of an overdeter-

mined system of nonlinear equations, φ(x) = 0q, i.e.,

f(x) =
1

2
φTWφ → min

x
(6.16a)

subject to the nonlinear constraints

h(x) = 0p (6.16b)

where φ and x are q- and n-dimensional vectors, respectively, with q > n, and W

is a q × q positive-definite weighting matrix. Moreover, h is a p-dimensional vector

of nonlinear constraints.

The normality condition of the foregoing constrained problem was derived in

Ch. 5 in its dual form, eq.(5.74), and recalled below for quick reference:

LT ΦTWφ = 0n′ (6.17)

with 0n′ denoting the (n − p)-dimensional zero vector, Φ the q × n gradient of φ

166

with respect to x, and L the n× (n− p) isotropic orthogonal complement6 of J, the

p× n gradient of h with respect to x, or ∇h.

As the problem is nonlinear, its solution is obtained iteratively, within the spirit

of the Newton-Gauss method introduced in Subsection 3.7.1: From an initial guess

x0, not necessarily feasible, i.e., with h(x0) 6= 0l, the sequence x1, x2, . . . , xk, xk+1

is generated as

xk+1 = xk + ∆xk (6.18)

The increment ∆xk is computed as the solution of an equality-constrained linear

least-square problem, namely,

min
∆xk

1

2
[φ(xk+1)]TWφ(xk+1) (6.19a)

subject to

J(xk)∆xk = −h(xk) (6.19b)

with φ(xk+1) given, to a first-order approximation, by

φ(xk+1) ≡ φ(xk) + Φ(xk)∆xk (6.19c)

Now, for compactness, we introduce a few definitions:

hk ≡ h(xk), φk ≡ φ(xk), Φk ≡ Φ(xk), Jk ≡ J(xk) (6.20)

while Lk is defined as the isotropic orthogonal complement of Jk and of unit weighted

Frobenius norm, namely, the QR block of matrix Q of the QR-decomposition of JT
k .

Indeed, Jk now plays the role of matrix C of eq.(6.3) in the linear case. Moreover,

Φk and Jk will be assumed to be of full rank throughout, the solution ∆xk of

problem (6.19a–c) thus being expressed as in the linear case, namely,

∆xk = ∆vk + Lk∆uk (6.21)

A procedure to compute ∆vk and ∆uk is introduced below. To this end,

eq.(6.19b) is first rewritten in terms of the orthogonal decomposition of ∆xk:

Jk∆vk + JkLk∆uk = −hk (6.22)

By virtue of the orthogonal-complementarity relation between Jk and Lk, however,

eq.(6.22) reduces to

Jk∆vk = −hk (6.23)

6As a matter of fact, matrix L appearing in eq.(6.17), need not be isotropic for the normality

condition to hold. Any orthogonal complement of J will do.

167

Next, an expression is derived for fk+1 ≡ f(xk+1):

fk+1 ≡
1

2
(φk + Φk∆xk)TVTV(φk + Φk∆xk) ≡ 1

2
‖V(φk + Φk∆xk)‖2 (6.24)

where the Cholesky-decomposition of W, introduced in eq.(6.9), has been recalled.

Hence, in computing ∆xk the aim will be to render vector V(φk + Φk∆xk) as close

to zero as possible, i.e.,

Vφk + VΦk∆xk → 0p

or, in terms of the orthogonal decomposition of ∆xk given in eq.(6.21),

VΦk(∆vk + Lk∆uk) + Vφk = 0p

whence7,

VΦk
︸ ︷︷ ︸

Bk

Lk∆uk = −V(φk + Φk∆vk) (6.25)

which is an overdetermined system of q linear equations in n− p < q unknowns, the

components of ∆uk.

The computation of ∆vk and ∆uk now proceeds sequentially :

1. Compute ∆vk as the minimum-norm solution of the underdetermined system

of eq.(6.23):

∆vk = −J†
kh

k (6.26)

where J†
k is computed as QLU

−T , QL and U being blocks of the QR-decomposition

of JT
k , similar to the blocks of the same decomposition of CT in eq.(5.53).

2. with ∆vk known, compute ∆uk as the least-square approximation of eq.(6.25):

∆uk = −(VΦkLk)
IV(φk −ΦkJ

†
kh

k) (6.27)

the LMPGI of VΦkLk being computed with the QR-decomposition of the

foregoing product.

The stopping criteria of the procedure are, then,

||∆xk|| ≤ ǫ1 and ||h(xk)|| ≤ ǫ2 (6.28)

for prescribed tolerances ǫ1 and ǫ2. The second inequality of eq.(6.28) apparently

implies that the constraints, eq.(6.16b), are satisfied within the prescribed tolerance

7Although Bk is not needed in the discussion below, it is defined here because it is an auxiliary

variable in oda-quad.mw.

168

ǫ2. It is shown in the sequel that the first inequality of eq.(6.28) guarantees that the

normality condition (6.17) is verified within the prescribed tolerance ǫ1.

With ∆vk known, ∆uk is computed as the least-square approximation of eq.(6.25)8:

∆u = −(VΦL)IV(φ−ΦJ†h)

The LMPGI of the product VΦQR is displayed below for purposes of analysis only,

its computation to be implemented with the aid of the QR-decomposition of the

product in question.

(VΦL)I = (LT ΦTVTVΦL)−1LTΦTV = (LT ΦTWΦL)−1LT ΦTV

Hence,

∆u = −(LT ΦTWΦL)−1LTΦTW(φ−ΦJ†h) (6.29)

Now, from eq.(6.21) ∆x can be expressed as

∆x = (MΦTWΦ− 1n)J†h−MΦTWφ (6.30)

where M is the n× n matrix defined as

M = L(LTΦTWΦL)−1LT (6.31)

Upon convergence, i) ∆x → 0n, as its norm does within ǫ1, and ii) the constraint

equations hold within ǫ2, and hence, h → 0l. Now, setting ∆x = 0n, h = 0p and

substituting M by its expression (6.31) into eq.(6.30), one obtains

L(LT ΦTWΦL)−1 LTΦTWφ
︸ ︷︷ ︸

nc

= 0n (6.32)

which implies that nc = 0n−p. Upon comparing nc with the left-hand side of

eq.(6.17), it becomes apparent that eq.(6.32) implies the verification of the nor-

mality condition.

In summary, then if the ODA converged as per eq.(6.28), then both the normality

conditions and the constraints are verified. The sequence {∆xk} produces a sequence

{fk}; the increment ∆f between two consecutive values of the former is given, to

first order, by

∆f = (∇f)T ∆x (6.33)

8For simplicity, upper- and subscript k is dropped henceforth.

169

where ∇f = ΦTWφ, and hence,

∆f = (ΦTWφ)T ∆x

= −φTWΦMΦTWφ− φTWΦ(1n −MΦT WΦ)J†h (6.34)

From eq.(6.34), if the current value of x is feasible, i.e., if h = 0, then ∆f is

negative-definite, and the procedure yields an improved value of f . Therefore, the

ODA iterations lead to a feasible local minimum in the proximity of a feasible SP.

Furthermore,

∆(hTh) = (∆h)Th + hT ∆h = 2hT ∆h

However, since J = ∇h,

∆h = J∆x

But, from eq.(6.19b), J∆x = −h at each iteration, and hence,

∆h = −h (6.35)

Therefore,

∆(hT h) = −2hT h (6.36)

the result being that the ODA converges towards a feasible solution, and hence, the

initial guess need not be feasible. This is important, as many a method requires

that the initial guess be feasible. Finding a feasible guess may be as hard a task

as that of finding a feasible stationary point. From eq.(6.34), if the current value

of x is feasible, i.e., if h = 0, then ∆f is negative-definite, and the procedure

yields an improved value of f . Therefore, the ODA iterations lead always to a local

minimum, although the least-square problem may contain local maxima, as found

in Example 6.3.1, or even saddle points.

Example 6.3.1 (A Quadratic Objective Function with a Quadratic Con-

straint) We recall Example 5.6.1, which is reproduced below for quick reference:

f(x) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) → min

x1, x2

subject to

h(x) = x2
1 + x2

2 − 1 = 0

The above objective function is quadratic in the design-variable vector and the asso-

ciated matrix is positive-definite, as found in Example 5.6.1, which means that the

170

problem is of the least-square class. However, the constraint is quadratic, which dis-

qualifies this problem from a direct solution—see Section 6.2 for linear least-squares

subject to linear constraints.

Solution: This problem, due to its simplicity, could be solved exactly in Section 5.6.

Here, we solve this problem numerically, using the ODA. First, we recall that the

objective function f(x) can be factored as

f(x) =
1

2
φTWφ

with

W =

[
9 −4

−4 3

]

and φ =

[
x1

x2

]

⇒ Φ = 12

i.e, f(x) is a special case of the f(x) defined in eq.(6.2), with A = 1 and b =

0. We include below the Maple worksheet oda-quad.mw describing the step-by-

step implementation of the ODA in solving the foregoing problem iteratively. In

this worksheet, the QR-decomposition is implemented with Householder reflections

(HHR), as introduced in Subsection 3.5.3

> restart:with(LinearAlgebra):

Warning, the protected names norm and trace have been redefined and

unprotected

> with(plots): with(plottools):

Warning, the name changecoords has been redefined

Warning, the name arrow has been redefined

Linear-least square problem subject to a quadratic constraint

f(x) = (1/2)(9x2
1 − 8x1x2 + 3x2

2) → min
x1,x2

subject to

h(x1, x2) = x2
1 + x2

2 − 1 = 0

> obj:= proc(x) (1/2)*(9*x[1]^2 - 8*x[1]*x[2] +
> 3*x[2]^2)

> end; #procedure to compute the objective function

171

obj := proc(x) 9/2 ∗ x1
2 − 4 ∗ x1 ∗ x2 + 3/2 ∗ x2

2 end proc

> constr:= proc(x) x[1]^2+x[2]^2 - 1 end;

> #procedure computing the constraint

constr := proc(x) x1
2 + x2

2 − 1 end proc

> dhdx:= proc(x) Matrix([[2*x[1], 2*x[2]]])

> end; #procedure computing the gradient of the constraint

dhdx := proc(x) Matrix([[2 ∗ x1, 2 ∗ x2]]) end proc

> alfa:= proc(J)

> evalf(signum(J[1,1])*sqrt(J[1,1]^2 + J[1,2]^2))

> end; #procedure computing "alpha" of Householder reflections in

> least-square solution at each iteration

alfa := proc(J) evalf(signum(J1, 1) ∗ sqrt(J1, 1
2 + J1, 2

2)) end proc

> W:=Matrix([[9, -4], [-4, 3]]); #weighting matrix

W :=

[

9 −4

−4 3

]

> V:=Transpose(cholesky(W)); #Maple returns a

> lower-triangular matrix with procedure "cholesky"!

V :=







3
−4

3

0
1

3

√
11







> V:= map(evalf, V);

V :=

[

3. −1.333333333

0. 1.105541597

]

> ID:=Matrix(2,2,shape=identity); E:=

> Matrix([[0], [1]]);#right-hand side of eq.(6.13)

> Phi:= ID;

> B:=MatrixMatrixMultiply(V, Phi); #Defining various auxiliary matrices;

for B see eq.(6.25)

ID :=

[

1 0

0 1

]

E :=

[

0

1

]

Φ :=

[

1 0

0 1

]

172

B :=

[

3. −1.333333333

0. 1.105541597

]

> x:=Vector([2, 2]); x0:= map(evalf,x); #initial guess, x^0, stored

as x0 for plotting

x := [2, 2]

x0 := [2, 2]

> f:= evalf(obj(x)); #f_0

f := 8.

> phi:= map(evalf,x); #phi^0

φ := [2, 2]

> h:= constr(x); #h^0

h := 7

> J:= dhdx(x); #J_0

J :=
[

4 4
]

> alpha:= alfa(J); #local variable

α := 5.656854248
> t:=Vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm, a local variable

t := [9.656854248, 4]

> normt2:=evalf(DotProduct(t,t)/2); #half of

> Euclidean norm-squared of t, a local variable

normt2 := 54.62741700
> H:=evalf(ID-MatrixMatrixMultiply(t, Transpose(t)/normt2));

> #evaluating Householder reflection

H :=

[

−.707106781 −.7071067812

−.7071067812 .7071067811

]

> P:=MatrixMatrixMultiply(H, Transpose(H)); #checking whether H

> is a reflection

P :=

[

.9999999997 0.

0. .9999999999

]

> detH:=Determinant(H);

detH := −.9999999998

H is indeed a reflection!

173

> HJT:=MatrixMatrixMultiply(H, Transpose(J));

HJT :=

[

−5.656854249

−.1 10−8

]

> HJT[2,1]:=0; print(HJT); #setting last entry

> of HJ^T equal to zero

HJT 2, 1 := 0
[

−5.656854249

0

]

> w:= Vector([-h/HJT[1,1], 0]); #w = Hv, eq.(??) with Deltav & Deltaw

replaced with v & w here

w := [1.237436867, 0]

> v:=MatrixMatrixMultiply(H, w); #v^0

v := [−.8749999997, −.8750000000]
> L := MatrixMatrixMultiply(H, E);

> BL := MatrixMatrixMultiply(B, L); #L_0 & (BL)_0

L :=

[

−.7071067812

.7071067811

]

BL :=

[

−3.064129385

.7817359600

]

> p:=Add(phi, MatrixMatrixMultiply(Phi, v)); #auxiliary variable

p := [1.125000000, 1.125000000]
> r:= MatrixMatrixMultiply(-V, p);

> #RHS of overdetermined system to compute u in ODA

r := [−1.875000000, −1.243734297]

> u:= LeastSquares(BL, r); #u^0

u := [.4772970772]

> Deltax:= Add(v, MatrixMatrixMultiply(L, u)); #Deltax^0

Deltax := [−1.212500000, −.5375000001]

First iteration is complete. Update x:

> x:= map(evalf,x + Deltax); x1:= map(evalf,x); #x^1

x := [.787500000, 1.462500000]

174

x1 := [.787500000, 1.462500000]

> f:= evalf(obj(x)); #f_1

f := 1.392187500

> phi:= map(evalf,x); #phi^1

φ := [.787500000, 1.462500000]

> h:= constr(x); #h^1

h := 1.759062500

> J:= dhdx(x); #J_1

J :=
[

1.575000000 2.925000000
]

> alpha:= alfa(J);

α := 3.322085189
> t:=Vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [4.897085189, 2.925000000]

> normt2:=evalf(DotProduct(t,t)/2);

normt2 := 16.26853418
> H:=evalf(ID-MatrixMatrixMultiply(t, Transpose(t)/normt2));

> #evaluating Householder reflection

H :=

[

−.474099823 −.8804710997

−.8804710997 .4740998233

]

> HJT:=MatrixMatrixMultiply(H, Transpose(J));

HJT :=

[

−3.322085188

.1 10−8

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−3.322085188

0

]

> w:= Vector([-h/HJT[1,1], 0]); #w = Hv

w := [.5295055366, 0]

> v:=MatrixMatrixMultiply(H, w); # v^1

v := [−.2510384812, −.4662143221]

> L:= MatrixMatrixMultiply(H, E);
> BL:=MatrixMatrixMultiply(MatrixMatrixMultiply(V, Phi), L);

> #L_1 & (BL)_1

175

L :=

[

−.8804710997

.4740998233

]

BL :=

[

−3.273546397

.5241370758

]

> p:=Add(phi, MatrixMatrixMultiply(Phi, v)); #auxiliary variable

p := [.5364615188, .9962856779]
> r:= MatrixMatrixMultiply(-V, p);

> #RHS of overdetermined system to compute u in ODA

r := [−.281003652, −1.101435259]

> u:= LeastSquares(BL, r); #u^1

u := [.03116921755]

> Deltax:= Add(v, MatrixMatrixMultiply(L, u)); #delta x^1

Deltax := [−.2784820764, −.4514370016]

Second iteration is complete. Update x:

> x:= Add(x, Deltax); x2:= map(evalf,x); #x^2

x := [.5090179236, 1.011062998]

x2 := [.5090179236, 1.011062998]

> f:= obj(x); #f_2

f := .640722436

> phi:= map(evalf,x); #phi^2

φ := [.5090179236, 1.011062998]

> h:= constr(x); #h^2

h := .281347632

> J:= dhdx(x); #J_2

J :=
[

1.018035847 2.022125996
]

> alpha:= alfa(J);

α := 2.263932537
> t:=Vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [3.281968384, 2.022125996]

> normt2:=evalf(DotProduct(t,t)/2);

176

normt2 := 7.430155005
> H:=evalf(ID-MatrixMatrixMultiply(t, Transpose(t)/normt2));

> #evaluating Householder
> reflection

H :=

[

−.449675877 −.8931918088

−.8931918088 .4496758759

]

> HJT:=MatrixMatrixMultiply(H, Transpose(J));

HJT :=

[

−2.263932538

−.12 10−8

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−2.263932538

0

]

> w:= Vector([-h/HJT[1,1], 0]); #w = Hv

w := [.1242738586, 0]

> v:=MatrixMatrixMultiply(H, w); #v^2

v := [−.05588295635, −.1110003925]
> L:= MatrixMatrixMultiply(H, E);

> BL:=MatrixMatrixMultiply(MatrixMatrixMultiply(V, Phi), L);
> #L_2 & (BL)_2

L :=

[

−.8931918088

.4496758759

]

BL :=

[

−3.279143260

.4971353860

]

> p:=Add(phi, MatrixMatrixMultiply(Phi, v)); #auxiliary variable

p := [.4531349672, .9000626055]
> r:= MatrixMatrixMultiply(-V, p);

> #RHS of overdetermined system to compute u in ODA

r := [−.159321428, −.9950566503]

> u:= LeastSquares(BL, r); #u^2

u := [.002523646038]

> Deltax:= Add(v, MatrixMatrixMultiply(L, u)); #Deltax^2

Deltax := [−.05813705632, −.1098655698]

Third iteration is complete. Update x:

177

> x:= Add(x, Deltax); x3:=map(evalf,x); #x^3

x := [.4508808673, .9011974282]

x3 := [.4508808673, .9011974282]

> f:= obj(x); #f_3

f := .5077254992

> phi:= map(evalf,x); #phi^3

φ := [.4508808673, .9011974282]

> h:= constr(x); #h^3

h := .015450361

> J:= dhdx(x); #J_3

J :=
[

.9017617346 1.802394856
]

> alpha:= alfa(J);

α := 2.015391139
> t:=Vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [2.917152874, 1.802394856]

> normt2:=evalf(DotProduct(t,t)/2);

normt2 := 5.879204055
> H:=evalf(ID-MatrixMatrixMultiply(t, Transpose(t)/normt2));

> #evaluating Householder reflection

H :=

[

−.447437580 −.8943151635

−.8943151635 .4474375804

]

> HJT:=MatrixMatrixMultiply(H, Transpose(J));

HJT :=

[

−2.015391138

.2 10−9

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−2.015391138

0

]

> w:= Vector([-h/HJT[1,1], 0]); #w = Hv

w := [.007666184846, 0]

> v:=MatrixMatrixMultiply(H, w); #v^3

v := [−.003430139195, −.006855985354]

178

> L:= MatrixMatrixMultiply(H, E);

> BL:=MatrixMatrixMultiply(MatrixMatrixMultiply(V, Phi), L);

> #L_3 & (BL)_3

L :=

[

−.8943151635

.4474375804

]

BL :=

[

−3.279528930

.4946608572

]

> p:=Add(phi, MatrixMatrixMultiply(Phi, v)); #auxiliary variable

p := [.4474507281, .8943414428]
> r:= MatrixMatrixMultiply(-V, p);

> #RHS of overdetermined system to compute u in ODA

r := [−.149896927, −.9887316669]

> u:= LeastSquares(BL, r); #u^3

u := [.0002276777133]

> Deltax:= Add(v, MatrixMatrixMultiply(L, u)); #Deltax^3

Deltax := [−.003633754826, −.006754113789]

Fourth iteration is complete. Update x:

> x:= Add(x, Deltax); x4:=map(evalf,x); # x^4

x := [.4472471125, .8944433144]

x4 := [.4472471125, .8944433144]

> f:= obj(x); #f_4

f := .5000294132

> phi:= map(evalf,x); #phi^4

φ := [.4472471125, .8944433144]

> h:= constr(x); #h^4

h := .000058822

> J:= dhdx(x); #J_4

J :=
[

.8944942250 1.788886629
]

> alpha:= alfa(J);

α := 2.000058822
> t:= Vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

179

t := [2.894553047, 1.788886629]

> normt2:=evalf(DotProduct(t,t)/2);

normt2 := 5.789276355
> H:=evalf(ID-MatrixMatrixMultiply(t, Transpose(t)/normt2));
> #evaluating Householder

> reflection

H :=

[

−.447233960 −.8944170093

−.8944170093 .4472339590

]

> HJT:=MatrixMatrixMultiply(H, Transpose(J));

HJT :=

[

−2.000058823

−.3 10−9

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−2.000058823

0

]

> w:= Vector([-h/HJT[1,1], 0]); #w = Hv

w := [.00002941013500, 0]

> v:=MatrixMatrixMultiply(H, w); #v^4

v := [−.00001315321114, −.00002630492499]
> L:= MatrixMatrixMultiply(H, E);

> BL:=MatrixMatrixMultiply(MatrixMatrixMultiply(V, Phi), L);

> #L_4 & (BL)_4

L :=

[

−.8944170093

.4472339590

]

BL :=

[

−3.279562973

.4944357453

]

> p:=Add(phi, MatrixMatrixMultiply(Phi, v)); #auxiliary variable

p := [.4472339593, .8944170095]
> r:= MatrixMatrixMultiply(-V, p);
> #RHS of overdetermined system to compute u in ODA

r := [−.149145866, −.9888152091]

> u:= LeastSquares(BL, r); #u^4

u := [.00002069770909]

> Deltax:= Add(v, MatrixMatrixMultiply(L, u)); #Deltax^4

Deltax := [−.00003166559420, −.00001704820661]

180

Fourth iteration is complete. Update x:

> x:= Add(x, Deltax); x4:= map(evalf,x); #x^4

x := [.4472154469, .8944262662]

x4 := [.4472154469, .8944262662]

> f:= obj(x); #f_4

f := .5000000006

Given the norm of Deltax, we declare convergence here, and plot the iteration

history in x [1]-x [2] plane:

> o0:= map(evalf,x0); o1:= map(evalf,x1);

> o2:= map(evalf,x2); o3:= map(evalf,x3); o4:= map(evalf,x4);

o0 := [2, 2]

o1 := [.787500000, 1.462500000]

o2 := [.5090179236, 1.011062998]

o3 := [.4508808673, .9011974282]

o4 := [.4472154469, .8944262662]

> p0:=point(convert(o0,list), symbol=circle,
> color=blue);

> p1:=point(convert(o1,list), symbol=circle, color=blue);

> p2:=point(convert(o2,list), symbol=circle, color=blue);

> p3:=point(convert(o3,list), symbol=circle, color=blue);

> p4:=point(convert(o4,list), symbol=circle, color=blue);

p0 := POINTS([2., 2.], COLOUR(RGB , 0., 0., 1.00000000), SYMBOL(CIRCLE))

p1 := POINTS([.787500000, 1.462500000], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p2 := POINTS([.5090179236, 1.011062998], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p3 := POINTS([.4508808673, .9011974282], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p4 := POINTS([.4472154469, .8944262662], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

181

> l1 :=

> arrow(convert(o0,list),convert(o1,list), 10.0, 0.1, .1, arrow,
> color=red, thickness=2): l2 :=

> arrow(convert(o1,list),convert(o2,list), 6.0, 0.1, .2, arrow,

> color=green, thickness=2): l3 :=

> arrow(convert(o2,list),convert(o3,list), 6.0, 0.1, .7, arrow,

> color=red, thickness=2): l4 :=
> arrow(convert(o3,list),convert(o4,list), 6.0, 0.1, 6.0, arrow,

> color=green, thickness=2): c1 := arc([0,0],

> 1,-Pi/6..4*Pi/6,color=black, thickness=2): obj_plot:= proc(ax,ay)

> (1/2)*(9*ax^2 - 8*ax*ay + 3*ay^2)

> end:f1:=implicitplot(obj_plot-3,-0.5..2,
> -0.5..2.5,numpoints=3000,

> linestyle=4,color=blue):

> f2:=implicitplot(obj_plot-2,-0.5..2,-0.5..2,
> numpoints=3000,linestyle=4,color=blue):

> f3:=implicitplot(obj_plot-1,-0.5..2,-0.5..2,numpoints=6000,

> linestyle=4,color=blue):f4:=implicitplot(obj_plot-0.5,-0.5..2,-0.5..2,

> numpoints=6000, linestyle=4,color=blue):

> display({c1,p0,p1, p2, p3, p4, p1, l1, l2,

> l3, l4,f1,f2,f3,f4},
> insequence = false, color=red, scaling=constrained);

The plots produced by the plotting commands in the Maple worksheet are re-

produced in Fig. 6.1.

A plot of the contours of the objective function and the constraint, showing all

four stationary points, is displayed in Fig. 6.2.

6.3.1 A Geometric Interpretation of the ODA

The ODA admits a geometric interpretation: the objective function can be regarded

as a surface F embedded in a (n+ 1)-dimensional space Rn+1, namely, the union of

Rn, the space of the design-variable vector x, and R, the space of f(x). Likewise,

the set of constraint functions hi(x), for i = 1, 2, . . . , l, can be regarded as a set of

l surfaces Hi embedded in the same (n+ 1)-dimensional space.

The gradient ∇f thus becomes the projection onto Rn of a vector normal to F ,

while the ith row of the Jacobian J represents the projection onto Rn of a normal

∇hi to Hi at a given point Qk, projected onto R
n as Pk, of position vector xk.

Furthermore, all n − l unit vectors li denoting the n-dimensional columns of the

182

–0.5

0

0.5

1

1.5

2

–0.5 0.5 1 1.5 2

P0

P1

P2

P3, P4

Figure 6.1: The four iterations leading to the solution of the linear least-square

problem subject to one quadratic constraint

orthogonal complement Lk of Jk are normal to all l vectors ∇hi. Vectors li thus

span a hyperplane, of dimension n− l+1, of Rn+1 that is tangent to all Hi surfaces

at Qk. The intersection of this hyperplane with R
n is thus a (n − l)-dimensional

space L on which vector ∆uk, of the orthogonal decomposition of xk, lies. Matrix

Lk then maps this vector onto R
n.

Illustrated in Fig. 6.3 is the paraboloid H defined by h(x) = x2
1 + x2

2 − 1 of

Example 6.3.1, with point Q0 indicating the location on the paraboloid of the initial

guess P0 in R2, of position vector x0 in this space, which is, the x1-x2 plane. This

is a paraboloid of revolution, of axis of symmetry passing through the origin of the

x1-x2 plane and normal to this plane; the intersection of H with the x1-x2 plane is

the circle x2
1 + x2

2 − 1 = 0. Moreover, the intersection of the plane T tangent to H
at Q0 with the x1-x2 plane is the line L containing vector ∆u0. In the same figure,

vector ∆v0 is the minimum-norm solution to the corresponding underdetermined

system (6.23), line L thus representing the linearized version of h(x) = 0. In this

figure, ∆v0 is normal to L, point P0 becoming the origin of the vector space R2 in

which ∆x0 lies.

Furthermore, the paraboloid F given by f(x) = (1/2)(9x2
1 − 8x1x2 + 3x2

2) is

shown in Fig. 6.4; contrary to H, F is not of revolution, its cross sections, parallel

to the x1-x2 plane, being ellipses of equal eccentricities, i.e., of equal axis-length

ratios. Point P1, of position vector x1 = x0 + ∆x0, is found as the minimum of

183

Figure 6.2: The contours of constant f and the constraint h = 0

f(x) along L. This minimum is located at the projection P1 of point Q1 of the

parabola defined by the intersection of a plane normal to x1-x2 passing through L
with F . The one-dimensional vector ∆u0, directed from P ′

0 to P1, is parallel to L.

This vector is mapped into a two-dimensional vector of the x1-x2 plane by matrix

L0.

Details of the layout of the foregoing points and vectors in the x1-x2 plane are

displayed in Figs. 6.5 and 6.6.

Example 6.3.2 (Finding the Eigenvalues and Eigenvectors of a Symmet-

ric Matrix) The problem of finding the eigenvalues and corresponding eigenvectors

of a n × n symmetric positive-definite matrix M is solved as a linear least-square

184

h(x)

Q0

L
P0(2, 2)

x2

x1

P ′
0

∆v0

Figure 6.3: The paraboloid H, its tangent plane T at Q0, whose projection onto the

x1-x2 plane is P0, the initial guess, and the intersection L of T with the x1-x2 plane

185

]

f (x)

Q1

P
0

P1

P0(2 , 2)x1

x2

L

∆ x
0

Figure 6.4: The paraboloid F , its contours, and its intersection with the plane Π

normal to the x1-x2 plane, the minimum of the intersection curve denoted by Q1,

its projection onto the x1-x2 plane being P1

186

∆u
x2

J0∆v0 = −h0

L

L

l

l

r ∆x2
∆x2

P0(2, 2)P0(2, 2)

∆x1

∆x1eh

P1

P1

P ′
0

P ′
0

Q0

x1

h0 = 0

1
O

h

O

−1

P ′
0 T
L
P0

r

H

∆u0

∆x0

∆v0

Figure 6.5: The first iteration of the ODA for Example 6.3.1: finding ∆x0
o (≡ ∆v0)

and ∆u0

187

x2

l

P1
P0

Π

O

O x1

f

f(x1)

7

6

5

4

3

2

1

F

Q1

Q1

r

r

P1

P0

L

P1

Figure 6.6: The first iteration of the ODA for Example 6.3.1: detail of the location

of P1, the projection of Q1 onto the x1-x2 plane, where the minimum of f(x) along

L finds itself

188

problem subject to quadratic constraints: for i = 1, 2, · · · , n, and k = 1, 2, · · · , i, find

λi and xi such that

λi = min
xi

1

2
xT

i Mxi

subject to

xT
k xi =

{

0, if k = 1, 2, · · · , i− 1;

1, if k = i

where λi is the ith eigenvalue of matrix M and xi is the corresponding eigenvector.

In order to use the ODA package to solve the problem, we define, for i = 1, 2, · · · , n:

q = n and l = i, (6.37)

x = xi,

φ(x) = x,

h(x) = [xT
1 x · · · xT

i−1x xT x− 1]T ,

W = M

where xk, for k = 1, 2, · · · , i − 1, are the previously calculated eigenvectors of M,

and hence, are known. With the above definitions, for i = 1, 2, · · · , n, subroutine

LSSCNL of the ODA package is called n times. After each call, one eigenvalue and

its corresponding eigenvector are obtained. Notice that, in the last call, the number

of constraints is equal to the number of variables, namely, l = n. Matrix M is given

as

M =










4 2 1 1 1

2 4 2 1 1

1 2 4 2 1

1 1 2 4 2

1 1 1 2 4










.

We use the initial guess

x0 = [0.1 0.1 0.1 0.1 0.1]T .

The eigenvalues and the eigenvectors computed with the ODA package are listed

in Table 6.1. In that table, the number of iterations that the package took till con-

vergence was reached with ǫ1 = 0.0001 and ǫ2 = 0.0001, is indicated.

Example 6.3.3 (The Constrained Minimization of the Rosenbrock Func-

tion) In this example, we find its equality-constrained minimum of the Rosenbrock

function using SQP via the ODA. We thus have

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2 → min

x1, x2

189

i 1 2 3 4 5

λi 1.27738 3.08749 9.63513 2.0 4.0

1st comp. of xi 0.26565 −0.51369 0.40689 0.5 0.5

2nd comp. of xi −0.51853 0.10368 0.46944 −0.5 0.5

3rd comp. of xi 0.56667 0.67138 0.47764 0.0 0.0

4th comp. of xi −0.51853 0.10368 0.46944 0.5 −0.5

5th comp. of xi 0.26565 −0.51369 0.40689 −0.5 −0.5

of iterations 12 11 6 38 54

Table 6.1: Eigenvalues and eigenvectors of M

subject to

h((x1, x2) = 0.7525x2
1 − 1.1202x1 − 0.8574x1x2

+ 0.6168x2 + 0.2575x2
2 + 0.4053

The function is notorious for its ill-conditioning, which is apparent from its

contours, as shown in Fig. 6.7, showing elongated valleys. The outcome is that

the quadratic approximation of this function within those valleys is a family of el-

lipses that have one semiaxis much greater than the other one, thereby leading to

ill-conditioning. Notice that the constraint is a rather elongated ellipse that con-

tributes to the ill-conditioning of the problem.

Starting from the initial guess x = [1.5 1.5]T with a damping ratio of 0.025, the

optimum solution is found in 312 ODA iterations, the result being

xopt =

[
0.9176

0.5873

]

which yields

fmin = 6.6963

6.4 Equality-Constrained Optimization with Ar-

bitrary Objective Function

The problem to be solved is defined as:

f = f(x) → min
x

(6.38)

190

Figure 6.7: The contours of the Rosenbrock (banana) function and its quadratic

constraint (dashed)

subject to the nonlinear equality constraints

h(x) = 0 (6.39)

where x is the n-dimensional design-variable vector, the objective function f(x)

being a nonlinear function of x, not necessarily quadratic and positive-definite, which

was the case studied in Section 6.3. Moreover, h(x) is a l-dimensional vector of

nonlinear equality constraints.

In the problem defined in eq.(6.38), if the constraints in eq.(6.39) are analytic,

then there exists a feasible manifold F ⊂ Rn, of dimension l, such that, if u ∈ F ,

then

h(x(u)) = 0 (6.40)

In the particular case in which h(x(u)) is linear, F is a vector space, i.e., the feasible

space of the problem at hand.

An example of a problem that falls in the category studied here is the objective

function

f(x) =
1

2
(−9x2

1 − 8x1x2 + 3x2
2) (6.41a)

to be minimized subject to

h(x) = x2
1 + x2

2 − 1 = 0 (6.41b)

191

It can be readily shown that this problem does not belong to the least-square

class, and hence, cannot be handled with the ODA directly. Indeed, as the objective

function is quadratic in the design variables, for the problem to be of the least-

square class, it should be possible to cast the objective function in the form (6.2).

This means that the Hessian of this function should admit the form ATWA, which

means that the unconstrained Hessian should be positive-definite, as W is so by

hypothesis. A quick computation shows that the Hessian in the case at hand is

H =

[−9 −4

−4 3

]

Further, tr(H) = −6, which means that its larger eigenvalue is negative, while

det(H) = −43, and hence, its two eigenvalues bear opposite signs, the outcome

being that the Hessian is sign-indefinite. Therefore, no matrices A and W can be

found that would allow the casting of the given objective function in the form of

eq.(6.2). The numerical solution of this problem thus cannot be found by application

of the method of Section 6.2, or that of Section 6.3 for that matter. Nevertheless,

ODA can still be applied, if with some additional work, as described below.

Two cases are studied:

1. The objective and the constraint functions are assumed to be continuous and

to have continuous derivatives up to the second order; and

2. the objective and the constraint functions are assumed to be continuous and

to have continuous derivatives up to the first order.

In both cases it is assumed that the derivatives in question are available, which

is a big assumption. In real-life problems, second-order derivatives are seldom avail-

able; first-order derivatives are more likely to be available. If the latter are not, then

these can be approximated, provided that they are continuous, by finite differences,

for which reliable algorithms exist.

The first case is included here not only for pedagogical reasons but also because

many problems in design can be formulated with C2-continuous functions. These

arise from conservation laws in mechanics and electromagnetism.

6.4.1 A Sequential-Quadratic Programming Approach

In this subsection the objective and the constraint functions are assumed to be

continuous and to have continuous derivatives up to the second order, while the

192

Hessian H ≡ ∇∇f of f(x) with respect to x is not assumed positive definite.

Furthermore, we assume that, at x = xk, in general, h(xk) = hk 6= 0l, i.e., the

current x is not feasible, and note that f(xk + ∆xk) can be expanded, to a second

order, as

f(xk + ∆xk) ≈ f(xk) + (∇f)T
k ∆xk +

1

2
(∆xk)T (∇∇f)k∆xk → min

∆xk
(6.42a)

To find the increment ∆xk, we can still resort to the ODA, as introduced in Sec-

tion 6.2. To this end, we decompose the foregoing vector into its two orthogonal

components, as per eq.(6.21)

∆xk = ∆vk + Lk∆uk

where Lk is the isotropic orthogonal complement of Jk, found to be the QR block

of the QR-decomopsition of JT
k , while Jk itself is defined as the gradient of h with

respect to x, evaluated at x = xk. Moreover, Lk and ∆uk are found with the proce-

dure described in Section 6.2 for linearly constrained linear least-square problems.

Under these conditions, the ∆vk component of ∆xk in eq.(6.42a) is subject to

Jk∆vk = −hk (6.42b)

We have thus formulated a quadratic optimization problem in ∆xk, eq.(6.42a), sub-

ject to the linear constraints (6.42b). This problem, however, need not belong

to the least-square class. It does if and only if the Hessian matrix (∇∇f)k is

positive-definite. This, however, need not be the case, as stated at the outset.

Moreover, J†
k and Lk are now substituted by QLU

−T and QR, respectively, of the

QR-decomposition of JT
k , as introduced in eq.(5.53) for CT . Then, the minimum-

norm solution of eq.(6.42b) is given by

∆vk = −J†
kh

k (6.43)

where J†
k is computed using the QR-decomposition of JT

k .

Furthermore, with ∆vk given by eq.(6.43), f(xk+∆xk) becomes a function solely

of ∆uk, i.e.,

f(∆uk) ≈ f̃(∆uk) ≡ f(xk) + (∇f)T
k (∆vk + Lk∆uk)

+
1

2
(∆vk + Lk∆uk)T (∇∇f)k(∆vk + Lk∆uk)→ min

∆uk

193

which can be cast in the form

f̃(∆uk) =
1

2
(∆uk)TLT

k (∇∇f)kLk∆uk +
[
LT

k (∇∇f)k∆vk + LT
k (∇f)k

]T
∆uk

+
1

2
(∆vk)T (∇∇f)k∆vk + (∇f)T

k ∆vk + f(xk)→ min
∆uk

(6.44)

subject to no constraints, f̃(∆uk) being quadratic in ∆uk. Function f̃(∆uk) has a

minimum if its Hessian with respect to ∆uk, what is termed the reduced Hessian

Huk = LT
k (∇∇f)kLk, is positive-definite. Under the assumption that H is not nec-

essarily positive definite, Huk can still be positive-definite. In this case, a minimum

∆uk of f̃(∆uk) can be readily computed upon zeroing its gradient with respect to

∆uk, which yields

Huk∆uk = −LT
k [(∇∇f)k∆vk + (∇f)k] (6.45)

Under the foregoing assumption, Huk is invertible, and hence,

∆uk = −H−1
uk LT

k [(∇∇f)k∆vk + (∇f)k] (6.46)

We have thus reduced the original problem to a sequence of linear-quadratic

programs, within an iterative procedure. At each iteration, moreover, we find the

correction to the current approximation ∆xk by means of a combination of two linear

problems, one being a minimum-norm problem, the other involving a determined

linear system of equations. As the objective function at each iteration is quadratic in

∆u, and its minimization is unconstrained, the above procedure is called sequential

quadratic programming.

The foregoing procedure relies on the rather daring assumption that the reduced

Hessian Huk at each iteration is positive-definite. Below we study the more realistic

case of a non-positive-definite Hessian.

Sequential quadratic programming with Hessian stabilization

In the presence of a non-positive-definite Hessian H, we aim at a perturbation ∆H

of the Hessian that will render the perturbed Hessian H̃ positive-definite, thus pro-

ducing

H̃ ≡ H + ∆H (6.47)

The rationale behind forcing the Hessian to be positive-definite lies in that, if a C2-

continuous function has a minimum, then in a region around a local minimum—or a

local maximum for that matter—then the function behaves as a quadratic function

194

associated with a positive-definite—correspondingly, as a negative-definite—matrix,

which is the Hessian of the function. In the case of an objective function defined

over R2, the minimum (maximum) appears in a valley (summit) whose level curves

are quite close to ellipses, as illustrated in Fig. 4.4. This figure shows the contours

of equal distances from Z1 to point C of the manipulator of Fig. 5.2, with its first

joint locked and the other two sweeping angles θ2 and θ3 that vary from 0 to 2π.

How to obtain ∆H that is guaranteed to produce a positive-definite-Hessian is the

key issue here. We describe in the subsection below a method for the determination

of ∆H. Note that, once the perturbed Hessian, which is most frequently referred

to as the stabilized Hessian, is available, the reduced Hessian is necessarily positive-

definite, and given by

H̃u = LT (H + ∆H)L (6.48)

Hence, ∆uk is found from eq.(6.45), which is rewritten below with Huk replaced by

H̃uk, its stabilized counterpart:

H̃uk∆uk = −LT
k [(∇∇f)k∆vk + (∇f)k] (6.49)

The process of finding a positive-definite H̃ is termed Hessian stabilization. The

idea behind the process lies in the property that, if the eigenvalues of a n×n matrix

M are {µk }n1 , then the eigenvalues of matrix M+α1, where α is a real number and

1 is the n×n identity matrix, are {µk+α }n1 . Thus, the effect of adding the isotropic9

matrix α1 to M is to shift the eigenvalues of the latter to the right of the complex

plane by an amount α if α > 0; if α < 0, then the shift occurs to the left of the

complex plane by an amount |α|. If the Hessian of interest is not positive-definite,

this means that it has some negative eigenvalues, in which case Hessian stabilization

consists in finding the right value of α in the foregoing scheme, that will shift the

Hessian eigenvalues to the right of the real axis—since the Hessian is necessarily

symmetric, its eigenvalues are all real—so that none of the shifted eigenvalues will

lie on the left half of the real axis. Notice that, if α > 0 is underestimated, then the

associated isotropic matrix will fail to shift some of the negative Hessian eigenvalues

to the right; if overestimated, then all shifted eigenvalues will lie on the right half

of the real axis, but the Hessian will be overly perturbed. In this case, either

convergence will slow down or divergence will ensue.

Obviously, if we know the eigenvalues of the Hessian H at the kth iteration,

then we can find the right µk that will shift all its eigenvalues to the right. However,

9See the paragraph below eq.(6.15) for a definition of this concept.

195

computing eigenvalues is an iterative process, except for special cases of simple

matrices, and hence, we cannot rely on knowledge of those eigenvalues. We discuss

below how to estimate the right amount of shift α in the absence of knowledge of

the Hessian eigenvalues. The basis of the procedure is a result on positive-definite

matrices that we recall below.

Diagonal-dominance in Positive-definite Matrices

The Gerschgorin Theorem (Varga, 2000) establishes a region in the complex plane

containing all the eigenvalues of a n × n matrix A, defined over the complex field

C, namely,

A =








a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann








According to the Gerschgorin Theorem, all the eigenvalues of A lie within a region

S of the complex plane defined as the union of n disks Di centered at aii, with radius

ri, in the complex plane, for i = 1, ..., n, ri being given by

ri =
n∑

j=1,j 6=i

| aij |

in which | · | denotes the module of (·). The Gerschgorin Theorem is illustrated in

Fig. 6.8, the region S thus being

S =
n⋃

i=1

Di

If A is symmetric and real, which is so for Hessian matrices, then its eigenvalues

lie in the union of the real intervals

Ii = [aii − ri, aii + ri], i = 1, 2, ..., n

A lower bound l of the set {λi}n1 of eigenvalues of A is, thus,

l ≡ min
i
{aii − ri}n1 (6.50a)

the corresponding upper bound being

u ≡ max
i
{aii + ri}n1 (6.50b)

196

Im{ · }

Re{ · }ann

a22

a11

rn

r2

r1

Dn

D2

D1

Figure 6.8: The Gerschgorin disks of an arbitrary n× n matrix

If A is positive-definite, all eigenvalues of A must be positive, which means that

the lower bound l should be positive as well. If, on the other hand, A is either

sign-indefinite or positive-definite, but close to singular, then l can be negative.

Now we have, with the foregoing notation,

Definition 6.4.1 (Diagonal Dominance) A n× n matrix A is said to be diago-

nally dominant if

aii > ri

Further, we have a result allowing us to characterize positive-definite matrices with-

out the burden of computing their eigenvalues.

Theorem 6.4.1 If a symmetric matrix A is diagonally dominant, then it is positive-

definite.

Note, however, that the converse is not true, i.e., a positive-definite matrix need not

be diagonally dominant. Consider the matrix

P =





10 2.6 −7.6

2.6 3.3 −2.7

−7.6 −2.7 6.1





which it is not diagonally dominant, yet its eigenvalues are all positive: 0.080, 2.411,

16.91, with four digits.

197

Hessian stabilization with the aid of diagonal-dominance

The reduced Hessian matrix LT
k (∇∇f)|kLk of the objective function can fail to be

positive-definite when the Hessian (∇∇f)|k fails to be so. However, the latter may

well fail to be positive-definite, while the former is positive-definite. In this light,

apparently we need not stabilize the Hessian itself, but only its feasible projection.

The question of the feasibility of this approach is cleared in the sequel.

We need first a criterion to tell when (∇∇f)k is suspected of being sign-indefinite.

The criterion is simple:

If (∇∇f)k fails to be diagonally dominant, then sign-indefiniteness is

likely to occur and hence, Hessian stabilization is warranted.

Notice that, although lack of diagonally dominance (DD) is not a guarantee of

sign-indefiniteness, or of negative-definiteness for that matter, DD is a guarantee of

positive-definiteness. For this reason, means to enforce DD are pursued below.

The stabilizing procedure is applied by introducing a scalar µk > 0, at the

kth iteration, that we will term the Gerschgorin shift, such that a new diagonally-

dominant matrix H̃k is used to replace (∇∇f)k, with H̃k defined as

H̃k = (∇∇f)k + µk1 (6.51)

H̃k thus being guaranteed to be positive-definite, based on the diagonal-dominance

theorem above.

The stabilized Hessian thus yields the stabilized reduced Hessian

H̃uk = LT
k H̃kLk = LT

k (∇∇f)kLk + µkL
T
k Lk (6.52)

Moreover, since Lk is isotropic, for it has been chosen as the QL block of the QR-

decomposition of JT
k , it turns out that

LT
k Lk = 1n′ (6.53)

with 1n′ denoting the (n − l) × (n − l) identity matrix. Therefore, the stabilized

reduced Hessian H̃uk becomes

H̃uk = LT
k H̃kLk = LT

k (∇∇f)kLk + µk1n′ (6.54)

which is now a fortiori positive-definite, problem (6.44) thus admitting one mini-

mum ∆uk, which is computed from eq.(6.49). Notice the economy of computations

brought about by an isotropic orthogonal complement Lk in eq.(6.54).

198

Choice of the Gerschgorin Shift

In this subsection we stress the importance of the selection of µk, where subscript k

denotes the iteration number. With a proper selection, the number of iterations can

be effectively reduced. First, we assume that (∇∇f)k was found to fail the diagonal-

dominance test, and hence, the lower bound lk of its eigenvalues is negative.

The selection of µk is suggested to be slightly greater than the absolute value

of the lower bound lk of the eigenvalues, as obtained by the diagonal-dominance

criterion (or test), i.e.,

µk = −(1 + ∆k)lk, lk < 0 (6.55)

where ∆k is a positive number, that is to be chosen as small as possible.

The value of ∆k is related to the bandwidth bk of the Hessian eigenvalues, with

bk defined as

bk = uk − lk
The value of ∆k can then be chosen as a small fraction 10−p, with p = 1 or 2,

probably even smaller.

Example 6.4.1 (Powell’s Function) A problem proposed by Powell (1969) is solv-

ed here:

f(x) = ex1x2x3x4x5 → min
x
, x ≡ [x1 x2 x3 x4 x5]T

subject to the nonlinear equality constraints

h1 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2 = x2x3 + x4x5 = 0

h3 = x3
1 + x3

2 + 1 = 0

Solution: A word of caution is in order here: while the univariate exponential func-

tion ex is convex—its second derivative with respect to x is positive everywhere—the

bivariate exponential function ex1x2 is not convex everywhere, and neither is so the

above objective function. In fact, the Hessian of the bivariate exponential becomes

sign-indefinite in a region of the x1-x2 plane. This statement is illustrated with the

plot of this function, displayed in Fig. 6.9. The conclusion of the foregoing remark

is, then, that the multivariable exponential function, like Powell’s function, has a

Hessian that is sign-indefinite in a region of R
5. Optimum solutions were obtained

with two different algorithms, the corresponding results being listed in Table 6.2.

199

Results were obtained under the same environment, a Silicon Graphics 64-bit Octane

SE workstation, with a 250 MHz R10000 processor, running the IRIX 6.5 operating

system10. An initial guess is taken as

x0 = [−1 2 −0.5 1 2]T

with tolerance of 10−6. The ODA package requires only 55 iterations, as compared

with 186 required by the Matlab Optimization Toolbox. Moreover, the CPU time

required by the ODA is only 8.9 % of the CPU time consumed by Matlab.

Figure 6.9: The bivariate exponential ex1x2

Example 6.4.2 (The Equilibrium Configuration of a N-link Chain) Shown

in Fig. 6.10a is a chain with N links in its equilibrium configuration, which spans a

distance d, with each link of length ℓ. Knowing that the chain reaches its equilibrium

configuration when its potential energy attains a minimum value, find the equilibrium

configuration. This problem, originally proposed by Luenberger (1984), was solved

for the case of two design variables, exactly, in Example 5.3.3.

Solution: Angles θi, used to define the configuration of the chain, are measured

from the vertical ccw, with θi corresponding to the angle that the axis of the ith

link makes with the vertical, as shown in Fig. 6.11.

10Although the Octane SE was discontinued many years ago, the absolute CPU-time values of

Table 6.4.1 are not relevant. What matters is that the ODA took less than 10% of the time of the

Matlab fmincon function

200

Table 6.2: A performance comparison based on Powell’s function

Matlab ODA

f 0.05395 0.05395

x1 −1.7172 −1.7171

x2 1.5957 1.5957

x3 1.8272 −1.8272

x4 0.7636 −0.7636

x5 0.7636 0.7636

of iterations 186 55

CPU time (s) 0.2903 0.0259

(a) (b)

Figure 6.10: An N -link chain in: (a) its unknown equilibrium configuration; and (b)

a configuration to be used as an initial guess

If V ≡ µℓf(θ1, θ2 . . . , θN) denotes the potential energy of the chain, and µ is

the mass density of the links per unit length, then minimizing V is equivalent to

minimizing f , which is given by

f(θ1, θ2 . . . , θN) = −
[

1

2
cos θ1 + (cos θ1 +

1

2
cos θ2) + . . .

+ (cos θ1 + . . .+ cos θN−1 +
1

2
cos θN−1)

]

→ min
{ θi }N

1

or, in compact form,

f(θ1, θ2 . . . , θN) = −1

2

N∑

i=1

[2(N − i) + 1] cos θi → min
{ θi }N

1

subject to two constraints: the two ends (1) must lie at the same level, and (2) are

201

Figure 6.11: Definition of θi for the N -link chain

separated by a distance d, as shown in Fig. 6.11. The constraints are

h1 =

N∑

i=1

cos θi = 0

h2 =

N∑

i=1

sin θi −
d

ℓ
= 0

Under the assumption that the configuration is symmetric, and that N is even, then

M = N/2 is an integer. Thus, only one half of the chain need be considered. The

problem is, thus, simplified as

f(θ1, θ2 . . . , θM) = −
[

1

2
cos θ1 + (cos θ1 +

1

2
cos θ2) + . . . + (cos θ1 + . . .+ cos θM−1

+
1

2
cos θM)

]

= −1

2

M∑

i=1

[2(M − i) + 1] cos θi → min
{ θi }M

1

The two constraints then reduce to only one:

h =

M∑

i=1

sin θi −
d

2ℓ
= 0

This problem, with M = 5, i.e., with N = 10, is solved now using the configura-

tion of Fig. 6.10b as an initial guess. The equilibrium configuration of the chain is

given in Table 6.3 with a comparison between ODA and Matlab.

With the same tolerance set at 0.0001, the ODA takes less than half the number

of iterations than Matlab; additionally, the CPU time consumed by ODA is about

10% of that consumed by Matlab.

It is noteworthy that the convergence of ODA is dependent on the choice of µk

in eq.(6.51), for a given value of d/(2l).

202

Table 6.3: Luenberger’s chain with M = 5

Matlab The ODA

θ1 0.0893 0.0893

θ2 0.1147 0.1147

θ3 0.1599 0.1599

θ4 0.2625 0.2625

θ5 0.67856 0.6785

fmin −12.2650 −12.2650

Iterations 16 7

CPU time (s) 0.2825 0.003261

Hessian stabilization vs. reduced-Hessian stabilization

The reader may wonder why bother stabilizing the n× n Hessian H ≡ ∇∇f when

all that is needed in the procedure outlined in the first part of this subsection is the

reduced Hessian. In other words, would it suffice with stabilizing the latter? The

question is quite pertinent, and worth a detailed answer, as given below.

Stabilizing the reduced Hessian is plausible if the whole search is conducted

within the feasible region, i.e., if the iterative process visits only points where the

equality constraints are satisfied. As this is not the case—it would be very cum-

bersome to impose this condition—and, in fact, not being the case makes the ODA

specially attractive, the full n× n Hessian H must be stabilized. This is best illus-

trated with a numerical example.

Example 6.4.3 (Minimization of a quadratic, sign-indefinite objective func-

tion under one quadratic constraint) Using the ODA, find a local minimum of

the problem below:

f(x) =
1

2
(−9x2

1 − 8x1x2 + 3x2
2) → min

x1,x2

subject to

h(x) = x2
1 + x2

2 − 1 = 0

Solution: The above problem was introduced in Section 6.4, where it became ap-

parent that its constant Hessian is sign-indefinite, and hence, calls for stabilization.

203

Before proceeding with the solution using the ODA, let us solve it symbolically: the

gradients of f and h as well as the Hessian H ≡ ∇∇f are calculated below:

∇f =

[−9x1 − 4x2

−4x1 + 3x2

]

, J = [2x1 2x2] , H =

[−9 −4

−4 3

]

The FONC are those given by eq.(5.9), i.e.,

[−9x1 − 4x2

−4x1 + 3x2

]

+ 2

[
x1

x2

]

λ = 02

Given the simplicity of the Jacobian J, an orthogonal complement L thereof can be

readily obtained upon rotating the vector array JT through 90◦ ccw. This is readily

achieved upon first transposing J, then swapping the two components of this array,

and, finally reversing the sign of the first component, which yields L = [−x2, x1]
T .

Upon multiplying the above vector normality condition by LT , the term in λ is

eliminated and a scalar equation, free of λ, is obtained:

12x1x2 + 4x2
2 − 4x2

1 = 0 or D(x) ≡ x2
2 + 3x1x2 − x2

1 = 0

which is, in fact, the FONC in dual form. Upon subtracting the constraint equation

h(x1, x2) = 0 from the foregoing equation, an equation linear in x2 is obtained,

namely,

2x2
1 − 1− 3x1x2 = 0 ⇒ x2 =

2x2
1 − 1

3x1

which, when substituted into h = 0, yields a quartic equation in x1:

13x4
1 − 13x2

1 + 1 = 0

whose roots are

(x1)1 = 0.2897841489, (x1)2 = −0.2897841489, (x1)3 = 0.9570920265,

(x1)4 = −0.9570920265

These roots yield, correspondingly, four values of x2:

(x2)1 = −0.9570920257, (x2)2 = 0.9570920257, (x2)3 = 0.2897841486,

(x2)4 = −0.2897841486

A display of D(x) = 0 is shown in Fig. 6.12a, while a superposition of the

contours of h(x) = 0 and D(x) = 0 is included in Fig. 6.12b. Interestingly, z = D(x)

204

1

2

3

4

(a) (b)

Figure 6.12: Plots of (a) the contour of D(x) = 0 and (b) the two contours h(x) = 0

and D(x) = 0 in the x1-x2 plane, their intersections being the four stationary points

(SP)

205

Figure 6.13: Display of the surface D(x) representing the dual form of the FONC

of Example 6.4.3

represents a hyperbolic paraboloid, whose level contours are equilateral hyperbolas,

that lie on the x1-x2 plane, degenerating into two lines at right angles passing through

the origin, which are the asymptotes of all projected equilateral hyperbolas.

For the record, a display of the surface D(x) in 3D is shown in Fig. 6.13.

In order to determine the nature of each stationary point, the reduced Hessian

Hu ≡ LT (∇∇f)L is evaluated at each point, which, in this particular case, turns

out to be a scalar. The four values are

(Hu)1 = −10.21110254, (Hu)2 = −10.21110254, (Hu)3 = 4.211102551,

(Hu)4 = 4.211102551

which thus show that SPs 1 and 2 are maxima, SPs 3 and 4 minima.

Now, in computing the SPs using the ODA, we use two approaches here:

I. Stabilizing the reduced Hessian. The ODA was implemented in Maple, as per

the code listed below.

Application of the ODA to a quadratic objective function that is not positive-

definite, subject to a quadratic constraint. Precomputations are done inside

206

arb-obj-fn-bkgd.mw

Hessian stabilization done at reduced-Hessian level. See arb-obj-fnODA1.mw

f := −9/2 x1
2 − 4 x1x2 + 3/2 x2

2

h := x1
2 + x2

2 − 1
> obj:=proc(x) 1/2*(-9*x[1]^2 -

> 8*x[1]*x[2] + 3*x[2]^2) end; #procedure to evaluate the

> objective function

obj := proc(x) − 9/2 ∗ x[1]̂ 2− 4 ∗ x[1] ∗ x[2] + 3/2 ∗ x[2]̂ 2end proc;
> graf:=proc(x)

> Vector([-9*x[1]-4*x[2],-4*x[1]+3*x[2]]) end;

> #procedure to evaluate

> the gradient of the objective function

graf := proc(x) Vector([−9 ∗ x[1]− 4 ∗ x[2], −4 ∗ x[1] + 3 ∗ x[2]])end proc;
> Hf:= Matrix([[-9,-4],[-4,3]]); #procedure

> not needed to evaluate the Hessian of the objective function, as

> Hessian is constant!

Hf :=




−9 −4

−4 3





constr := proc(x) x[1]̂ 2 + x[2]̂ 2 +−1end proc;

grah := proc(x) Vector([2 ∗ x[1], 2 ∗ x[2]])end proc;

Hh :=




2 0

0 2





E :=




0 −1

1 0





x0 :=




2

−2





207

f0 := 4

gf0 :=




−10

−14





h0 := 7

J0 :=




4

−4





nJ0 := 4
√

2

JMP :=




1/8

−1/8





L0 :=




4

4





L0 :=




1/2
√

2

1/2
√

2





Delv :=




−7

8

7
8





pro :=




−13/2

√
2

−1/2
√

2





Hu := −7

µ := 8

Hus := 1

brack :=





35
8

49
8





brack :=




−45

8

−63
8





208

r :=
27

4

√
2

Deluk := 9.545941544

Ldelu :=




4.772970772

√
2

4.772970772
√

2





Delx :=




−7

8
+ 4.772970772

√
2

7
8

+ 4.772970772
√

2





Delx :=




5.874999997

7.624999997





x1 :=




7.87499999699999974

5.62499999699999975





f1 := −408.7968746

gf1 :=




−93.37499996

−14.62500000





h1 := 92.65624992

J1 :=




15.74999999

11.24999999





nJ1 := 19.3552318368961913

JMP :=




0.0420420420678066370

0.0300300300408066385





L1 :=




−11.2499999899999992

15.7499999899999992





L1 :=




−0.581238193545843718

0.813733471170843714





209

Delv :=




−3.89545795698184526

−2.78246996856608764





pro :=




1.97620985722921860

4.76615318769590602





Hu := 2.72972973007237085

brack :=




46.1890014871009598

7.23442192222911818





brack :=




−47.1859984728990369

−7.39057807777088182





r := −21.4123437598611340

Deluk := −7.844125931

Ldelu :=




4.55930558608054958

−6.38302782213385632





Delx :=




0.663847629098704317

−9.16549779069994486





Delx :=




0.663847629099999948

−9.16549779099999994





x2 :=




8.53884762609999903

−3.54049779400000020





f2 := −188.3738629

gf2 :=




−62.68763745

−44.77688388





h2 := 84.44704341

210

J2 :=




17.07769525

−7.080995588





nJ2 := 18.4875139910467148

JMP :=




0.0499657289799323446

−0.0207174973717899476





L2 :=




7.08099558800000040

17.0776952500000014





L2 :=




0.383015022589675624

0.923742113756327088





Delv :=




−4.21945808418064239

1.74953139990210672





pro :=




−7.14210365833238914

1.23916625091027877





Hu := −1.59086294212262080

µ := 1.68

Hus := 0.089137058

brack :=




30.9769971580173546

22.1264265364288910





brack :=




−31.7106402919826422

−22.6504573435711088





r := 33.0688329518647066

Deluk := 370.9886067

211

Ldelu :=




142.094209575712796

342.697799732572719





Delx :=




137.874751491532152

344.447331132474801





Delx :=




137.874751500000002

344.447331099999985





x3 :=




146.413599126099996

340.906833306000010





f3 := −121793.6212

gf3 :=




−2681.349725

437.0661036





h3 := 137653.4110

J3 :=




292.8271982

681.8136666





nJ3 := 742.036147346069697

JMP :=




0.000531815864169775821

0.00123827064744849399





L3 :=




−681.813666600000033

292.827198199999998





L3 :=




−0.918841580778544830

0.394626595020851790





Delv :=




−73.2062677268823166

−170.452178362463627





pro :=




6.69106784692349608

4.85924610817673486





212

Hu := −4.23044361152556903

µ := 4.4

Hus := 0.169556388

brack :=




1340.66512299179544

−218.531464179861614





brack :=




−1340.68460200820460

218.534639420138404





r := −1318.11633968315187

Deluk := −7773.911414

Ldelu :=




7142.99305247213488

−3067.79219130055618





Delx :=




7069.78678474525260

−3238.24436966301983





Delx :=




7069.78678500000024

−3238.24436999999989





x4 :=




7216.20038412610029

−2897.33753669399994





f4 := −138108045.7

gf4 :=




−53356.45331

−37556.81415





Procedure is diverging. Stop!

II. Stabilizing the full 2 × 2 Hessian. The ODA was implemented in Maple, as

per the code listed below.

213

Application of the ODA to a quadratic objective function that is not positive-

definite, subject to a quadratic constraint. Precomputations are done inside

arb-obj-fn-bkgd.mw

Hessian stabilization is done at the nXn Hessian level.

Look at accompanying file ArbObjFnODA1-semigraph.mw for further details

f := −9/2 x1
2 − 4 x1x2 + 3/2 x2

2

h := x1
2 + x2

2 − 1

> obj:=proc(x) 1/2*(-9*x[1]^2 -

> 8*x[1]*x[2] + 3*x[2]^2) end; #procedure to e

> valuate the

> objective function

obj := proc(x) − 9/2 ∗ x[1]̂ 2− 4 ∗ x[1] ∗ x[2] + 3/2 ∗ x[2]̂ 2end proc;

> graf:=proc(x)

> Vector([-9*x[1]-4*x[2],-4*x[1]+3*x[2]]) end; #procedure to

> evaluate

> the gradient of the objective function

graf := proc(x) Vector([−9 ∗ x[1]− 4 ∗ x[2], −4 ∗ x[1] + 3 ∗ x[2]])end proc;

> Hf:= Matrix([[-9,-4],[-4,3]]); #procedure

> not needed to evaluate the Hessian

> of the objective function, as

> Hessian is constant!

Hf :=




−9 −4

−4 3





ID :=




1 0

0 1





∆Hf :=




13.2000000000000 0.0

0.0 13.2000000000000





214

Hfstab :=




4.20000000000000 −4.0

−4.0 16.2000000000000





constr := proc(x) x[1]̂ 2 + x[2]̂ 2 +−1end proc;

grah := proc(x) Vector([2 ∗ x[1], 2 ∗ x[2]])end proc;

E :=




0 −1

1 0





x0 :=




2

−2





f0 := 4

gf0 :=




−10

−14





h0 := 7

J0 :=




4

−4





nJ0 := 4
√

2

JMP :=




1/8

−1/8





L0 :=




4

4





L0 :=




1/2
√

2

1/2
√

2





Delv :=




−7

8

7
8





215

pro :=




0.0999999999999996

√
2

6.10000000000000
√

2





Hu := 6.20000000000000

brack :=




−7.17500000000000

17.6750000000000





brack :=




−17.1750000000000

3.67500000000000





r := 6.75000000000000
√

2

Deluk := 1.53966799088710

Ldelu :=




0.769833995443548

√
2

0.769833995443548
√

2





Delx :=




−7

8
+ 0.769833995443548

√
2

7
8

+ 0.769833995443548
√

2





Delx :=




0.213709676844912

1.96370967684491





x1 :=




2.21370967684491

−0.0362903231550875





f1 := −21.7289769605966

gf1 :=




−19.7782257989839

−8.96370967684491





h1 := 3.90182752091151

J1 :=




4.42741935368982

−0.0725806463101750





216

nJ1 := 4.42801423706451302

JMP :=




0.225804525699389

−0.00370171359561084





L1 :=




0.0725806463101750

4.42741935368982





L1 :=




0.0163912405046195

0.999865654695380





Delv :=




−0.881050312720246

0.0144434479818867





pro :=




−3.93061940866212

16.1322586440467





Hu := 16.0656636227854399

brack :=




7.87167902255467

3.56753159482664





brack :=




−11.9065467764292

−5.39617808201827





r := 5.59061620262201052

Deluk := 0.3479853889

Ldelu :=




0.00570391220155345

0.347938638696925





Delx :=




−0.875346400518692

0.362382086678812





Delx :=




−0.875346400518692

0.362382086678812





217

x2 :=




1.33836327632622

0.326091763523724





f2 := −9.64668637407735

gf2 :=




−13.3496365410309

−4.37517781473371





h2 := 0.897552097656666

J2 :=




2.67672655265244

0.652183527047449





nJ2 := 2.75503328303428408

JMP :=




0.352655212517412

0.0859243242845873





L2 :=




−0.652183527047449

2.67672655265244





L2 :=




−0.236724373201412

0.971576847818982





Delv :=




−0.316526425744561

−0.0771215575013630





pro :=




−4.88054975872186

16.6864424274732





Hu := 17.3675062175090354

brack :=




3.15722406170650

1.03474103047416





brack :=




−10.1924124793244

−3.34043678425955





218

r := 0.832698585611156617

Deluk := 0.04794577731

Ldelu :=




−0.0113499340813642

0.0465830071850807





Delx :=




−0.327876359825925

−0.0305385503162823





Delx :=




−0.327876359825925

−0.0305385503162823





x3 :=




1.01048691650029

0.295553213207442





f3 := −5.65846020542933

gf3 :=




−10.2765951013324

−3.15528802637885





h3 := 0.108435510255517

J3 :=




2.02097383300059

0.591106426414884





nJ3 := 2.10564527901117948

JMP :=




0.455816737670390

0.133319985892344





L3 :=




−0.591106426414884

2.02097383300059





L3 :=




−0.280724598936670

0.959788361922486





219

Delv :=




−0.0494267205322938

−0.0144566206974946





pro :=




−5.01819676322396

16.6714698588910





Hu := 17.4098140204463832

brack :=




0.502666967580623

0.154337020036691





brack :=




−9.77392813375180

−3.00095100634216





r := 0.136495795203464886

Deluk := 0.007840163889

Ldelu :=




−0.00220092686333729

0.00752489805622713





Delx :=




−0.0516276473956311

−0.00693172264126750





Delx :=




−0.0516276473956311

−0.00693172264126750





x4 :=




0.958859269104663

0.288621490566175





f4 := −5.11938595950945

gf4 :=




−9.78421938420667

−2.96957260472013





h4 := 0.00271346276456974

220

J4 :=




1.91771853820933

0.577242981132349





nJ4 := 2.00271162453766127

JMP :=




0.478132240237905

0.143920223031338





L4 :=




−0.577242981132349

1.91771853820933





L4 :=




−0.288230703763967

0.957560995899831





Delv :=




−0.00129739403042587

−0.000390522166264107





pro :=




−5.04081293940798

16.6654109486331





Hu := 17.4110645661211550

brack :=




0.0132386349388893

0.00401800962291116





brack :=




−9.77098074926778

−2.96555459509722





r := 0.0234027536509913148

Deluk := 0.001344131116

Ldelu :=




−0.000387419857515726

0.00128708753005691





221

Delx :=




−0.00168481388794160

0.000896565363792804





Delx :=




−0.00168481388794160

0.000896565363792804





x5 :=




0.957174455216722

0.289518055929967





f5 := −5.10556931251391

gf5 :=




−9.77264232067037

−2.96014365307699





The foregoing value of x5 is accepted as the solution of the problem, which

corresponds to SP#3 of Fig. 6.12.

6.4.2 A Gradient-based Approach

Now we relax the assumption of Subsection 6.4.1, and assume that both the objective

and the constraint functions are continuous and have continuous derivatives up to

the first order only. Moreover, we asume that these derivatives are available. In this

light, the objective function can be expanded at the kth iteration in the form

f(xk + ∆xk) = f(xk) + (∇fk)
T ∆xk + HOT(∆xk) (6.56)

with the usual notation. Furthermore, the constraint function is approximated to a

first order as appearing in eq.(6.42b), which then allows us to express the increment

∆xk as

∆xk = −J†
kh

k

︸ ︷︷ ︸

∆vk

+Lk∆uk (6.57)

The expansion (6.56) can thus be expressed as

f(xk + ∆xk) = f(xk) + f̃(−J†
kh

k + Lk∆uk) (6.58)

Apparently, the second term of the foregoing expansion is a function of the

(n− p)-dimensional variable ∆uk, the problem at hand thus reducing to

f̃(∆uk) → min
∆uk

(6.59)

222

subject to no constraints. The dimension of the problem has thus been reduced

to n − l, lower than n, that of the original problem. Not only this, the problem

has also been reduced to one of the unconstrained type. So far, we have then

the same simplifications as in Subsection 6.4.1. However, rather than relying on

the availability of second derivatives, we resort, for the numerical solution of the

problem at hand, only to gradient evaluations.

Under the assumption that the objective and the constraint functions have con-

tinuous gradients, and these are available, we can use any of the methods introduced

in Section 4.5 to solve the problem. Of these methods, we recommend two of the

most effective ones, the Fletcher-Reeves and the BFGS methods.

223

224

Chapter 7

Inequality-Constrained

Optimization

7.1 Introduction

The conditions under which a design problem is formulated involve, more often than

not, inequality constraints, in addition to equalities. In fact, inequality constraints

arise naturally in design because the resources available to accomplish a design job

are finite. For example, a designed object must: fit into a designated region; be

realizable within a given budget; and be delivered by a certain date.

In this chapter we address two issues around inequality-constrained problems:

the normality conditions and the methods of solution. As to the former, we will not

dwell into their rigorous derivation, which are elusive to a simple analysis with the

tools of linear algebra; rather, we will introduce the first-order normality conditions

without derivation, and illustrate their validity with examples. The second-order

normality conditions will be derived using an intuitive approach, more so than a

mathematical formulation.

The reason why linear algebra is no longer sufficient to derive the normality con-

ditions of inequality-constrained problems lies in the nature of inequalities, which

define a region of Rn that is neither a vector subspace nor a manifold, as we en-

countered when studying equality-constrained problems. Now we will speak, more

generally, of the feasible region F , which can have sharp edges and vertices, not

occurring in manifolds. For this reason, a simple transformation of the form x(u) is

not sufficient, in general, to guarantee the fulfillment of the inequality constraints.

225

7.2 The Karush-Kuhn-Tucker Conditions

The first-order normality conditions of equality-constrained problems are classical

results, first proposed by Joseph Louis de Lagrange, brilliant mathematician born

in Turin in 1736 and dead in Paris in 1813. Lagrange founded in Turin a society

that would become the Academy of Sciences, then went to Berlin, to the Academy

of Friedrich II, to succeed Euler. Rather late in his life, in 1787, did Lagrange

move to Paris, invited by Louis XVI to teach at École normale. Appointed senator

and made count by Napoleon, Lagrange became one of the first professors at École

polytechnique.

The first-order normality conditions for inequality-constrained problems had to

wait until well into the XX century. These conditions were disclosed first by W.

Karush in his M.S. thesis in the Department of Mathematics at the University

of Chicago Karush (1939). Apparently, these results were never published in the

archival literature, for which reason they remained unknown. Twelve years later,

they were published in the Proc. Second Berkeley Symposium by Kuhn and Tucker

(1951). The credit of these normality conditions has gone mostly to Kuhn and

Tucker, but given their history, these conditions are sometimes referred to as the

Karush-Kuhn-Tucker conditions, abbreviated KKT conditions.

An extensive discussion of the KKT conditions is found in Hillier and Liebermann

(1995)

The problem under discussion is formulated as

f(x) → min
x

(7.1a)

subject to

g(x) ≤ 0p (7.1b)

h(x) = 0l (7.1c)

where inequality (7.1b) is to be taken with a grain of salt: Arrays not forming ordered

sets, this relation has no verbatim meaning. It is to be interpreted as shorthand for

a set of p inequalities, namely,

g1(x) ≡ g1(x1, x2, . . . , xn) ≤ 0

g2(x) ≡ g2(x1, x2, . . . , xn) ≤ 0
...

gp(x) ≡ gp(x1, x2, . . . , xn) ≤ 0

226

To formulate the normality conditions, we proceed as before, namely, by defining a

Lagrangian upon adjoining the equality and the inequality constraints to the objec-

tive function, namely,

F (x, λ, µ) ≡ f(x) + λTh(x) + µTg(x) → min
x,λ,µ

(7.2)

where λ is found so that h(x) will vanish at a stationary point, the role played by

µ being described below. We start by introducing a

Definition 7.2.1 (Active constraint) When, at a stationary point, the ith con-

straint of eq.(7.1b) holds with the equality sign, this constraint is said to be active.

By opposition, we will define as passive any non-active constraint.

The components of µ are chosen so that the contribution of all passive con-

straints to the Lagrangian vanish at a stationary point, that of all active constraints

necessarily vanishing.

While the normality conditions cannot be derived by simply making the gradient

of the foregoing Lagrangian equal to zero, these conditions look very much like those

associated with equality-constrained problems. Indeed, xo is a feasible stationary

point if

h(xo) = 0l, g(xo) ≤ 0p (7.3a)

∇f |x=xo
+ JT

o λ+ GT
oµ = 0n (7.3b)

µ ≥ 0m, µTg(x) = 0 (7.3c)

where

Go ≡ G(xo) ≡
∂g

∂x

∣
∣
∣
∣
x=xo

, Jo ≡ J(xo) ≡
∂h

∂x

∣
∣
∣
∣
x=xo

(7.3d)

i.e., G and J are, respectively, the p× n and the l × n gradients of the inequality-

and equality-constraint functions g(x) and h(x), namely,

G ≡








(∇g1)
T

(∇g2)
T

...

(∇gp)
T







, J ≡








(∇h1)
T

(∇h2)
T

...

(∇hl)
T








(7.4)

Hence, the KKT condition (7.3b) can be expressed alternatively as

∇f |x=xo
+ λ1∇h1|x=xo

+ λ2∇h2|x=xo
+ · · ·+ λl∇hl|x=xo

+ µ1∇g1|x=xo
+ µ2∇g2|x=xo

+ · · ·+ µp∇gp|x=xo
= 0n (7.5)

227

It is noteworthy that, the components of µ being non-negative and those of g(x)

non-positive, each µigi(x) is non-positive. Hence, µTg(xo) = 0 of eq.(7.3c) implies

µigi(xo) = 0, i = 1, . . . , p

at a feasible stationary point.

Relations (7.3a–c) are the Karush-Kuhn-Tucker (KKT) conditions. These are the

first-order normality conditions of the inequality-constrained problem at hand, and

hence, guarantee a feasible stationary point of F , but not a minimum. The latter

is guaranteed by the second-order normality conditions, to be studied in Section 7.3.

Remark: In the absence of inequality constraints, eq.(7.3b) reduces to the FONC

of equality-constrained problems, eq.(5.8a).

Relations (7.3c) of the KKT conditions are referred to as the complementary

slackness, sometimes as the transversality condition1. Complementary slackness

thus guarantees that, at a SP, the Lagrangian equals the objective function, under

the assumption that the equality constraints are verified.

Further, if a of the p inequality constraints are active, we can partition vector

g(xo), very likely after a reshuffling of its components, in the form

g(xo) =

[
ga

gp′

]

, p′ = p− a (7.6)

where ga and gp′ are a- and (p − a)-dimensional vectors, respectively. Now, the

Karush-Kuhn-Tucker conditions of eq.(7.5) can be restated as

∇f |x=xo
+ λ1∇h1|x=xo

+ λ2∇h2|x=xo
+ · · ·+ λl∇hl|x=xo

+ µ1∇g1|x=xo
+ µ2∇g2|x=xo

+ · · ·+ µa∇ga|x=xo
= 0n, ga = 0a (7.7)

where the first equation resembles the FONC of equality-constrained problems, this

time with l + a equality constraints, as derived in eq.(5.8a).

Moreover, the KKT conditions can be cast in the canonical form

∇xF ≡
∂F

∂x
= 0n, ∇µF ≤ 0p, µT∇µF = 0 (7.8)

A proof of the KKT can be found in (Culioli, 1994; Boyd and Vandenberghe, 2004).

1Not to be confused with the transversality condition of calculus of variations.

228

To illustrate the validity of the KKT conditions, we give in Fig. 7.1 a mechanical

interpretation: A heavy ball of weight w is constrained to lie in a box, under the

action of the gravity field g, as depicted in Fig. 7.1a; the ball is shown in its equilib-

rium position in Fig. 7.1b; in Fig. 7.1c, the weight of the ball, equal to −∇V , where

V is the potential energy of the ball, is decomposed into the two forces normal to

the box walls. Notice that these two components push the walls, but cannot pull

them, which is the reason why µi > 0, for i = 1, 2.

(a) The general layout (b) The ball at its equilibrium

position

(c) A decomposition of the

weight of the ball at equilib-

rium position

Figure 7.1: A heavy ball inside a box inclined with respect to the vertical

Figure 7.2: A quadratic objective func-

tion subject to linear inequality con-

straints

Example 7.2.1 Consider the problem

f =
1

2
(x2

1 + x2
2) → min

x1,x2

subject to

x1 + x2 ≥ 10

x1 ≥ 0

x2 ≥ 0

The objective function and the constraints

are illustrated in Fig. 7.2.

Solution: For starters, we must express

the inequality constraints in the stan-

dard form adopted at the outset, i.e., as

gi(x) ≤ 0, whence,

g1 ≡ −x1−x2+10 ≤ 0, g2 ≡ −x1 ≤ 0, g3 ≡ −x2 ≤ 0

229

Apparently, the minimum is found at xo = [5, 5]T . We evaluate then the items

entering in the KKT conditions at xo:

∇g1 =

[−1

−1

]

, ∇g2 =

[−1

0

]

, ∇g3 =

[
0

−1

]

∇f =

[
x1

x2

]

, ⇒ ∇f |x=xo
=

[
5

5

]

By inspection, only the first constraint is active, and hence,

g1(xo) = 0, µ1 > 0, µ2 = µ3 = 0

The KKT condition (7.7) thus reduces to

∇f |x=xo
+ µ1∇g1|x=xo

= 02, µ1 > 0

or

µ1∇g1|x=xo
= − ∇f |x=xo

which states that, at the SP xo given above, the two gradients, ∇f |x=xo
and

∇g1|x=xo
, are linearly-dependent. As a consequence, the above overdetermined sys-

tem of two equations in one single unknown, µ1, admits one solution that verifies

the two equations. Upon solving this system we obtain µ1 = 5 > 0, thereby verifying

the second relation of conditions (7.3c).

Example 7.2.2

f ≡ 8x2
1 − 8x1x2 + 3x2

2 → min
x

subject to

x1 ≥ 3, x2 ≤
3

2

The objective function and the constraints of this example are depicted in Fig. 7.3

Solution: Again, we start by restating the inequalities in our standard form:

g1 ≡ 3− x1 ≤ 0, g2 ≡ x2 −
3

2
≤ 0

Therefore,

∇g1|x=xo
=

[−1

0

]

, ∇g2|x=xo
=

[
0

1

]

230

3

3
2

∇f

∇g1

∇g2

g1 = 0

g2 = 0

x1

x2

P0

Figure 7.3: One more quadratic objective function subject to linear inequality con-

straints

condition (7.3b) thus leading to

µ1∇g1|x=xo
+ µ2∇g2|x=xo

= −∇f |x=xo

where, apparently,

xo =

[
3

3/2

]

, ∇f =

[
16x1 − 8x2

−8x1 + 6x2

]

Hence,

∇f |
x=xo

=

[
36

−15

]

The above normality condition thus leading to

µ1

[−1

0

]

+ µ2

[
0

1

]

=

[−36

15

]

which, in this case, turns out to be a determined system of two equations in two

231

unknowns, its solution being

µ1 = 36 > 0, µ2 = 15 > 0

thereby verifying all KKT conditions.

Example 7.2.3 (A Linear Program) A class of optimization problems finding a

number of applications involves a linear objective function subject to linear equality

and inequality constraints. This class is studied within the realm of linear program-

ming. These problems cannot be solved with the tools described so far, for we have

focused on least-square problems, with an extension to more general objective func-

tions and equality constraints. By the same token, linear programs arise seldom in

mechanical design. To be true, a family of design problems in structural engineering,

known as limit design, pertain to the design of structural elements, beams, columns

and plates, for minimum weight, in such a way that all modes of plastic failure are

avoided. Problems in limit design lead to linear programs.

Linear programming is a first instance of application of the KKT conditions. We

illustrate the concept with the problem below.

f ≡ 2x1 − x2 → min
x1,x2

subject to

g1(x) ≡ −x1 ≤ 0

g2(x) ≡ −x2 ≤ 0

g3(x) ≡ x1 + x2 − 1 ≤ 0

Solution: The gradient of the objective function and the constraints of this problem

are illustrated in Fig. 7.4.

In this case,

G =





−1 0

0 −1

1 1



 , ∇f =

[
2

−1

]

, xo =

[
0

1

]

The KKT conditions lead to

[
2

−1

]

+

[−1 0 1

0 −1 1

]




µ1

µ2

µ3



 =

[
0

0

]

232

PSfrag

∇f

∇f

∇f∇g1

∇g3

g1 = 0

g2 = 0
g3 = 0 x1

x2

x0

µ1∇g1

µ3∇g3

µ1, µ3 > 0

Figure 7.4: A linear program(the feasible region is shown dashed)

Apparently, g1 and g3 are active, and hence,

µ1, µ3 > 0, µ2 = 0

thereby ending up with a system of two equations in two unknowns, µ1 and µ3.

Upon solving this system, we obtain, successively,

µ3 = 1 > 0, µ1 = 3 > 0

thereby verifying the KKT conditions.

7.3 Second-Order Normality Conditions

The simplest way of stating the sufficient conditions for a minimum, i.e., the second-

order normality conditions, is by imposing the condition that, at a stationary point

xo within F , any feasible move ∆xF will produce a growth, and hence a worsening,

of the objective function, while respecting the constraints. In other words, at a

feasible minimum, we cannot decrease the objective function without violating the

constraints. That is,

∆f ≡ f(xo + ∆xF)− f(xo) > 0 (7.9)

∆h ≡ h(xo + ∆xF)− h(x0) = 0l (7.10)

g(xo + ∆xF) ≤ 0p (7.11)

233

A feasible move, moreover, is to be understood here at the first-order approximation

of the objective function and the constraint functions g(x) and h(x). In this light,

then, eq.(7.10) constrains ∆xF to lie in the null space of J, i.e.,

J∆xF = 0l (7.12)

If we recall now the partitioning of g(x) introduced in eq.(7.6), relation (7.11) can

be correspondingly partitioned as

∆ga(x) ≡ ga(x0 + ∆xF)− ga(x0) = 0a (7.13a)

gp′(x) ≡ gp′(x0 + ∆xF) < 0p′ (7.13b)

the feasible move thus requiring that the passive constraints remain passive and that

their active counterparts remain active. If we now let Ga denote ∇ga, the first-order

approximation of eq.(7.13a) leads to

Ga(x)∆xF = 0a (7.14)

and we need not worry about the passive constraints (7.13b), which will be respected

as long as ‖∆xF‖ is “small enough.” Now we can adjoin eq.(7.14) to eq.(7.12) in

the form

J∆xF = 0l+a, J ≡
[

J

Ga

]

(7.15)

Further, we introduce, correspondingly, a n× (n− l−a) orthogonal complement

L of J, i.e.,

J L = O(l+a)×(n−l−a) (7.16)

The FONC can now be restated as

∇f + J
T
λ = 0n, λ ∈ R

l+a, µp′ = 0p′ (7.17)

where µp′ is the passive-constraint counterpart of λ.

The sufficient second-order normality conditions can now be stated in exactly

the same form as for equality-constrained problems. That is, we define now the

(n− l − a)× (n− l − a) reduced Hessian as

Hr ≡ L
T

[

∇∇f +
∂(J

T
λ)

∂x

]

L (7.18)

and hence, the sufficient SONC can be stated as:

A stationary point of an inequality-constrained problem is a minimum if

the reduced Hessian, defined in eq.(7.18), is positive-definite.

234

7.3.1 Overconstrained Problems

In the special case in which l + a > n, the orthogonal complement L does not

exist for a full-rank J. In this case, the problem is overconstrained, and hence,

ill-defined. However, if J is rank-deficient, of rank smaller than n, then some of the

constraints are redundant, at least to a first order, and the problem may admit a

minimum. If l + a = n, then the equality constraints yield a determined system of

nonlinear equations, which can be solved using the Newton-Raphson method. Any

of the solutions thus obtained is a solution candidate for the original optimization

problem.

Example 7.3.1 The KKT and Second-Order Conditions Consider the prob-

lem

f(x) = (x1 − 1)2 + (x2 + 2)2 → min
x1,x2

subject to

g(x) = x1 − x2 + 0.5 ≤ 0

with f(x) and g(x) illustrated in Fig. 7.5

Solution: We start by finding a feasible stationary point xl.c.o via the KKT condi-

tions:

∇f + µ∇g = 0

where

∇f = 2

[

x1 − 1

x2 + 2

]

, ∇g =

[

1

−1

]

Hence, the KKT conditions lead to

2

[

x1 − 1

x2 + 2

]

+ µ

[

1

−1

]

=

[

0

0

]

Next, we investigate whether g(x) ≤ 0 is active. As the unconstrained problem

has a minimum at [1, −2]T , the centre of the family of circles generated by the

objective function, which violates the inequality constraint, this must be active.

Hence, the above equations yield, with µ > 0,

2(x1 − 1) + µ = 0 and 2(x2 + 2)− µ = 0

235

which, upon summation, lead to

x1 + x2 = −1

while the inequality constraint, written as an active constraint, leads in turn to

x1 − x2 = −0.5

The solution of the two foregoing equations is x1 = −0.25, x2 = −0.75, whence

µ = 2.5 > 0 and hence, the KKT conditions are verified. Now we turn to the

second-order sufficient conditions: In our case,

J ≡ [(∇ga)
T] = [1 −1] ⇒ L =

[

1

1

]

and

∇∇f =

[

2 0

0 2

]

Moreover, as J is constant because the constraint is linear,

Hu =
∂(J

T
λ)

∂x
= O22

Therefore,

∇∇f = [1 1]

[

2 0

0 2

][

1

1

]

= 4 > 0

thereby verifying the second-order sufficient condition, and hence showing that,

indeed, xl.c.o = [−0.25 −0.75]T is a minimum.

Notice that, in this case, ∇∇f happens to be positive-definite, and hence, the

reduced Hessian is bound to be positive-definite as well. The computation of Hu in

this case could thus have been dispensed with.

7.4 Methods of Solution

Two classes of methods are available to solve inequality-constrained problems: a)

direct methods, which handle the inequalities as such, and b) indirect methods, which

transform the problem into one of two types, either unconstrained or equality-

constrained. Indirect methods being simpler to implement, we will focus on these,

which we will study first. Direct methods will be outlined at the end of the chapter.

236

x2

x1

g = 0

g > 0 ∇g

Figure 7.5: A quadratic objective function to be minimized under one inequality

constraint

237

Inequality-constrained problems can be solved using the approach introduced for

either unconstrained or equality-constrained problems, upon converting the problem

at hand into an unconstrained or, correspondingly, an equality-constrained problem.

This can be done by various methods; we focus on two, namely, slack variables and

penalty functions.

7.5 Indirect Methods

In this section, the methods of slack variables and of penalty functions are discussed.

7.5.1 Slack Variables

Upon introducing the slack variables s1, s2, · · · , sp into inequalities (7.1b), we con-

vert these inequalities into equality constraints, namely,

γ(x, s) ≡








g1 + s2
1

g2 + s2
2

...

gp + s2
p








= 0, x ≡








x1

x2
...

xn







, s ≡








s1

s2
...

sp








(7.19)

Notice that the slack variables being unknown, they have to be treated as additional

design variables, the dimension of the design space being correspondingly increased.

In consequence, the design vector is now of dimension n+ p, i.e.,

ξ ≡
[
x

s

]

(7.20)

Further, the gradient of the objective function with respect to the new design-

variable vector takes the form

∇ξf ≡
[∇f
∇sf

]

(7.21a)

where

∇f ≡ ∂f

∂x
, ∇sf ≡

∂f

∂s
= 0p (7.21b)

the second relation following because the slack variables do not appear explicitly in

the objective function.

Likewise, the Hessian with respect to the new design-variable vector ξ takes the

form

∇ξ∇ξf =

[∇∇f ∇(∇sf)

∇s(∇f) ∇s∇sf

]

(7.22a)

238

with the notation

∇(∇sf) ≡ ∂2f

∂x∂s
=

(
∂2f

∂s∂x

)T

≡ [∇s(∇f)]T , ∇s∇sf ≡
∂2f

∂s2
(7.22b)

However, since ∇sf = 0p, the above Hessian expression reduces to

∇ξ∇ξf =

[∇∇f Onp

OT
np Op

]

(7.23)

That is, the Hessian of the objective function with respect to the new design-

variable vector ξ is singular. In case ∇∇f is positive-definite, ∇ξ∇ξf is positive-

semidefinite. Hence, in applying the method of slack variables to solve inequality-

constrained problems, Hessian stabilization—see Section 6.4.1—will always be needed.

Now, the problem can be formulated as equality-constrained, if we adjoin the p

equality constraints (7.19) to the original l, thereby obtaining a new set of equality

constraints:

h(ξ) = 0l+p (7.24)

Therefore, the problem at hand can be solved using the ODA.

Example 7.5.1 (Minimization of the design error of a four-bar linkage

with an input crank) Determine the link-lengths of the four-bar linkage shown

in Fig. 7.6, that will produce the set of input-output pairs {ψi, φi}101 of Table 7.1

with the least-square error, and such that its input link have a full rotatability. In

Table 7.1, ψ and φ denote the input and output angles, respectively.

Table 7.1: The input-output pairs of {ψi, φi}101
i 1 2 3 4 5

ψi 123.8668◦ 130.5335◦ 137.2001◦ 143.8668◦ 150.5335◦

φi 91.7157◦ 91.9935◦ 92.8268◦ 94.2157◦ 96.1601◦

i 6 7 8 9 10

ψi 157.2001◦ 163.8668◦ 170.5335◦ 177.2001◦ 183.8668◦

φi 98.6601◦ 101.7157◦ 105.3268◦ 109.4935◦ 114.2157◦

Solution: The link-lengths are obtained via the Freudenstein parameters k1, k2 and

k3, defined as

k1 =
a2

1 + a2
2 − a2

3 + a2
4

2a2a4
, k2 =

a1

a2
, k3 =

a1

a4
(7.25a)

239

Figure 7.6: A four-bar linkage

with the inverse relations

a2 =
a1

k1
, a3 =

√

k2
2 + k2

3 + k2
2k

2
3 − 2k1k2k3

|k2k3|
, a4 =

a1

k3
(7.25b)

for a given value of a1. The synthesis equations for the planar four-bar linkage can

be written in the form (Liu and Angeles, 1992):

Sk = b (7.26)

where S is the synthesis matrix, and k is the vector of linkage parameters. Moreover,

S, k and b are defined as

S =








1 cosφ1 − cosψ1

1 cosφ2 − cosψ2
...

...
...

1 cos φ10 − cosψ10








k =





k1

k2

k3



 b =








cos(ψ1 − φ1)

cos(ψ2 − φ2)
...

cos(ψ10 − φ10)








(7.27)

The design error is defined in turn as

d ≡ b− Sk (7.28)

the purpose of the optimization exercise being to minimize the Euclidean norm of

the design error, while ensuring that its input link is a crank. The conditions for

full mobility of the input link were reported by Liu and Angeles (1992)

g1(x) = (k1 + k3)
2 − (1 + k2)

2 < 0

g2(x) = (k1 − k3)
2 − (1− k2)

2 < 0

240

By introducing two slack-variables s1 and s2, the inequality constraints are converted

into equality constraints, i.e.,

h1(x) = (k1 + k3)
2 − (1 + k2)

2 + s2
1 = 0 (7.29a)

h2(x) = (k1 − k3)
2 − (1− k2)

2 + s2
2 = 0 (7.29b)

The design vector ξ thus becomes ξ = [k1 k2 k3 s1 s2]
T . From the initial guess

ξ0 = [0.28 0.74 0.12 1.69 1.2]T , the solution was found to be ξopt = [0.3248 0.5875

−0.009725 1.556 0.2415]T , and the corresponding link lengths are a1 ≡ 1, a2 = 1.702,

a3 = 103.4 and a4 = 102.8. The Euclidean norm of the minimum design error is

5× 10−2.

The problem with this design is that it leads to a quite disproportionate linkage:

two of its links have lengths two orders of magnitude bigger than those of the other

two!

In the foregoing reference, a technique is introduced to eliminate this dimensional

unbalance by means of a penalty function.

7.5.2 Penalty Functions

Penalty-function methods are based on a transformation of the problem under study

into an unconstrained one, which is done by suitably modifying the objective func-

tion. The modification consists in adding one penalty term that penalizes any vio-

lation of the constraints—both equality and inequality constraints can be handled

in this way, but we limit the discussion here to inequality constraints. The iterative

procedure approaches the optimum solution asymptotically, by extrapolation of a

sequence of optimum solutions to unconstrained problems. There are two possibil-

ities: the solution is approached either within the feasible region or from without,

the penalty function being correspondingly referred to as interior or exterior. It is

noteworthy that exterior penalty-function methods are applicable only to problems

whereby the optimum finds itself at the boundary of the feasible region, but misses

interior optima. Hence, we focus here on interior penalty functions.

Interior Penalty Functions

Given an objective function f(x) subject to inequality constraints, as defined in

eq.(7.1b), a sequence of interior penalty functions {φk}ν1 is constructed as

φk(x; rk) ≡ f(x)− rk

p
∑

i=1

1

gi(x)
k = 1, 2, · · · , ν (7.30)

241

where the term −rk

∑p
i=1[1/gi(x)] is called the penalty term, and all the rk factors

are positive and observe a decreasing order, i.e.,

r1 > r2 > r3 · · · > rν > 0 (7.31)

The idea here is that the search for the minimum is conducted within the feasible

region. Under these conditions, the summation in the penalty term remains negative,

and hence, a positive penalization is always added to the objective function. As the

design-variable vector approaches the constraint gi(x) = 0, it does so from the left,

i.e., gi(x) → 0−, and 1/gi(x) → −∞, the penalty term thus becoming a “large”

positive quantity, whose value is kept finite thanks to the presence of the “small”

factor rk.

Now, a sequence of unconstrained minimization problems is defined:

φk(x; rk) ≡ f(x)− rk

p
∑

i=1

1

gi(x)
→ min

x
, k = 1, 2, · · · , ν (7.32)

Let x1
o, x

2
o, . . ., x

ν
o be the sequence of corresponding unconstrained minima. Next,

these minima are interpolated to a vector function xo(r):

xo(r) ≡ c0 +
ν−1∑

1

ckr
k/2 (7.33)

thereby obtaining a system of νn equations in νn unknowns, the n components of

the ν unknown vector coefficients { ck }ν−1
0 . Note that the foregoing equations are

all linear in the unknowns, and hence, they can be solved for the unknowns using

Gaussian elimination, as described below. First, eq.(7.33) is written for r = ri, with

i = 1, 2, . . . , ν:

xo(ri) ≡ c0 + c1r
1/2
i + c2r

2/2
i + · · ·+ cν−1r

(ν−1)/2
i (7.34)

or

xo(ri) ≡ [c0 c1 · · · cν−1]








1

r
1/2
i
...

r
(ν−1)/2
i







, i = 1, 2, . . . , ν (7.35)

In the next step, we regroup all ν vector equations above to produce a matrix

equation. To this end, we define the matrices

R ≡








1 1 · · · 1

r
1/2
1 r

1/2
2 · · · r

1/2
ν

...
...

. . .
...

r
(ν−1)/2
1 r

(ν−1)/2
2 · · · r

(ν−1)/2
ν








(7.36a)

242

Xo ≡ [xo(r1) xo(r2) · · · xo(rν)] (7.36b)

C ≡ [c0 c1 · · · cν−1] (7.36c)

It is noteworthy that square matrices with the gestalt of R of eq.(7.36a) occur quite

frequently in system theory, where they are termed Vandermonde matrices. For

this reason, scientific code includes commands that ease the construction of such

matrices. For example, Maple includes the command

VandermondeMatrix(r, output)

in which r is the array [r1, r2, . . . , rν]
T , and output is the name assigned to the

matrix thus constructed. The command includes various options.

Thus, the ν vector equations (7.34) become, in matrix form,

CR = Xo (7.37a)

whence,

C = XoR
−1 (7.37b)

or, if eq.(7.37a) is written in the usual form, with the unknown matrix C to the

right of its matrix coefficient, the foregoing equation should first be transposed, the

result then being

CT = R−TXT
o (7.37c)

with exponent −T indicating the inverse of the transpose or, equivalently, the trans-

pose of the inverse. Once the ν vector coefficients sought are available, the optimum

of the inequality-constrained problem, xopt, is calculated as

xopt = lim
r→0

x(r)

i.e.,

xopt = c0 (7.38)

In computing the above value, note that c0 is the first column of the unknown

matrix C or, equivalently, the first row of its transpose. In either case, it is not

possible to obtain c0 as the solution of one single vector equation. A matrix equation

must be solved in order to obtain c0. Such an equation is to be solved as a sequence

of linear systems using LU-decomposition, one column of the matrix at a time.

243

Example 7.5.2 (A Two-dimensional Optimization Problem Subject to In-

equality Constraints)

Consider an optimization problem with an objective function defined as

f = x2 + 2y2 → min
x,y

(7.39)

subject to the inequality constraints

g1 ≡ −x ≤ 0 (7.40a)

g2 ≡ −y ≤ 0 (7.40b)

g3 ≡ 1− x− y ≤ 0 (7.40c)

Figure 7.7: Isocontours of the penalty function with r1 = 0.1

Figure 7.8: Isocontours of the penalty function with r2 = 0.01

244

Figure 7.9: Isocontours of the penalty function with r3 = 0.001

Solution: From a sketch of the constraints and the contours of the objective function

in the x-y plane, it should be apparent that the minimum of f is attained at a point

where the gradient ∇f is parallel to the normal to the line g3(x, y) = 0. The

optimum values of x and y are, then

xopt =
2

3
, yopt =

1

3

We demonstrate below the application of penalty functions to obtain the foregoing

optimum. We have

φk ≡ x2 + 2y2 − rk

(

−1

x
− 1

y
− 1

x+ y − 1

)

, k = 1, . . . , 3 → min
x, y

subject to no constraints, for

r1 = 0.1, r2 = 0.01, r3 = 0.001

The penalty-function isocontours for different rk values are shown in Figs. 7.7–

7.9. In those figures, the isocontour of the objective function f that includes the

constrained minimum is indicated with a dashed curve.

The optima xo(rk) ≡ [xo(rk), yo(rk)]T for the three given values of rk were found

by the ODA, using subroutine ARBITRARY, as

xo(r1) =

[
0.7941

0.4704

]

, xo(r2) =

[
0.7140

0.3703

]

, xo(r3) =

[
0.6836

0.3434

]

(7.41)

We now fit the values of {xo(rk)}31 to the function

xo(r) = c0 + c1r
1/2 + c2r

245

We thus have

R =





1 1 1

0.3163 0.1000 0.03163

0.1000 0.0100 0.00100



 , Xo =

[
0.7941 0.7140 0.6836

0.4704 0.3703 0.3434

]

(7.42)

The coefficient matrix C is thus found to be

C = XoR
−1 =

[
0.6687 0.4790 −0.2605

0.3317 0.3612 0.2443

]

(7.43)

Therefore,

xopt = c0 =

[
0.6687

0.3317

]

(7.44)

which yields the optimum with two significant digits of accuracy.

7.6 Direct Methods

Of the various direct methods for the solution of inequality-constrained problems,

we shall discuss here three:

(i) The generalized reduced-gradient method;

(ii) the complex method; and

(iii) the method of the feasible directions.

Of these, the first two are described below, the third method, due to Zoutendijk

(1960), to be included in a future edition.

7.6.1 The Generalized Reduced-Gradient Method

This method, abbreviated as the GRG method, is an evolution of the gradient-

projection method proposed by Rosen (1960). Further developments led to the

reduced-gradient method, as applicable to arbitrary objective functions with linear

equality constraints and inequalities of the form x ≥ 0. The generalization of the

reduced-gradient method lies in its applicability to nonlinear equality and inequality

constraints.

The method is best described if the given problem is formulated in a format

slightly different from the one we have used so far: Given the objective function

f(x) and the C1-continuous functions hj(x), for j = 1, . . . , l + p,

f(x) → min
xǫRn

(7.45a)

246

subject to

hj(x) ≤ 0, j = 1, . . . , p (7.45b)

hp+j(x) = 0, j = 1, . . . , l (7.45c)

li ≤ xi ≤ ui, i = 1, . . . , n (7.45d)

The problem is first reformulated upon elimination of the first p inequalities by

means of nonnegative slack variables xn+1, . . . , xn+p. The constraints become now:

hj(x) + xn+j = 0, j = 1, . . . , p (7.46a)

hp+j(x) = 0, j = 1, . . . , l < n (7.46b)

li ≤ xi ≤ ui, i = 1, . . . , n (7.46c)

xn+j ≥ 0, j = 1, . . . , p (7.46d)

Notice that the slack variables introduced in eq.(7.46a) are non-negative, while those

of Subsection 7.5.1 are quadratic. The reason for the difference is that the latter

were introduced in the framework of least squares; the former have a historic origin,

greatly influenced by the simplex method of linear programming, whereby all decision,

or design, variables are regarded as non-negative.

We thus end up with a new problem:

f(x) → min
xǫRp

(7.47a)

subject to

hj(x) = 0, j = 1, . . . , l + p (7.47b)

li ≤ xi ≤ ui, i = 1, . . . , p+ n (7.47c)

Inequalities (7.47c) will be termed bilateral.

Remarks:

• li = 0, ui < ∞, i = n + 1..., p, the latter meaning that the last p compo-

nents of x are unbounded from above

• In light of eqs.(7.45c), the problem at hand has n′ ≡ (n−l) degrees of freedom,

and hence, (n − l) design variables—or a combination thereof—can be freely

prescribed.

247

Strategy: Partition the set of design variables into two sets: (n − l) independent

design variables and (l+p) dependent design variables, a.k.a. state variables. Relabel

the design variables, if necessary.

Definitions:

x ≡
[
y

z

]

, y ≡








x1

x2
...

xn−l







, z ≡








xn−l+1

xn−l+2
...

xp+n







, h ≡








h1(x)

h2(x)
...

hl+p








(7.48)

• y: (n− l)-dimensional vector of independent variables

• z: (l + p)-dimensional vector of dependent variables or state variables

• The partial derivatives ∂f/∂y, ∂f/∂z, ∂h/∂y, and ∂h/∂z denote derivatives

that do not take into account the dependence of z on y

• df/dy denotes the total derivative of f with respect to y, which takes into

account the dependent variables, and is, hence, a (n− l)-dimensional vector

• dh/dy denotes the total derivative of h with respect to y, which takes into

account the dependent variables, and is, hence, a (l + p)× (n− l) matrix

That is,

df

dy
≡








df/dx1

df/dx2
...

df/dxn−l







,

dh

dy
≡
[

dh

dx1

dh

dx2
. . .

dh

dxn−l

]

(7.49)

Remark: Because of the constraints (7.47b), the partial derivatives with respect to

z are dependent upon those with respect to y. Indeed, since the equalities (7.47b)

must hold, we must have

h(y, z(y)) = 0 (7.50a)

which means that the total derivative of h with respect to y must vanish. From the

chain rule,
dh

dy
≡ ∂h

∂y
+
∂h

∂z

∂z

∂y
= 0 (7.50b)

Let

C ≡ ∂h

∂y
=








∂h1/∂x1 ∂h1/∂x2 · · · ∂h1/∂xn−l

∂h2/∂x1 ∂h2/∂x2 · · · ∂h2/∂xn−l
...

...
. . .

...

∂hl+p/∂x1 ∂hl+p/∂x2 · · · ∂hl+p/∂xn−l








(7.50c)

248

D ≡ ∂h

∂z
=








∂h1/∂z1 ∂h1/∂z2 · · · ∂h1/∂zl+p

∂h2/∂z1 ∂h2/∂z2 · · · ∂h2/∂zl+p
...

...
. . .

...

∂hl+p/∂z1 ∂hl+p/∂z2 · · · ∂hl+p/∂zl+p








(7.50d)

whence C is a (l + p) × (n − l) matrix, while D is a (l + p) × (l + p) matrix. We

thus have

C + D
∂z

∂y
= 0

Solving for ∂z/∂y from the above equation yields, for D invertible,

∂z

∂y
= −D−1C (7.51)

Also notice that
∂f

∂x
≡
[
∂f/∂y

∂f/∂z

]

(7.52)

By application of the chain rule, the total derivative of f with respect to y is given

by

df

dy
=
∂f

∂y
+

(
∂z

∂y

)T
∂f

∂z

Substitution of eq.(7.51) into the above equation leads to

df

dy
=
∂f

∂y
− (D−1C)T ∂f

∂z

= [1n−l −(D−1C)T]

[
∂f/∂y

∂f/∂z

]

≡M
∂f

∂x
(7.53)

where

• 1n−l: (n− l)× (n− l) identity matrix

• M: a (n− l)× (p+ n) matrix, namely,

M ≡ [1n−l −(D−1C)T] (7.54)

Definition: The reduced gradient of f is defined as the (n − l)-dimensional vector

df/dy of eq.(7.53).

Remarks:

249

• The reduced gradient of f is a linear transformation of the gradient of f with

respect to x, the transformation being given by matrix M

• In the absence of inequalities (7.47c), the normality condition of Problem

(7.47a & b) are
df

dy
≡M

∂f

∂x
= 0 (7.55)

i.e., at a stationary point of Problem (7.47a & b), the gradient of f with

respect to x need not vanish; only its projection onto matrix M must vanish.

Apart from inequalities (7.47c), which are relatively simple to handle, the prob-

lem can be treated as an unconstrained one.

It is noteworthy that MT plays the role of the isotropic orthogonal complement

L of J ≡ ∂h/∂x. Indeed, from eq.(7.51),

∆z =
∂z

∂y
∆y = −D−1C∆y

or

D−1C∆y + ∆z = 0l+p

which can be cast in the form

[D−1C 1l′]

[
∆y

∆z

]

= 0l+p

where l′ ≡ l + p. Further, recalling the constraints h(x) = 0, we have

∂h

∂x
∆x ≡ J∆x = 0l+p

whence,

J = [D−1C 1l′]

Now,

JMT = [D−1C 1l′]

[
1n−l

−D−1C

]

= D−1C−D−1C = Ol′×n′

with n′ ≡ n−l. Therefore, MT is an orthogonal complement of J. However, contrary

to L, MT , or M for that matter, is not isotropic.

We need two search directions at the ith iteration: one for y and one for z. To

find these directions, we start by recalling eq.(7.50a), whence

∆h =
∂h

∂y
︸︷︷︸

≡C

∆y +
∂h

∂z
︸︷︷︸

≡D

∆z = 0l+p (7.56)

250

Let, at the ith iteration,

∆y = λsi, ∆z = λti, λ > 0 (7.57)

Substitution of eq.(7.57) into eq.(7.56) leads to

λCsi + λDti = 0

with λ, si and ti as yet to be determined. Since λ > 0, the above equation leads, in

turn, to

Csi + Dti = 0

whence,

ti = −D−1Csi (7.58)

Since we want to minimize f(x, y), a plausible choice of si is

si = − df

dy

∣
∣
∣
∣
(yi,zi)

(7.59)

Further, substitution of eq.(7.59) into eq.(7.58) leads to the desired expression for

ti, namely,

ti = D−1C
df

dy

∣
∣
∣
∣
(yi,zi)

(7.60)

thereby obtaining the two desired search directions.

We thus have an update of x:

xi+1 ≡
[
yi + λsi

zi + λti

]

(7.61)

The optimum value λ∗ of λ is found upon solving an unconstrained problem of

one-dimensional minimization:

f(yi + λsi, zi + λti) → min
λ

(7.62)

Remark: The foregoing optimization is implemented without consideration of in-

equalities (7.47c). Hence, a test must be conducted to verify whether those con-

straints are obeyed. If some of the foregoing inequalities are violated, an adjustment

is in order, as explained below.

Adjustment: Let λi, for i = 1, . . . , p + n, be the positive value of λ that renders

one of the two inequalities of each of relations (7.47c) active. Then, let λopt be the

adjusted value of λ that does not violate the above inequalities, i.e.,

251

λopt = min{λ∗, { λi }p+n
1 } (7.63)

Hence,

xi+1 ≡
[
yi + λopts

i

zi + λoptt
i

]

(7.64)

Remark: After the foregoing adjustment has taken place, nothing guarantees that

the constraints (7.47b) are verified. Hence, one further adjustment is needed:

Complying with the equality constraints: With y fixed to its current value,

ycurr, we correct the current value zcurr of z by means of the Newton-Raphson

method, i.e.,

1. hcurr ←− h(zcurr;ycurr)

2.

h(zcurr + ∆z;ycurr) ≈ hcurr +
∂h

∂z

∣
∣
∣
∣
y=ycurr, z=zcurr

∆z → 0

3.

∆z = −
[

∂h

∂z

∣
∣
∣
∣
y=ycurr, z=zcurr

]−1

hcurr ≡ −D−1hcurr

4. zcurr ←− zcurr + ∆z, hcurr ←− h(zcurr;ycurr)

5. If ‖hcurr‖ ≤ ǫ stop; else, go to 1

where ǫ is a prescribed tolerance. Once the Newton-Raphson adjustment is com-

pleted, the optimization algorithm proceeds to the next iteration. The overall iter-

ative procedure is finished when a convergence criterion has been met.

Drawbacks of the GRG method:

• Success is heavily dependent upon the user’s choice of independent and depen-

dent variables: Its rate of convergence dcereases as κ(D) grows (Luenberger,

1984)

• The speed of convergence is slowed down by the Newton-Raphson iterations:

we have an iteration loop within an exterior iteration loop!

In spite of the foregoing drawbacks, however, the GRG method is rather popular,

for it is even available in Excel, an office-automation software package that has been

used in the teaching of optimum design (Tai, 1998).

252

Example 7.6.1 The equilibrium configuration of a N-link chain (Luen-

berger, 1984)

We revisit here the problem of Example 6.4.2, for a N -link chain, as shown in

Fig. 6.10, which we reproduce in Fig. 7.10 for quick reference.

Figure 7.10: A N -link chain at: (a) its unknown equilibrium configuration; and (b)

a known configuration, to be used as an initial guess

We recall that the chain attains its equilibrium configuration when its potential

energy attains its minimum value. As in the above-mentioned example, we use the

configuration of Fig. 7.10b as initial guess and find the equilibrium configuration for

the values N = 4, d = 1.5 m, and ℓ = 0.5 m

Solution: In following Luenberger’s formulation, we let the ith link span an x dis-

tance xi and a y distance yi. If V ≡ µf(x1, y1, x2, y2 . . . , xN , yN) denotes the

potential energy of the chain, and µ is the mass density of the links per unit length,

then minimizing V is equivalent to minimizing f , which is given by

f(x1, y1, x2, y2 . . . , xN , yN) =
1

2
y1 + (y1 +

1

2
y2) + . . .

+(y1 + y2 + . . .+ yN−1 +
1

2
yN−1)

=
1

2

N∑

i=1

[2(N − i) + 1] → min
{xi,yi }N

1

subject to

N∑

i=1

yi = 0

x2
i + y2

i − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , N

253

For N = 4, we have

f(x1, y1, x2, y2 x3, y3, , x4, y4) =
1

2
(7y1 + 5y2 + 3y3 + y4) → min

{xi,yi}4
1

subject to

h1 ≡ x1 + x2 + x3 + x4 − 1.5 = 0

h2 ≡ y1 + y2 + y3 + y4 = 0

h3 ≡ x2
1 + y2

1 − 0.52 = 0

h4 ≡ x2
2 + y2

2 − 0.52 = 0

h5 ≡ x2
3 + y2

3 − 0.52 = 0

h6 ≡ x2
4 + y2

4 − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , 4

Use symmetry to simplify the problem:

x3 = x2, x4 = x1, y3 = −y2, y4 = −y1

⇒ f(x1, y1, x2, y2) ≡ 3y1 + y2 → min
{xi, yi}2

1

Remark: Now constraint h2 = 0 is identically verified and hence, is deleted. We

are thus left with the constraints (note that h2 is redefined below)

h1 ≡ x1 + x2 − 0.75 = 0

h2 ≡ x2
1 + y2

1 − 0.52 = 0

h3 ≡ x2
2 + y2

2 − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , 2

We thus have:

• Design variables: x1, y1, x2, y2 ⇒ n = 4

• Equality constraints: hi = 0, for i = 1, 2, 3 ⇒ l = 3

• Degree of freedom: n − l = 1 ⇒ one single independent variable. Choose y1.

Hence,

y ≡ [y1], z ≡





x1

x2

y2





254

Preliminary calculations:

∂f

∂y
=

[
∂f

∂y1

]

= [3],
∂f

∂z
=





∂f/∂x1

∂f/∂x2

∂f/∂y2



 =





0

0

1





h ≡





x1 + x2 − 0.75

x2
1 + y2

1 − 0.25

x2
2 + y2

2 − 0.25





Hence,

∂h

∂y
≡
[

∂h/∂y1 ∂h/∂y2

]

=





0

2y1

0



 ≡ C,

∂h

∂z
≡ [∂h/∂x1 ∂h/∂x2 ∂h/∂y2] =





1 1 0

2x1 0 0

0 2x2 2y2



 ≡ D

Feasible initial guess: From Fig. 7.10b, in m,

x1 = x2 = 0.37500, y1 = y2 =
1

2

√
12 − 0.752 = 0.33072

⇒ x0 =








0.33072

0.37500

0.37500

0.33072








Hence,

fcurr ≡ f(x0) = 3× 0.33072 + 0.33072 = 1.32288

C =





0

0.66144

0



 , D =





1 1 0

0.75000 0 0

0 0.7500 0.66144





and

D−1 =





0 1.3333 0

1 −1.3333 0

−1.1339 1.5119 1.5119





Further,

∂z

∂y
= −D−1C

= −





0 1.3333 0

1 −1.3333 0

−1.1339 1.5119 1.5119









0

0.66144

0



 =





−0.88192

0.88192

−1.00000





255

⇒ df

dy
=
∂f

∂y
+

(
∂z

∂y

)T
∂f

∂z
=
∂f

∂y
− (D−1C)T ∂f

∂z

= 3 + [−0.88192 0.88192 −1.0000]





0

0

1



 = [3]− [1] = [2]

Search directions:

s1 = − df

dy

∣
∣
∣
∣
x=x1

= −[2]

Hence,

t1 = −D−1Cs1 =





−0.88192

0.88192

−1.00000



 [−2] =





1.7638

−1.7638

2.0000





⇒ ∆x =

[
y

z

]

=

[
λs1

λt1

]

= λ








−2.0000

1.7638

−1.7638

2.0000








and

xnew = xcurr + ∆x =








0.33072− 2.0000λ

0.37500 + 1.7638λ

0.37500− 1.7638λ

0.33072 + 2.0000λ








Thus,

f(x + ∆x) = f(λ) = 3(y1 + ∆y1) + (y2 + ∆y2)

= 3(0.33072− 2λ) + 0.33072 + 2λ = 1.3229− 4λ

Hence, in order to minimize f(λ) we must make λ (> 0) as large as the constraints

allow us. In the next step we find the set { λi }41 allowing us to attain the equality

on one side of the set of inequalities (7.47c):

y1 : 0.33072− 2.0000λ1 = −0.5 ⇒ λ1 =
0.83072

2.0000
= 0.41536

x1 : 0.37500 + 1.7638λ2 = 0.5 ⇒ λ2 =
0.12500

1.7638
= 0.070868

x2 : 0.37500− 1.7638λ2 = −0.5 ⇒ λ3 =
0.87500

1.7638
= 0.49608

y2 : 0.33072 + 2.0000λ1 = 0.5 ⇒ λ4 =
0.16928

2.0000
= 0.084640

256

whence, λopt = min{0.41536, 0.070868, 0.49608, 0.084640} = 0.070868

Therefore,

xnew =








0.33072− 2.0000× 0.070868

0.37500 + 1.7638× 0.070868

0.37500− 1.7638× 0.070868

0.33072 + 2.0000× 0.070868








=








0.18898

0.5000

0.2500

0.47246








⇒ fnew = 3× 0.18898 + 0.47246 = 1.0394

which means that we brought down the objective function by 21% of its original value

in one single iteration. However, nothing guarantees that the equality constraints

are satisfied. Let us verify:

hnew = h(xnew) =





0.5000 + 0.25000− 0.75000

0.50002 + 0.188982 − 0.50002

0.250002 + 0.472462 − 0.50002



 =





0.0000

0.035713

0.035718



 6= 0

Hence, a correction to z, with y kept at its current value ycurr, is warranted:

Dnew∆z = −hnew

where

Dnew ≡ D(xnew) =





1 1 0

1 0 0

0 0.5000 0.94492





Hence,





1 1 0

1 0 0

0 0.5000 0.94492









∆x1

∆x2

∆y2



 =





0.0000

0.035713

0.035718



 ⇒ ∆z =





−0.035713

0.035713

−0.056698





Thus,

h(znew + ∆z;ynew) =





0.0000

0.0012786

0.0044866





Hence, the norm of h has been brought down by one order of magnitude. Besides,

f(znew + ∆z;ynew) = 0.9827, and hence, the objective function was brought down

by an additional 5.5%, thereby completing one full iteration. Further iterations are

left to the reader as an exercise.

257

7.6.2 The Complex Method

The concept of simplex was introduced in Subsection 4.4.3 as the polyhedron in IRn

with the smallest number of vertices, namely n+1. A complex in IRn is a polyhedron

with m > n+1 vertices; e.g., in 2D, a complex is a quadrilateron; in 3D a cube is an

example of a complex. We describe below a method due to Box (1965) that is based

on the concept of complex. In Box’s method a complex C with m = 2n vertices, for

n ≥ 2, is defined. Implementations are reported in (Kuester and Mize, 1973) and

(Xu et al., 1994).

Figure 7.11: Replacement of the worst vertex of the complex by a reflection

Box’s Algorithm

1. Given one feasible vertex x1 of the initial complex, generate the

remaining 2n−1 vertices so that complex is feasible: C = {xi}2n
1 ∈

F , the feasible region

2. Let fi ≡ f(xi) and fM = max{fi}2n %xM
is the worst vertex

3. Let C′ = {xi}2n
i=1, i6=M and let x be the position vector of the centroid

of C′, i.e.,

x =
1

2n− 1

(
2n∑

i=1

xi − xM

)

258

4. Recover lost vertex by reflecting2 xM about x by means of

xnew ← xM ← x− α(xM − x) ≡ (1 + α)x− αxM , α > 0 (αBox = 1.3)

5. if xnew ∈ F, continue; else

5.1 xnew ← 1
2
(x + xnew)

5.2 if xnew ∈ F , continue; else go to 5.1

abort if too many iterations

6. go to 2; if xnew is not new worst vertex continue; else

xnew ← β(xM − x), 0 < β < 1

7. stop when convergence criterion has been met.

A possible convergence criterion is to stop when the difference between the max-

imum value fM of the objective function and its minimum, fm, is smaller than a

prescribed ratio ǫ1 times the same difference at the original complex. An alterna-

tive criterion involves the size of the current complex, given by the rms value of

the distances of the vertices from the centroid: whenever this value is smaller than

a prescribed ratio ǫ2 times the corresponding value for the original complex, the

procedure stops. A combination of the two criteria is advisable.

2A reflection in this context, depicted in Fig. 7.11, need not preserve the geometry of R
n, as do

improper orthogonal transformations—see Subsection 3.3.2

259

260

Bibliography

Angeles, J., 2007, Fundamentals of Robotic Mechanical Systems. Theory, Methods,

Algorithms, Third Edition, Springer, New York.

Angeles, J., 2011, Dynamic Response of Linear Mechanical Systems. Modeling, Anal-

ysis and Simulation, Springer, New York.

Bertsekas, D. P., 1995. Nonlinear Programming , Athena Scientific Belmont, MA.

Box, M.J., 1965, “A new method of constrained optimization and a comparison with

other methods,” Computer Journal , Vol. 8, pp. 42–52.

Boyd, S. and Vandenberghe, L., 2004, Convex Optimization. Cambridge: Cambridge

University Press.

Brent, R.P., 1972, Algorithms for Minimization Without Derivatives, Prentice-Hall,

Inc., Englewood Cliffs, NJ.

Broyden, C.G., 1970, “The convergence of a class of double-rank minimization al-

gorithm,” J. Inst. Math. Applications , Vol. 6, pp. 76–90.

Culioli, J.-C., 1994. Introduction à l’optimisation, Ellipses Publisher, Paris.

Dahlquist, G. and Å. Björck. 1974, Numerical Methods, Prentice-Hall, Englewood

Cliffs, NJ.

Fletcher, R., 1970, “A new approach to variable metric algorithms,” Computer Jour-

nal , Vol. 13, pp. 317–322.

Fletcher, R. and Reeves, C.M., 1964, “Function minimization by conjugate gradi-

ents,” Computer Journal , Vol. 7, No. 2, pp. 149–154.

French, M.E., 1992. Form, Structure and Mechanism, Macmillan, London.

261

Gleick, J., 1988. Chaos. Making a New Science, Penguin Books, New York.

Goldfarb, D.. 1970, “A family of variable metric updates derived by variational

means,” Mathematics of Computing , Vol. 24, pp. 23–26.

Hillier, S. and Liebermann, G.J., 1995, Introduction to Mathematical Programming,

McGraw-Hill, Inc., New York.

Karush, W., 1939, Minima of Functions of Several Variables with Inequalities as

Side Conditions, M.S. Thesis, University of Chicago, Chicago, IL.

Kuester, J.L. and Mize., J.H., 1973, Optimization Techniques with Fortran,

McGraw-Hill Book Co., New York.

Kuhn, H.W. and Tucker, A.W., 1951, “Nonlinear programming,” in J. Neyman

(ed.), Second Berkeley Simposium, pp. 481–492, University of California Press,

Berkeley, CA.

Lalee, M., Nocedal, J. and Plantenga, T., 1998, “On the implementation of an

algorithm for large-scale equality constrained optimization,” SIAM J. Optim.,

Vol. 8, No. 3, pp. 682–706.

Liu, Z. and Angeles, J., 1992, “Least-square optimization of planar and spherical

four-bar function generator under mobility constraint,” ASME, J. Mech. Des.,

Vol. 114, pp. 569–573.

Livio, M., 2002, The Golden Ratio.The Story of Phi, the World’s Most Astonishing

Number , Broadway Books, New York.

Luenberger, D.G., 1984, Linear and Nonlinear Programming , Addison-Wesley Pub-

lishing Company, 2nd ed., Reading, MA.

Mandelbrot, B.B., 1983, The Fractal Geometry of Nature, W.H. Freeman and Com-

pany, 3rd ed., New York.

Murray, W., 1997, “Sequential quadratic programming methods for large problems,”

Comput. Optim. Appl , Vol. 7, pp. 127–142.

Nelder, J.A. and Mead, R., 1965, “A simplex method for function minimization,”

Computer Journal , Vol. 7, pp. 308–313.

262

Papalambros, P. and Wilde, D.J., 2000, Principles of Optimal Design, Cambridge

University Press, Cambridge, UK.

Powell, M.J.D., 1964, “An efficient method for finding the minimum of a function

of several variables without calculating derivatives,” Computer Journal, Vol. 7,

pp. 155–162.

Powell, M.J.D., 1969, “A method for nonlinear constraints in minimizing problems,”

in R. Fletcher (ed.), Optmization, Academic Press, London, pp. 283–297.

Rao, S.S., 1996, Engineering Optimization, John Wiley and Sons, Inc., 3rd ed., New

York

Rosen, J.B., 1960, “The gradient projection method for nonlinear programming.

Part I. Linear constraints,” SIAM Journal , Vol. 8, pp. 181–217.

Rosen, J.B., 1961, “The gradient projection method for nonlinear programming.

Part II. Nonlinear constraints,” SIAM Journal , Vol. 9, pp. 414–452.

Salmon, G., Higher Algebra, Fifth Edition (1885), reprinted 1964, Chelsea Publishing

Co., New York.

Salisbury, J.K. and Craig, J.J., 1982, “Articulated hands. Force and kinematic is-

sues,” The Int. J. Robotics Res., Vol. 1, No. 1, pp. 4–17.

Shanno, D.F., 1970, “Conditioning of quasi-Newton methods for function minimiza-

tion,” Mathematics of Computing , Vol. 24, pp. 647–656.

Shigley, J. and Mischke, C., 1989, Mechanical Engineering Design, McGraw-Hill

Book, Inc., New York.

Spendley, W., Hext, G.R. and Himsworth, F.R., 1962, “Sequential application

of simplex designs in optimization and evolutionary operation,” Technometrics,

Vol. 4, No. 4, pp. 441–461.

Taguchi, G. 1988. The development of quality engineering. The ASI Journal , Vol. 1,

No. 1, pp. ???–???.

Tai, K., 1998, “Integrated design optimization and analysis using a spreadsheet

application,” Int. Journal of Mechanical Engineering Education, Vol. 27, No. 1,

pp. 29–40.

263

Teng, C.P. and Angeles, J., 2001, “A sequential-quadratic-programming algorithm

using orthogonal decomposition with Gerschgorin stabilization,” ASME J. Me-

chanical Design, Vol. 123, pp. 501–509.

Varga, R.S., 2000, Matrix Iterative Analysis, Springer, New York.

Wilde, D. 1992. “Monotonicity analysis of Taguchi’s robust circuit design problem,”

ASME J. Mechanical Design, Vol. 114, pp. 616–619.

Xu, P., Ramden, T., Burton, R.T., Krus, P. and Sargent, C., 1994, “Feasibility of

training a neural network based hydraulic component simulator using the comlpex

method,” Proc. Seventh Bath International Fluid Power Workshop.

Zoutendijk, G., 1960, Methods of Feasible Directions , Elsevier Publishing Company,

Amsterdam.

264

Index

École polytechnique, 226

backward substitution, 62

best fit, 48

Bezout number, 130

Cartesian decomposition, 51

ceiling function, 22

complementary slackness, 228

complex, 258

condition number, 48, 60

constrained gradient, 119

constrained Hessian, 124

constraint

force of, 141

control variables, 14

convex, 143

combination, 143

damping, 78

damping factor, 78

design, 11, 87

engineering, 11

industrial , 11

design error, 240

design variables, 15

design vector (DV), 87

design-variable vector, 87

determined system, 73

dexterity, 22

dexterity matrix, 23

dialytically, 130, 139

dichotomous, 21

differentiation with respect to

vectors, 54

direct methods, 236

divine proportions, 41

dual form, 119

equidistant points, 31

exhaustive search, 20

experiment, 20

feasible

gradient, 120

manifold, 120, 191

move, 122, 233

region, 225

space, 191

subspace, 120

feasible move, 123

feasible subset, 120

Fibonacci Numbers, 30

Filius Bonacci, 30

first-order normality condition, 88

first-order normality conditions (FONC),

118

floating-point operations, 49

flops, 49, 70

forward substitution, 61, 62

fractal, 77

Freudenstein parameters, 239

265

full mobility, 240

full-rank, 7

Gaussian elimination, 61

Gerschgorin Theorem, 196

golden ratio, 40

golden section, 40, 41

gradient, 8, 88

gradient operator, 8

Gram-Schmidt orthogonalization, 68

Hessian, 88

perturbed , 194

stabilization, 195

stabilized, 195

Hessian operator, 9

Householder reflections, 68

idempotent matrix, 57

ill-conditioning, 48

images, 52

improper orthogonal matrix, 68

inconsistent, 48

Index, 265

indirect methods, 236

interval of uncertainty (i.o.u), 20

isotropic matrix, 61, 149

Jacobian matrix, 23, 76

Karush-Kuhn-Tucker (KKT), 228

Karush-Kuhn-Tucker conditions, 226

kernel, 52

Lagrange multipliers, 116

Lagrangian, 116, 227

least-square error, 79

least-square formulation, 16

least-square solution, 64, 80

limit design, 232

linear least squares, 48

linear programming, 232

linear system

underdetermined, 7

linear transformation, 52

linear-quadratic programs, 194

local maximum, 89

local minimum, 89

lower-triangular matrix, 61

LU-decomposition, 61

manifold, 120

master, 163

mathematical model, 13, 14

matrix

positive-definite, 51

positive-semidefinite, 51

sign-indefinite, 52

maximally invertible, 23

minimum-norm problem, 116

minimum-norm solution, 145

Moore-Penrose generalized inverse

left, 64

left (LMPGI), 7, 48

right, 145

right , 116

right (RMPGI), 7

Newton-Gauss method, 79

Newton-Raphson method, 75

nominal values, 16

nonconvex, 143

nonlinear system, 73

nonsingular square matrices, 60

norm, 48

Chebyshev, 49, 50

266

Euclidean, 48, 49

Euclidean , 49

Euclidean norm

weighted, 116

Frobenius, 49, 50

infinity, 49, 50

maximum, 49

normal equations, 64

normal interval, 20

normality condition, 80

normality conditions, 115, 225

dual form, 115

in primal form, 115

normality conditions (NC), 48, 63

first-order, 87

second-order, 87

null space, 52

nullity, 52

numerical conditioning, 161

objective function, 23

objective function, 16

of φ

gradient, 152

operation conditions, 16

operation point, 22

ordered sets, 226

orthogonal complement, 8, 119, 164

orthogonal transformation, 53

Orthogonal-Decomposition Algorithm (ODA),

166

orthogonal-decomposition algorithm (ODA),

161

orthogonalization algorithms, 48

output variables, 14

overdetermined system, 63, 79

penalty term, 241

perturbation, 194

plastic failure, 232

polynomial equations, 130

production systems, 11

projection, 57

orthogonal , 57

plane, 57

projector, 57, 164

proper orthogonal matrix, 53

range, 52

rank-one matrix, 58

recursively, 30

reduced

gradient, 120

normality condition, 139

reduced Hessian, 125, 194

redundant set of equations, 48

reflection, 56

reflections

pure , 56

relative roundoff errors, 60

robust design, 16

saddle point, 89

Schwartz’s Theorem, 88

second variation, 123

second-order normality condition (SONC),

123

sequence, 30

monotonically increasing, 30

sequential quadratic programming, 194

slack variables, 238

slave, 163

stabilized reduced Hessian, 198

state variables, 14

267

stationary point, 80, 119

strategy, 20

synthesis matrix, 240

system

determined, 48

overdetermined, 48

trace, 50

triangular system, 61

unconstrained, 165

unconstrained minimization, 87

underdetermined system, 144

unimodal function, 19

upper-triangular form, 69

upper-triangular matrix, 61, 68

weakly coupled system, 61

weighted least squares, 151

weighting matrix, 79

268

