
MECH 577 Optimum Design

Lecture Notes

Jorge Angeles

Department of Mechanical Engineering &

Centre for Intelligent Machines

McGill University, Montreal (Quebec), Canada

c© September 2008

These lecture notes are not as yet in final form.

Please report corrections & suggestions to

Prof. J. Angeles

Department of Mechanical Engineering &

McGill Centre for Intelligent Machines

McGill University

817 Sherbrooke St. W.

Montreal, Quebec

CANADA H3A 2K6

FAX: (514) 398-7348

angeles@cim.mcgill.ca

Contents

Notation 7

1 Preliminaries 9

1.1 The Role of Optimization Within the Design Process 9

1.2 The Structure of Optimum Design Problems 13

1.2.1 Case Study: The Optimum Design of the Links of a Robotic

Wrist . 14

2 Single-Variable Optimization 15

2.1 Methods of Single-Variable Optimization 15

2.2 Dichotomous Search . 17

2.2.1 Example 4: Finding the Maximum Dexterity Posture of a

Two-Phalanx Robotic Finger 18

2.3 Interval-Halving . 25

2.4 Fibonacci Numbers . 26

2.4.1 Example 5: Finding the Maximum Dexterity Posture of a

Two-Phalanx Robotic Finger 29

2.5 Golden-Section Search . 36

2.5.1 Example 6: Finding the Maximum Dexterity Posture of a

Two-Phalanx Robotic Finger 38

3 Numerical Equation Solving 43

3.1 Introduction . 43

3.2 Background Facts and Definitions . 44

3.3 Background on Linear Transformations 48

3.3.1 Rotations . 48

3.3.2 Reflections . 51

3.3.3 Projections . 52

3

3.4 The Numerical Solution of Determined Linear Systems of Equations . 54

3.4.1 Roundoff Error of the Solution and Condition Numbers 55

3.4.2 Gaussian Elimination . 56

3.4.3 Cholesky Decomposition . 57

3.5 The Least-Square Solution of Overdetermined Linear Systems 58

3.5.1 The Normal Equations . 58

3.5.2 Householder Reflections . 60

3.6 Nonlinear-Equation Solving: The Determined Case 65

3.6.1 The Newton-Raphson Method 67

3.7 Overdetermined Nonlinear Systems of Equations 70

3.7.1 The Newton-Gauss Method 70

3.7.2 Convergence Criterion . 71

3.8 Computer Implementation Using ODA—

C-Library of Routines for Optimum Design 73

4 Unconstrained Optimization 77

4.1 Introduction . 77

4.2 The Normality Conditions . 77

4.3 Methods of Solution . 79

4.4 Direct Methods . 80

4.4.1 The Hooke and Jeeves Method 80

4.4.2 The Powell Method (Conjugate Directions) 81

4.4.3 The Nelder-Mead Simplex Method 86

4.5 Gradient Methods . 90

4.5.1 The Method of Steepest Descent(Cauchy) 90

4.5.2 The Conjugate-Gradient Method (Fletcher-Reeves) 90

4.5.3 Quasi-Newton Methods . 94

4.6 Newton Methods . 95

4.6.1 The Newton-Raphson Method 95

4.6.2 The Levenberg-Marquardt Method 96

5 Equality-Constrained Optimization: Normality Conditions 97

5.1 Introduction . 97

5.2 The First-Order Normality Conditions 98

5.2.1 The Primal Form . 98

5.2.2 The Dual Form . 101

4

5.3 The Second-Order Normality Conditions 103

5.3.1 The Primal Form . 103

5.3.2 The Dual Form . 105

5.3.3 A Mechanical Interpretation of the Lagrange Multipliers . . . 121

5.4 Linear-Quadratic Problems . 123

5.4.1 The Minimum-Norm Solution of Underdetermined Systems . . 123

5.4.2 Least-Square Problems Subject to Linear Constraints 131

5.5 Equality-Constrained Nonlinear Least Squares 132

5.6 Linear Least-Square Problems Under Quadratic Constraints 135

6 Equality-Constrained Optimization:

The Orthogonal-Decomposition Algorithm 143

6.1 Introduction . 143

6.2 Linear Least-Square Problems Subject to

Equality Constraints: The ODA . 144

6.3 Equality-Constrained Nonlinear Least-Square Problems 148

6.3.1 A Geometric Interpretation of the ODA 164

6.4 Equality-Constrained Optimization with Arbitrary Objective Function172

6.4.1 A Sequential-Quadratic Programming Approach 174

6.4.2 A Gradient-based Approach 183

7 Inequality-Constrained Optimization 185

7.1 Introduction . 185

7.2 The Karush-Kuhn-Tucker Conditions 186

7.3 Second-Order Normality Conditions 193

7.3.1 Overconstrained Problems . 195

7.4 Methods of Solution . 196

7.5 Indirect Methods . 198

7.5.1 Slack Variables . 198

7.5.2 Penalty Functions . 201

7.6 Direct Methods . 206

7.6.1 The Method of the Feasible Directions 206

7.6.2 The Generalized Reduced-Gradient Method 206

7.6.3 The Complex Method . 217

Bibliography 221

6

Notation

1: The n× n identity matrix, when n is obvious

1k: the k × k identity matrix, when k should be specified

A: q × n coefficient matrix of the linear system Ax = b

AI : the left Moore-Penrose generalized inverse (LMPGI) of the full-rank q × n

matrix A, with q > n:

AI ≡ (ATA)−1AT (1)

b: q-dimensional vector of the linear system Ax = b

C: p × n, with p < n, coefficient matrix of the underdetermined linear system

Cx = d

C†: the right Moore-Penrose generalized inverse (RMPGI) of the full-rank p × n
matrix C, with p < n:

C† ≡ CT (CCT)−1 (2)

d: p-dimensional vector of the linear system Cx = d

f : scalar objective function f(x) to be minimized

g(x): p-dimensional nonlinear vector function of the set of inequalities g(x) ≤ 0

G: p× n Jacobian matrix of vector function g(x) w.r.t. x

H: the n× n Hessian matrix of the objective function f(x)

Hi: ith Householder reflection used to render a rectangular matrix into upper-

triangular form; a square matrix

h(x): l-dimensional nonlinear vector function of x, occurring in the equality con-

straints h(x) = 0

7

J(x): l × n gradient of h w.r.t. x

L: lower-triangular matrix of the LU-decomposition of a square matrix A. Also

used to denote the orthogonal complement of C or G; confusion is avoided

because of the two different contexts in which these matrices occur

l: number of equality constraints hi(x) = 0, for i = 1, . . . , l, expressed in vector

form as h(x) = 0

m: number of equations φi(x) = 0, for i = 1, . . . , m, expressed in vector form as

φ(x) = 0

n: number of design variables xi, for i = 1, . . . , n, expressed in vector form as x

Omn: the m× n zero matrix

p: number of constraint equations gi(x) = 0, for i = 1, . . . , p, expressed in vector

form as g(x) = 0 or Cx = d

q: number of equations in Ax = b

U: (square) upper-triangular matrix

V: m×m lower-triangular matrix, a factor of W, i.e., W = VTV

W: m×m symmetric and positive-semidefinite weighting matrix

x: n-dimensional vector of design variables

xo: minimum-norm solution of an underdetermined linear system

xL: least-square solution of an overdetermined linear system

xi: the ith component of vector x

xk: the kth entry of a sequence x0,x1, . . .

∇: the gradient operator, pronounced “nabla”; when its operand is a scalar, it

yields a vector; when a vector, it yields a matrix

∇∇: the Hessian operator; its operand being a scalar, it produces a square, sym-

metric matrix

‖ · ‖: a norm of either vector or matrix (·)

8

Chapter 1

Preliminaries

1.1 The Role of Optimization Within the Design

Process

The English word design derives from the Latin word designare, which means “to

mark out”—as found, for example, in the Random College Dictionary. The word

thus implies a goal, an objective. As such, the meaning of the word is extremely

broad, encompassing the general activity of producing concepts aimed at a given

goal, be this pure intellectual pleasure, in the realm of art, or pragmatic, in the

realm of engineering.

The product of the design activity is a good, whether tangible, e.g., a fountain

pen in the realm of industrial design, or intangible, e.g., a business plan, in the

realm of management. We focus here on engineering design, but this does not mean

that we exclude intangible goods. An important branch of engineering is production

systems, whereby the design good is many a time intangible, such as the organization

of a healthcare system.

Design is an extremely complex process. Various models have been proposed in

the literature, e.g., the one proposed by French (1992) and shown in Fig. 1.1, which

divides the process into two parts, (i) stages/descriptions and (ii) activities. The

process is represented as a flow diagram, in which stages or descriptions are included

in circles, while activities in rectangles. In this model, the process starts with a need

and ends with “working drawings.” In-between, we have a sequence, starting by the

analysis of the problem, an activity, followed by the statement of the problem, a

stage. Once the problem has been formulated, in design engineering terms, we

9

suppose, as opposed to “client-needs” terms, the activity leading to the conceptual

design follows, out of which comes (come) the “selected scheme(s),” apparently a

description. Then comes the “embodiment of scheme(s),” i.e., of the scheme(s)

selected in the previous part. The embodiment is then followed by the “detailing”

of the designed object, also an activity.

Figure 1.1: French’s model of the design process

However, the design process is recognized as being anything but a one-way street.

Two feedback loops are thus included in French’s model: one at the conceptual

design level, in which a revision may indicate that the problem needs further analysis,

and hence, the designer or the design team must return to the first activity. A second

loop arises at the embodiment level, at which the designer may realize that either a

revision of the conceptual design is needed, or even a revision of the problem analysis

is warranted.

The foregoing model contemplates the design process as a consultant’s activity,

in which a consultant—an individual or a company—participates in a project within

10

an organization, to either develop a new product or improve an existing one. The

model does not contemplate the prototyping aspects—usually outside of the scope

of the consultant’s activities—that lead to the realization of the design motivated

by the client’s need. Prototyping is needed when either an innovative product is

under design or when an improvement on an existing design is planned that will

affect thousands or millions of produced objects. Prototype tests may bring about

various feedback loops in turn. We propose in Fig. 1.2 an alternative model that

should help better understand the role of optimization within the design process

and its place therein.

In the model of Fig. 1.2, the design process is initiated by a client’s need. The

designer then translates the need into a form that allows the designer to analyze

the client’s needs within a design context, which is the block indicated as “Problem

Definition.” Once the problem is well-defined, free of the fuzziness of the client’s

description, a search for alternative solutions begins, leading to a design candidate.

These activities take place within the “Conceptual Design” box in the proposed

model. Once a design candidate has been selected, a detailed design follows, as

included in the dashed box of the same model. In this phase, the input is a prelim-

inary design solution, devoid of details. That is, the preliminary design is nothing

but a rough layout needing an embodiment, i.e., a detailed definition in terms of

materials, dimensions, and so on. The first step in this stage is the synthesis of the

embodiment, i.e., a topological layout of the design—number of moving parts; types

of moving parts; individual functions of the parts; etc.—involving only a qualitative

description of the design structure. Once a topological layout has been produced, its

design features are identified and labelled, probably using mathematical symbols,

such as ℓ for length; m for mass; R for resistor; P for compressive load; T for tensile

load; etc.

A key step in the dashed box consists in assigning numerical values to the fore-

going features, which is a task calling for discipline-specific knowledge—fluid me-

chanics; structural engineering; machine design; multibody dynamics; etc.—either

theoretical or empirical. Out of this knowledge comes a mathematical model re-

lating all the foregoing features. Numerical values can now be assigned to these

features using most often good engineering judgment, which comes only from expe-

rience and common sense. As a means of verifying decisions on dimensioning, the

designer can resort to well-developed design methods leading systematically to the

best possible values of those features, while satisfying the client’s needs and bud-

getary constraints. Under “budgetary” we understand not only financial resources,

11

but also time, for deadlines must be respected. How to assign values systematically

to the foregoing features is the role of optimization.

Optimization is thus a process by which the decision-maker, in our case the

designer, arrives at optimum values of the features defining the design solution pro-

posed. A set of optimum values has been achieved when a cost has been minimized

or a profit has been maximized, while respecting the mathematical model, i.e., the

functional relations among all quantities at stake and the budgetary constraints

expressed in the form of equality or inequality relations. Once all design features

have been determined, and validated by means of simulation using discipline-specific

tools—computational fluid dynamics code; finite element code; electromagnetic de-

sign code; code implementing Monte Carlo methods; etc.—an embodiment of the

design solution can be produced, probably as a virtual prototype. Such embodiment

is the output of the dashed box in Fig. 1.2.

The embodiment is then further developed to the last detail, in order to allow

for third parties, e.g., a machine-tool shop, to produce all the parts leading to the

physical prototype upon assembly. Finally, the physical prototype is subjected to

validation tests before it is certified and ready to go either into mass production

or to the client as an end user, thereby completing the design process. Current

trends dictate that the design contemplate not only delivery to the end user, but

also disposability of the designed object upon completion of its life cycle.

Engineering design problems have increasingly become model-based, in that their

complexity calls for a mathematical model describing not only the physical laws gov-

erning the operation of the product under design, but also corporative policies, gov-

ernment regulations (codes and standards) and legislation. The work of the design

engineer starts by producing a mathematical model that best reflects the relations

among all quantities involved, some which are constant values either provided by

the operating conditions—e.g., gravity acceleration g; number π; freezing temper-

ature at sea level, i.e., 273.2◦ K—or to be determined by the designer; some are

variable during the operation of the designed object—engine temperature, current

in a low-pass filter, speed of the electrode tip in arc-welding, etc. In model-based de-

sign, variables are usually grouped into state variables, output variables and control

variables. State variables are those governed by the dynamics of the system under

modelling, e.g., altitude and angle of attack in aircraft-piloting; output variables

are those that are available to the operator via instruments, e.g., altitude, as this

is available to the pilot as an altimeter display; control variables are those that the

operator can set at will either manually or automatically by means of a feedback

12

Figure 1.2: The role of optimization within the design process

control system, e.g., rate of climbing. Constant variables whose values are to be

determined optimally by the designer are usually called design variables, as these

attain different values within the optimization process, which more often than not

is iterative.

1.2 The Structure of Optimum Design Problems

In optimum design problems, the conditions under which the designed object will

operate are given by the client either explicitly or implicitly. The designer then

assumes that these bear ideal values that are representative, and do not change.

The fact of the matter is that the operation conditions entail values that are random

and hence, are known, if at all, only through their statistics, i.e., their probability

13

distributions. In this case, then, the designer can choose either the mean values of

the variables representing the operation conditions, or their extreme values, if safety

is the main design concern, as the nominal values of these variables.

The foregoing approach is classical, and will be followed here. An alternative

approach, due to Taguchi (1988), consists in admitting that the operation conditions

are not fixed, but varying in a random manner, beyond the control of the designer,

the purpose of the design task then being to select the design variables in such a way

that, under arbitrary variations of the operation conditions within a certain range,

the performance of the designed object exhibits “small” variations. This approach

is known as robust design. For an introductory course, we will not dwell on this

approach.

In an optimum design problem the designer formulates an objective function, to

be either minimized, when this function represents a cost, or maximized, when the

same represents a profit. As a matter of fact, profit-maximization can be readily

turned into cost-minimization if the profit is redefined as a cost by, for example,

reversing its sign or taking its reciprocal. Moreover, a large class of optimum design

problems lends itself to a least-square formulation, which inherently aims at mini-

mizing a sum of squares. For these reasons, and unless otherwise stated, we will aim

in this course at the minimization of an objective function f(x). In defining objec-

tive functions, it will prove convenient to use dimensionless quantities. As a matter

of fact, mathematical models based on dimensionless quantities have the merit that

their results can be more generally applicable, as every time the operation conditions

or design specifications change numerically, a simple scaling will yield the optimum

values applicable to the specific conditions or specifications.

We illustrate the structure of an optimum design problem with the aid of a Case

Study in the subsection below:

1.2.1 Case Study: The Optimum Design of the Links of a

Robotic Wrist

See:

Bidaud, F., Teng, C.-P. and Angeles, J., 2001, “Structural Optimization of a Spher-

ical Parallel Manipulator Using a Two-Level Approach,” Proc. ASME 2001 Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference, Pittsburgh, Pennsylvania, September 9–12.

14

Chapter 2

Single-Variable Optimization

2.1 Methods of Single-Variable Optimization

While real-life design problems involve multiple variables, some techniques developed

to find the optimum of these problems rely on a search along each of the variables at a

time. Moreover, the designer in many instances is interested in the role played by one

single variable, in which case the search for the optimum value can be conducted with

techniques specific to this case. For this reason, it is convenient to study techniques

applicable to the solution of single-variable optimization problems, which is the

subject of this chapter. We start by introducing a definition:

A function f(x) is unimodal in the interval [0, 1] if it attains one single

extremum—a minimum or a maximum—within this interval.

Remarks:

• We will deal only with function minimization in explaining the methods of

interest—function maximization can be handled by paraphrasing the corre-

sponding method accordingly.

• A unimodal function need neither be continuous nor smooth.

• Defining the interval of interest as [0, 1] is not restrictive. If this interval is

[a, b], where a and b are any real numbers, then a simple linear transformation

of the variable in question can lead to the above interval.

We introduce, moreover, the basic assumption: Function f(x), to be mini-

mized, is unimodal in the interval [0, 1], which means that f(x) attains exactly one

minimum (or one maximum) in the given interval.

15

As a consequence of the above definition, we have

Lemma 2.1.1 Let f(x) be unimodal in [0, 1] and attain a minimum within this

interval. Then, its maximum lies necessarily at the extremes of the interval, i.e.,

either at x = 0 or at x = 1.

The proof of this lemma is left to the reader as an exercise. Moreover, note that:

• The objective function can be evaluated only at a discrete, finite set of sam-

ple values of its argument x, { xi }n1 . Each function evaluation, f(xi) ≡ fi,

is termed an experiment. The name is quite appropriate because in some in-

stances it may happen that the evaluation of function f(x) can be done only

by physical experiments, e.g., when this function is the steady-state tempera-

ture of an engine, that is known to change as the proportion of a mixture of

fuel and air varies;

• We assume that the interval in which the minimum lies is known, and termed

the interval of uncertainty (i.o.u) of the problem at hand. Upon a suitable

transformation of the design variable, this interval is mapped into the normal

interval [0, 1], which is of unit length. The length of the interval of uncer-

tainty when the series of experiments is initiated is thus 1, the purpose of the

minimization exercise being to bring down the interval of uncertainty to an

acceptable low, which is dictated mostly by the cost of each experiment;

• If the cost of each experiment is not an issue, then the function can be evaluated

in a rich sample of argument values within the interval [0, 1] and plot the

corresponding values; the optimum can then be located by inspection, possibly

at the click of a mouse. This is termed an exhaustive search;

• If the foregoing cost is high, then proceed iteratively: At each iteration, the

interval of uncertainty is cut by a certain factor using a suitable strategy, i.e.,

a search method;

• Any strategy exploits the unimodality assumption. We can cite four strategies

that are the most commonly employed:

- Dichotomous search

- Interval-halving

- Fibonacci numbers

- Golden search.

16

2.2 Dichotomous Search

Figure 2.1: Dichotomous search

The qualifier “dichotomous” derives from

Greek, meaning to cut into two parts. The

strategy to follow thus consists in splitting the

interval into two subintervals, not necessar-

ily of the same length, with one not contain-

ing the minimum, and is hence, rejected; the

other subinterval then is bound to contain the

minimum sought.

The search strategy of this method is de-

scribed below:

• Assume that, at iteration i, the current

search interval is Ii = [l, r], of length Li = r − l < 1 (Fig.2.1);

• locate two points of abscissae x1 and x2

around the centre of the interval: For a

“small” δ > 0, prescribed by the user,

x1 ≡
r + l − δ

2
, x2 ≡

r + l + δ

2
; fi ≡ f(xi); f1 6= f2

Note: If f1 = f2, then we have two

cases: (i) f(x) is symmetric about x =

(r+l)/2, in which case the minimum lies

at x = 1/2, and we are done; and (ii)

f(x) is not symmetric about x = 1/2,

in which case we just change δ.

• if f2 > f1, then eliminate the interval

segment to the right of x2, the new search

interval being [l, x2]. If, on the con-

trary, f1 > f2, then eliminate the inter-

val segment to the left of x1, the new

search interval being [x1, r].

Notice that the new search interval Ii+1 is of length Li+1 = (Li + δ)/2, i.e., slightly

over one half the length of the previous one.

17

Now we determine the length L2k of interval I2k after 2k experiments—this

number is always even! To this end, we notice how the length of the i.o.u. evolves

as the search progresses:

L2 =
1

2
+
δ

2

L4 =
L2

2
+
δ

2
=

1

4
+
δ

4
+
δ

2

=
1

4
+

3δ

4

L6 =
L4

2
+
δ

2
=

1

8
+

3δ

8
+
δ

2

=
1

8
+

7δ

8
...

The length of the interval after 2k experiments is thus

L2k =
1

2k
+

(

1− 1

2k

)

δ (2.1)

Usually, L2k is prescribed, but k is not. Computing k from L2k is, nevertheless,

straightforward, as described below: Solving eq.(2.1) for 2k yields

2k =
1− δ
L2k − δ

(2.2)

and hence,

k =

⌈
ln[(1− δ)/(L2k − δ)]

ln(2)

⌉

(2.3)

where ⌈(·)⌉ is the ceiling function, defined as the smallest integer that is greater

than the real argument (·). Note: 1 > δ, 2k > 0 ⇒ L2k > δ.

2.2.1 Example 4: Finding the Maximum Dexterity Posture

of a Two-Phalanx Robotic Finger

We study here the optimum dimensioning of the two-phalanx robotic finger, as

depicted in Fig. 2.2. The geometry of the finger is thus completely specified by the

angles that the phalanx axes make with given lines. In the figure, only the angle θ

made by the distal phalanx with the first one is indicated because only this angle is

relevant to the problem under study.

18

Figure 2.2: Two-phalanx robotic finger

In optimizing the performance of

robotic hands, one is interested in maxi-

mizing their dexterity, a performance index

that comes into play as explained below.

In robot control, a velocity v of the op-

eration point of the end link is to be produced by a suitable set of joint rates, grouped

in vector q̇, the relation between the two vectors being linear: Jq̇ = v. Hence, the

Jacobian matrix J(q) must be inverted in order to compute the joint-rate vector,

for a given posture of the manipulator, as specified by vector q, and a given desired

velocity v. Dexterity measures, essentially, how invertible the Jacobian matrix is. If

we assume that a1 = l and a2 = l
√

2/2, which bear the optimum proportion found

by Salisbury and Craig (1982), then dexterity can be quantified by means of the

product JTJ = ℓ2K, where K is given by

K ≡
[

3 + 2
√

2 cos θ 1 +
√

2 cos θ

1 +
√

2 cos θ 1

]

It should be apparent that, when θ = 0 or π, matrix K, that we shall term here

the dexterity matrix, is singular, and hence, not invertible, as is J. Between these

two values, 0 and π, there is one specific value θo optimum, at which the dexterity

matrix is maximally invertible. To find θo, we start by defining the dexterity as the

ratio of the smallest (λm) to the largest (λM) eigenvalues of K. In this regard, note

that K is symmetric, and hence, its eigenvalues are real. Moreover, one can readily

verify that K is positive-definite, and becomes singular only for the two values of θ

given above. We thus have the dexterity function D(θ) defined below:

D(θ) =
λm

λM
≥ 0, 0 ≤ D(θ) ≤ 1

Now, maximizing D(θ) is equivalent to minimizing f(θ) ≡ 1−D(θ), which will

be defined as the loss of dexterity, and becomes, then, the objective function of the

problem at hand. Given the form of the objective function, then, each experiment

involves four steps:

1. For a given value of θ, compute the two eigenvalues of K, a task that can be

readily implemented using an eigenvalue routine, a quadratic-equation solver,

or even the Mohr circle (Norton, 2000).

2. Order the two eigenvalues in ascending order: λm, λM .

19

3. Compute D(θ) as

D(θ) =
λm

λM
≥ 0

4. Compute f(θ) as

f(θ) = 1−D(θ) 0 ≤ f(θ) ≤ 1

An expert roboticist claims that the dexterity is maximum—the finger is at the

peak of its positioning accuracy—when θ lies “somewhere between 90◦ and 150◦.”

Find an estimate of θopt within an interval of uncertainty of 5% of the given interval

length of 60◦.

Solution: We implemented the dichotomous search in the Maple worksheet described

below, which is posted in the course Web page.

> restart: with(linalg):

We start by producing a procedure K that will allow us to evaluate matrix K for a

given value θ:

> K:=proc(theta)

matrix([[3+2*sqrt(2)*cos(th),1+sqrt(2)*cos(th)],

[1+sqrt(2)*cos(th), 1]])

end;

K := proc(θ)

matrix([[3 + 2 ∗ sqrt(2) ∗ cos(th), 1 + sqrt(2) ∗ cos(th)], [1 + sqrt(2) ∗ cos(th), 1]])

end proc

> argu:= 3*Pi/4; K(argu);

Testing procedure, which should yield the 2 by 2 identity matrix for

this value of argument theta:

argu :=
3

4
π

[

1 0

0 1

]

Apparently, procedure is OK.

20

We introduce now a transformation that maps θ, given in degrees, into the normal

interval [0, 1]. Let the associated “normal” variable be x, to be produced by a

second procedure x. By the same token, we need a third procedure θ to return the

angle in radians, for a given value of x. Thus,

> x:=proc(th)(th-Pi/2)/(5*Pi/6-Pi/2)

end;

x := proc(th) 3 ∗ (th− 1/2 ∗ π)/π end proc
> thet:=proc(x)(Pi/3)*x+Pi/2

end;

thet := proc(x) 1/3 ∗ π ∗ x+ 1/2 ∗ π end proc

Now we determine the number 2k of experiments needed to attain the prescribed

length of the i.o.u. We recall that the length L2k of this interval is given by

L2k =
1

2k
+ δ

(

1− 1

2k

)

(2.4)

> L[2*k]:=(1/2^k)+delta*(1-(1/2^k));

L2 k :=
1

2k
+ δ (1− 1

2k
)

Let 2k = N . Then,

> N:=solve(L_N= (1/N) + delta*(1 - 1/N), N);

N :=
−1 + δ

−L N + δ
We want the length of the final i.o.u. to be 5% of original length, for a value of

δ of 0.01:

> delta:=0.01; L_N:= 0.05;

δ := 0.01

L N := 0.05

> N:=subs((delta=0.01, L_N=0.05), N);

N := 24.75000000

21

Hence,

> k:=ceil(solve(2^k=N,k));

k := 5

where the Maple ceil(·) command has been used.

We thus need 2k = 10 experiments. Hence, the two points x 1 and x 2 within I0 are

defined as

> x[1]:= (1-delta)/2; x[2]:=(1+delta)/2;

x1 := .4950000000

x2 := .5050000000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1]));

K2:=evalf(K(theta[2]));

θ1 := 2.089159115

θ2 := 2.099631090

K1 :=

[

1.598631263 .2993156313

.2993156313 1.

]

K2 :=

[

1.572980385 .2864901922

.2864901922 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .8760194061, 1.722611857

µ := .8813318770, 1.691648508

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.966408330

f2 := 1.919422810

f1 > f2 ⇒ delete subinterval [0, x1]. Let l and r denote, respectively, the abscissae

of the left and right ends of the new subinterval:

> l:=x[1]; r:=1; L:=r-l;

l := .4950000000

r := 1

L := .5050000000

L is length of i.o.u. at the end of the first two experiments. Carry on:

22

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := 0.7425000000

x2 := 0.7525000000
> theta[1]:=evalf(thet(x1));

theta[2]:=evalf(thet(x2));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

θ1 := 2.348340509

θ2 := 2.358812484

K1 :=

[

1.015769486 .0078847430

.0078847430 1.

]

K2 :=

[

.994770873 −.002614564

−.002614564 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .9967340325, 1.019035453

µ := .9936878850, 1.001082988

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.022374495

f2 := 1.007442078

f1 > f2 ⇒ delete subinterval [l, x 1]. Redefine l and r :

> l:=x[1]; L:=r-l; #r remains unchanged

l := .7425000000

L := .2575000000

L is length of i.o.u. at the end of 3rd & 4th experiments. Carry on:

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := .8662500000

x2 := .8762500000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

23

θ1 := 2.477931206

θ2 := 2.488403181

K1 :=

[

.771929030 −.114035485

−.114035485 1.

]

K2 :=

[

.753805937 −.123097032

−.123097032 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .7246939855, 1.047235044

µ := .7028174767, 1.050988460

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.445072079

f2 := 1.495393178

The ensuing computations follow the same pattern. In the interest of brevity, we

record here only the last two experiments:

At the end of 7th and 8th experiments, we have

r := .8143750000

L := .0718750000

> x[1]:=(l+r-delta)/2; x[2]:=(l+r+delta)/2;

x1 := 0.7734375000

x2 := 0.7834375000
> theta[1]:=evalf(thet(x[1]));

theta[2]:=evalf(thet(x[2]));

K1:=evalf(K(theta[1])); K2:=evalf(K(theta[2]));

θ1 := 2.380738183

θ2 := 2.391210159

K1 :=

[

.951519906 −.024240047

−.024240047 1.

]

K2 :=

[

.931208945 −.034395528

−.034395528 1.

]

> lambda:=eigenvals(K1); mu:=eigenvals(K2);

λ := .9414793498, 1.010040556

µ := .9169618507, 1.014247094

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

24

f1 := 1.072822847

f2 := 1.106095192

f2 > f1 ⇒ delete subinterval [x2,r]. Redefine l and r :

> r:=x[2]; L:=r-l; #l remains unchanged

r := .7834375000

L := .0409375000

L is length of i.o.u. at the end of 9th & 10th experiments. Since L is smaller than

0.05, we’re done. The best estimate of θopt is obviously the mid point of current

i.o.u., i.e.,

> x[opt]:=(l+r)/2; theta:=evalf(thet(x[opt]));

xopt := .7629687500

θ := 2.369775334

> K[opt]:=evalf(K(theta));

Kopt :=

[

.973023585 −.013488208

−.013488208 1.

]

> lambda:=eigenvals(K[opt]);

λ := .9674365862, 1.005586999

> f[o]:=lambda[2]/lambda[1];

fo := 1.039434536

> theta[opt]:=evalf(th*180/Pi);

θopt := 135.7781250

Note that optimum value of theta is 135◦, i.e., 3π/4 rad, which yields a value of

f =1.0.

2.3 Interval-Halving

To be included.

25

2.4 Fibonacci Numbers

Fibonacci numbers are named after the Italian mathematician Leonardo Pisano

(1175), son of Guglielmo Bonaccio, and hence, referred to as Filius Bonacci in Latin,

or Fibonacci for brevity (Livio, 2002). These numbers form a sequence, defined

recursively as

F0 = F1 = 1 (2.5a)

Fk = Fk−2 + Fk−1 (2.5b)

Remark: The sequence is monotonically increasing, for all numbers are positive

integers and the current one equals the sum of the two previous ones. From eq.(2.5b),

Fk − Fk−1 = Fk−2 (2.6)

Moreover, by virtue of the above remark,

Fk−1 > Fk−2 (2.7)

Upon addition of eq. (2.6) to inequality (2.7) sidewise, we obtain

Fk − Fk−1 + Fk−1 > 2Fk−2

i.e.,
Fk−2

Fk
<

1

2
(2.8)

Furthermore, from eq.(2.5b),

Fk−1

Fk
= 1− Fk−2

Fk
(2.9)

Now we outline the strategy to follow in this method:

• Let I0 ≡ [0, 1] be the initial interval of uncertainty, of length 1, where the

minimum is known to lie.

• Prescribe the number n of experiments to be conducted

• Define a length L∗
2 as1

L∗
2 ≡

Fn−2

Fn
L0 ≡

Fn−2

Fn

(

<
1

2

)

(2.10)

where L0 is the length of the original interval, which has been defined as unity.

1Length L∗

1
is skipped because we want to make the subscript of L∗ match that of the corre-

sponding Fibonacci number; since F1 = F0, the first two Fibonacci numbers are undistinguishable,

and we can arbitrary set L∗

1
= 1. L1 = L0 as well.

26

Figure 2.3: Shrinking of the i.o.u. when: (a) right subinterval is eliminated; (b) left

subinterval is eliminated

Figure 2.4: Subdivision of the new interval into three subintervals when: (a) right

subinterval is eliminated; (b) left subinterval is eliminated

• Let P1(x1) and P2(x2) be two points equidistant from the left and the right

ends of I0, respectively, by a distance L∗
2, i.e., with abscissae

x1 = 0 + L∗
2 =

Fn−2

Fn

<
1

2
(2.11a)

x2 = 1− L∗
2 = 1− Fn−2

Fn

>
1

2
> x1 (2.11b)

Note that

x2 = 1− Fn−2

Fn

=
Fn − Fn−2

Fn

=
Fn−1

Fn

(2.11c)

Use the unimodality assumption to eliminate the subinterval, left or right, where

the minimum cannot lie. Whether the subinterval eliminated is the right or the

left, the length L2 of the new, shorter interval I2—again, such as we do not define

27

L∗
1, we neither define I1—is given by

L2 = 1− L∗
2 = 1− Fn−2

Fn

=
Fn − Fn−2

Fn

=
Fn−1

Fn

< 1 (2.12)

as depicted in Fig.2.3.

Once the first iteration is completed, and as illustrated in Fig.2.3,

• Let l and r > l denote, respectively, the abscissae of the left and the right ends

of the current, smaller interval of uncertainty I2. The abscissa of one of the

ends of I2, left or right, is either x1 or x2;

• if x1 is the abscissa of one of the ends of I2, case of Fig. 2.3(b), then x2 ∈ I2;
else, as in Fig. 2.3(a), x1 ∈ I2. Let xI be the abscissa of point PI , the interior

point of I2, either P1 or P2;

• note that PI lies a distance L∗
3 from one of the ends of I2. Now, define x3 ∈ I2,

so that its associated point P3 also lies a distance L∗
3 from the other end, as

depicted in Fig. 2.4;

• the process is continued until the interval In, of length Ln, is obtained. Ln is

the length of the final interval of uncertainty.

The abscissa xj computed at the jth experiment is determined by length L∗
j , so

that its associated point Pj , as well as the interior point PI of interval Ij−1 are a

distance L∗
j from the ends of Ij , with L∗

j given by2

L∗
j =

Fn−j

Fn−(j−2)

Lj−1 (2.13a)

while the length Lj of the jth interval of uncertainty is3

Lj =
Fn−(j−1)

Fn
(2.13b)

Hence, for j = n,

Ln =
F1

Fn
(2.14)

which allows us to find n for a prescribed length Ln. Notice that, by virtue of

relations (2.8) and (2.10),

For n ≥ 2, L∗
n <

1

2
(2.15)

2see eq.(2.10), which is valid for j = 2; see also footnote 1.
3see eq.(2.12), which is valid for j = 2

28

The Location of the Final Experiment

Let In−1 = [l, r], of length Ln−1, be the one-before-the-last interval of uncertainty.

According with eqs.(2.11a & b), the abscissae of the last two experiments, xn−1 and

xn, are given as

xn−1 = l + L∗
n (2.16a)

xn = r − L∗
n = l + Ln−1 − L∗

n (2.16b)

where L∗
n is given by eq.(2.13a), with j = n:

L∗
n =

F0

F2

Ln−1 ≡
1

2
Ln−1 (2.17)

Upon substitution of L∗
n, as given by eq.(2.17), into eq.(2.16b), it is apparent that

xn = l +
1

2
Ln−1 = xn−1

xn−1 and xn thus coinciding, and hence, the last experiment fails to produce two

distinct points in In−1. To cope with this outcome, we have to define points Pn−1

and Pn, of abscissae x1 and x2, in an alternative manner. For example, we can define

them as in the strategy employed by the dichotomous search, with a δ small enough

with respect to L∗
n.

Fibonacci numbers are tabulated in many manuals, with short tables available in

textbooks (Rao, 1996). Also note that scientific software is provided with Fibonacci

numbers. For example, Maple includes the command

with(combinat, Fibonacci):

that allows the user to invoke the Fibonacci number F(i) by typing

fibonacci(i)

However, note that not all Fibonacci sequences are identical. For example,

the first two Fibonacci numbers in Maple are defined as

f(0) = 0 and f(1) = 1

2.4.1 Example 5: Finding the Maximum Dexterity Posture

of a Two-Phalanx Robotic Finger

We implement the Fibonacci search in a Maple worksheet:

29

> restart:
> with(linalg): with(combinat, fibonacci):

We retake the example problem consisting in the finding of the most dexterous

posture of a two-phalanx robotic finger, using exactly 10 experiments. However,

because of the way Maple defines the Fibonacci sequence, we must use F (n + 1)

when we would normally use F (n). Moreover, we shall also use K, θ and x exactly

as described in Subsection 2.2.1.

We want to have

L∗
2 =

F10−2

F10
, (2.18)

but must shift the subscript by 1:

> Lstar[2]:=evalf(fibonacci(9)/fibonacci(11));

Lstar2 := .3820224719
> l:=0; r:=1; L[0]:=r - l;
> # Abscissae of extremes of left- & right-hand

> sides of the initial (normal) interval, and length of this interval

l := 0

r := 1

L0 := 1

> x[1]:= l + L^star[2]; x[2]:= r - Lstar[2];

x1 := .3820224719

x2 := .6179775281
> theta[1]:=evalf(thet(x1));

> theta[2]:=evalf(thet(x2));

> K1:=K(theta[1]); K2:=K(theta[2]);

θ1 := 1.970849324

θ2 := 2.217940881

K1 :=

[

3− .7789343108
√

2 1− .3894671554
√

2

1− .3894671554
√

2 1

]

K2 :=

[

3− 1.205821535
√

2 1− .6029107675
√

2

1− .6029107675
√

2 1

]

> lambda:=<eigenvals(K1)>;
> mu:=<eigenvals(K2)>;

30

λ :=

[

.8139310151

2.084489519

]

µ :=

[

.9389633883

1.355747444

]

> f[1]:=lambda[2]/lambda[1];
> f[2]:=mu[2]/mu[1];

f1 := 2.561014976

f2 := 1.443876791

f1 > f2 ⇒ drop left end:

> l:=x[1]; L[2]:=L[0] - Lstar[2];

> Lstar[3]:=(fibonacci(8)/fibonacci(10))*L[2];

l := .3820224719

L2 := .6179775281

Lstar 3 := .2359550562

> x[1]:= l + Lstar[3]; x[2]:= r - Lstar[3];

x1 := .6179775281

x2 := .7640449438
> theta[1]:=evalf(thet(x[1]));

> K1:=K(theta[1]);
> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ1 := 2.217940881

K1 :=

[

3− 1.205821535
√

2 1− .6029107675
√

2

1− .6029107675
√

2 1

]

θ2 := 2.370902321

K2 :=

[

3− 1.434859867
√

2 1− .7174299337
√

2

1− .7174299337
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9389633883

1.355747444

]

µ :=

[

.9647545542

1.006047163

]

31

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.443876791

f2 := 1.042801155

f1 > f2 ⇒ drop left end:

> l:= x[1]; L[3]:= L[2] - Lstar[3];

> Lstar[4]:= (fibonacci(7)/fibonacci(9))*L[3];

l := .6179775281

L3 := .3820224719

Lstar 4 := .1460674157

> x[1]:= l + Lstar[4]; x[2]:= r - Lstar[4];

x1 := .7640449438

x2 := .8539325843
> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ[1] := 2.370902321

K1 :=

[

3− 1.434859867
√

2 1− .7174299337
√

2

1− .7174299337
√

2 1

]

θ2 := 2.465032438

K2 :=

[

3− 1.559462054
√

2 1− .7797310268
√

2

1− .7797310268
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9647545542

1.006047163

]

µ :=

[

.7520453159

1.042542298

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.042801155

f2 := 1.386275901

32

In the interest of brevity, we skip the intermediate results, and display only the last

two experiments:

> x[1]:= l + Lstar[8]; x[2]:= r - Lstar[8];

x1 := .7303370787

x2 := .7415730337
> theta[1]:=evalf(thet(x1)); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x2)); K2:=K(theta[2]);

θ1 := 2.335603527

K1 :=

[

3− 1.384795807
√

2 1− .6923979033
√

2

1− .6923979033
√

2 1

]

θ2 := 2.347369792

K2 :=

[

3− 1.401678651
√

2 1− .7008393253
√

2

1− .7008393253
√

2 1

]

> lambda:=<eigenvals(K1)>;
> mu:=<eigenvals(K2)>;

λ :=

[

.9913837386

1.050219250

]

µ :=

[

.9963286091

1.021398433

]

> f[1]:=lambda[2]/lambda[1]; f[2]:=mu[2]/mu[1];

f1 := 1.059346859

f2 := 1.025162204

> l:= x[1]; L[8]:= L[7] - Lstar[8];

> Lstar[9]:= (fibonacci(2)/fibonacci(4))*L[8];

l := .7303370787

L8 := .03370786516

Lstar 9 := .01123595505

Note that the length of the i.o.u. at the end of the 8th experiment is 3.4% of original

length, i.e., smaller than at the end of 10 experiments with the dichotomous search!

> x[1]:= l + Lstar[9]; x[2]:= r - Lstar[9];

x1 := .7415730338

x2 := .7528089888

33

> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x[2]));
> K2:=K(theta[2]);

θ1 := 2.347369792

K1 :=

[

3− 1.401678651
√

2 1− .7008393253
√

2

1− .7008393253
√

2 1

]

θ2 := 2.359136057

K2 :=

[

3− 1.418367442
√

2 1− .7091837208
√

2

1− .7091837208
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9963286091

1.021398433

]

µ :=

[

.9929088850

1.001216643

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.025162204

f2 := 1.008367090

f1 > f2 ⇒ drop left end:

> l:= x[1]; L[9]:= L[8] - Lstar[9];

> Lstar[10]:= (fibonacci(1)/fibonacci(3))*L[9];

l := .7415730338

L9 := .02247191011

Lstar 10 := .01123595506

> x[1]:= l + Lstar[10]; x[2]:= r - Lstar[10];

x1 := .7528089889

x2 := .7528089887

As expected, x1 = x2. Let us estimate the optimum by dichotomous search over the

last i.o.u.: Let δ = Lstar10/10

> delta:= Lstar[10]/10;

34

δ := .001123595506
> x[1]:= (l + r - delta)/2;

> x[2]:= (l + r + delta)/2;

x1 := .7522471910

x2 := .7533707866

> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x[2])); K2:=K(theta[2]);

θ1 := 2.358547744

K1 :=

[

3− 1.417537647
√

2 1− .7087688235
√

2

1− .7087688235
√

2 1

]

θ2 := 2.359724370

K2 :=

[

3− 1.419196745
√

2 1− .7095983727
√

2

1− .7095983727
√

2 1

]

> lambda:=<eigenvals(K1)>;

> mu:=<eigenvals(K2)>;

λ :=

[

.9943254329

1.000973602

]

µ :=

[

.9914931757

1.001459540

]

> f[1]:=lambda[2]/lambda[1];

> f[2]:=mu[2]/mu[1];

f1 := 1.006686110

f2 := 1.010051874

f2 > f1 ⇒ delete [x2, r] and take as most likely estimate of the optimum the

midpoint of remaining interval [l, x1]:

> x[o]:=(l+x[1])/2; th_opt:=evalf(th(x[o]));

> K_opt:= K(th_opt);

xo := .7469101124

θopt := 2.352958768 −→ 134.8146◦

Kopt :=

[

3− 1.409630165
√

2 1− .7048150824
√

2

1− .7048150824
√

2 1

]

35

> lambda:=<eigenvals(Kopt)>;

λ :=

[

.9986575537

1.007824349

]

> f[opt]:=lambda[2]/lambda[1];

fopt := 1.009179118

2.5 Golden-Section Search

This method is similar to the method based on Fibonacci numbers, but its imple-

mentation is much simpler. The outcome is that its convergence is a bit slower than

that of the former. A major difference with the Fibonacci search is that the number

of elimination stages is not prescribed.

The basis of the golden-search method is the Fibonacci sequence. Indeed, the

golden-search strategy is derived from the Fibonacci search under the assumption

that n in the Fibonacci search is “large”; we denote a large n appropriately by N .

The length of the interval of uncertainty is shrunken at every iteration by the same

proportion, as opposed to the Fibonacci search.

In order to find the length Lk of the interval Ik at the kth iteration of the

golden search, we compute the corresponding lengths of the Fibonacci search for

n = N →∞, namely,

L2 = lim
N→∞

FN−1

FN
(2.19a)

L3 = lim
N→∞

FN−2

FN
= lim

N→∞

FN−2

FN−1

FN−1

FN
= lim

N→∞

(
FN−1

FN

)2

(2.19b)

In general,

Lk = lim
N→∞

(
FN−1

FN

)k−1

(2.19c)

Hence, all we need to implement this method is the above limit, which is computed

below:

Recall eq.(2.5b), for k = N :

FN = FN−1 + FN−2 (2.20a)

Therefore,
FN

FN−1
= 1 +

FN−2

FN−1
(2.20b)

36

Now we define the golden section or golden ratio φ as

φ ≡ lim
N→∞

FN

FN−1
(2.20c)

Upon taking limits, eq.(2.20b) can be rewritten as

φ = 1 +
1

φ

or

φ2 − φ− 1 = 0, φ > 0 (2.20d)

whence, with three decimals,

φ = 1.618 or φ = −0.618 (2.20e)

Obviously, we need only the positive root, and hence, Lk becomes

Lk =

(
1

φ

)k−1

= (0.618)k−1 (2.21)

Greeks in the classical period, around the fifth century B.C.E., coined the ex-

pression golden section to refer to a rectangle of divine proportions, whose base b

and height h observe the relation

b+ h

b
=
b

h
(2.22)

Figure 2.5: A rectangle with

sides obeying the divine pro-

portion

The foregoing equation readily leads to one on

the ratio b/h identical to eq.(2.20d), namely,
(
b

h

)2

− b

h
− 1 = 0

thereby showing that the positive solution to

eq.(2.22) is, indeed, φ, the golden section.

This relation is claimed to appear in the facade

of the Parthenon, although Livio (2002) disputed

brilliantly this claim and others along the same

lines. Nevertheless, the golden section is irrefutably

present in nature and in many artifacts4. Shown in Fig. 2.5 is a rectangle with sides

obeying the divine proportion.

To implement the search, we need the quantity L∗
2, which is defined below:

L∗
2 =

FN−2

FN
=
FN−2

FN−1

FN−1

FN
=

1

φ2
= 0.382 (2.23)

4For example, Microsoft Word uses the golden-section ratio to proportion its margins.

37

2.5.1 Example 6: Finding the Maximum Dexterity Posture

of a Two-Phalanx Robotic Finger

We implement below the golden-section search strategy by means of a Maple work-

sheet. We shall resort to the K, θ and x procedures introduced earlier.

Let us calculate φ:

> eq:=(x^2 - x - 1);

eq := x2 − x− 1

> r:=<solve(eq, x)>;

r :=







1

2
+

1

2

√
5

1

2
− 1

2

√
5







> phi:=evalf(r[1]);

φ := 1.618033989

> ihp :=1.0/phi; #we’ll also need the reciprocal of phi

ihp := .6180339887

> Lstar[2]:=ihp ^2;

Lstar 2 := .3819660112

Now let us find n from the problem specification: Ln = 0.05, which leads to

1

φn−1
= 0.05 (2.24)

> eq:= (n-1)*ln(ihp) - ln(0.05)=0;

eq := −.4812118251n+ 3.476944099 = 0

> n:=ceil(solve(eq, n));

n := 8
> l:=0; r:=1; #extremes of initial normal

> interval

l := 0

r := 1

> L[0]:= r - l; #length of initial interval

L0 := 1

> x[1]:=l+Lstar[2]; x[2]:=r-Lstar[2];

38

x1 := .3819660112

x2 := .6180339888
> theta[1]:=evalf(thet(x[1])); K1:=K(theta[1]);

> theta[2]:=evalf(thet(x2)); K2:=K(theta[2]);

> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;

θ1 := 1.970790199

K1 :=

[

3− .7788253964
√

2 1− .3894126982
√

2

1− .3894126982
√

2 1

]

θ2 := 2.218000007

K2 :=

[

3− 1.205915875
√

2 1− .6029579377
√

2

1− .6029579377
√

2 1

]

λ :=

[

.8138991148

2.084675447

]

µ :=

[

.9389910200

1.355586395

]

> f[1]:=lambda[2]/lambda[1];
> f[2]:=mu[2]/mu[1];

f1 := 2.561343794

f2 := 1.443662789

f1 > f2 ⇒ drop the left end:

> L[2]:=L[0] - Lstar[2]; Lstar[3]:= x[2] - x[1];
> # You should be able to prove that ihp ^3 = x_2 - x_1

L2 := .6180339888

Lstar 3 := .2360679776
> x3:= r - Lstar[3];
> # x[2] is now a distance Lstar_3 from new left end, x[1],

> to the left of x[3]

x3 := .7639320224
> theta[3]:=evalf(th(x[3])); K3:=K(theta[3]);

> lambda:=<eigenvals(K3)>;

θ3 := 2.370784070

K3 :=

[

3− 1.434695103
√

2 1− .7173475515
√

2

1− .7173475515
√

2 1

]

39

λ :=

[

.9650358237

1.005998904

]

> f[3]:=lambda[2]/lambda[1];f[2];

> #evaluate f[3] & recall f[2]

f3 := 1.042447212

f2 := 1.443662789

f2 > f3 ⇒ drop left end:

> L[3]:=L[2] - Lstar[3];

> Lstar[4]:= x3 - x2;

L3 := .3819660112

Lstar 4 := .1458980336

> x[4]:= r - Lstar[4];

x4 := .8541019664

> theta[4]:=evalf(thet(x[4])); K4:=K(th4);

> lambda:=<eigenvals(K4)>;

θ4 := 2.465209815

K4 :=

[

3− 1.559684146
√

2 1− .7798420728
√

2

1− .7798420728
√

2 1

]

λ :=

[

.7516661806

1.042607347

]

> f[4]:=lambda[2]/lambda[1];f[3];

> #evaluate f[4] & recall f[3]

f4 := 1.387061669

f3 := 1.042447212

Again, for brevity we introduce only the last two experiments. We have the interval

[x5, x6] and hence,

> L[6]:=L[5] - Lstar[6]; Lstar[7]:= x6 - x3;

L6 := .0901699440

Lstar 7 := .0344418544

> x[7]:= x[5] + Lstar[7];

x7 := .7426457872

40

> theta[7]:=evalf(thet(x[7]));

> K7:=K(theta[7]);lambda:=<eigenvals(K7)>;

θ7 := 2.348493177

K7 :=

[

3− 1.403280430
√

2 1− .7016402150
√

2

1− .7016402150
√

2 1

]

λ :=

[

.9967977596

1.018664025

]

> f[7]:=lambda[2]/lambda[1];f[3];

> #evaluate f[7] & recall f[3]:

f7 := 1.021936511

f3 := 1.042447212

f7 < f3 ⇒ drop right end and perform last experiment:

> L[7]:=L[6] - Lstar[7]; Lstar[8]:=x3-x7;

L7 := .0557280896

Lstar 8 := .0212862352

> x[8]:= x[5] + Lstar[8];

x8 := .7294901680
> theta[8]:=evalf(thet(x8)); K8:=K(theta[8]);

> lambda:=<eigenvals(K8)>;

θ8 := 2.334716645

K8 :=

[

3− 1.383515463
√

2 1− .6917577317
√

2

1− .6917577317
√

2 1

]

λ :=

[

.9910087350

1.052404934

]

> f[8]:=lambda[2]/lambda[1];f[7];

> #evaluate f[8] & recall f[7]:

f8 := 1.061953237

f7 := 1.021936511

f8 > f7 ⇒ delete left end and accept midpoint, of abscissa xo, as best estimate of

optimum:

> x[o]:= (x[8] + x[3])/2;

41

xo := .7467110952

Evaluate fo = f(xo):
> theta[o]:=evalf(thet(x[o]));

> Ko:=K(th[o]); lambda:=<eigenvals(Ko)>;

θo := 2.352750357

Ko :=

[

3− 1.409334444
√

2 1− .7046672222
√

2

1− .7046672222
√

2 1

]

λ :=

[

.9985709394

1.008329177

]

> L[8]:= x[3] - x[8];

> #Length of final i.o.u.

L8 := .0344418544

Notice that length of final i.o.u. is 3.4% the length of original i.o.u.

> f[opt]:=lambda[2]/lambda[1];

fopt := 1.009772203
> theta[opt]:= evalf(thet[o]*180/Pi);

> # theta_optimum in degrees

θopt := 134.8026657

42

Chapter 3

Numerical Equation Solving

3.1 Introduction

Multivariable optimization frequently calls for the solution of systems of equations

that can be linear, nonlinear, or a combination thereof. If linear, then a solution

can be found numerically by means of a direct method1, as opposed to iterative

methods. This is a major difference, because direct methods involve a fixed number

of operations; on the contrary, iterative methods involve a fixed number of operations

per iteration, but the number of iterations the method will take until convergence

is reached cannot be predicted. Furthermore, if the nonlinear equations of a system

are algebraic, i.e., multivariate polynomials, then the system can be reduced, at least

in principle, to a single univariate polynomial, if of a degree higher than that of any

of the individual equations.

When the objective function and the constraints are multivariate polynomials

in the design variables, the optimization problem leads to a system of multivariate

polynomials, if with extra variables, namely, the Lagrange multipliers, to be intro-

duced in Ch. 5. Under these conditions, it is possible to use elimination methods,

as implemented in computer-algebra code, to eliminate all but one of the design

variables, thereby ending up with a single univariate polynomial. Having reduced

the optimization problem to polynomial-root finding is advantageous, because the

roots of the polynomial provide all stationary points—as defined in Ch. 2 and Ch. 4,

these are points where the objective function ceases to change locally—and, hence,

1Some linear systems of a large number of unknowns and weakly coupled equations, frequently

arising in some contexts, like structural mechanics, can be solved to a great advantage using an

iterative method like Gauss-Seidel’s.

43

all local minima. The global minimum can then be found by inspection.

As an alternative to univariate-polynomial reduction, the optimization problem

at hand can be reduced to two (or more) bivariate equations, polynomial or trigono-

metric, whose plots appear as contours in the plane of those two variables. All

solutions can then be obtained visually, by contour-intersection.

Prior to the discussion of equation-solving, we revisit the fundamental concepts

of linear algebra that will be needed in the sequel. Then, we recall the basic problem

of solving a system of n linear equations in n unknowns, what is called a determined

system. The issue of roundoff-error amplification is given due attention, which takes

us to the concept of condition number.

As a natural extension of the above problem, we undertake the problem of linear

least squares. That is, we now study the solution of a system of q linear equations in n

unknowns, when q > n, what is called an overdetermined system of linear equations.

In this case, in general, it is not possible to find a single vector x that verifies the

redundant and, most likely inconsistent, set of equations. Hence, we aim at finding

the best fit in the least-square sense, i.e., the vector x that approximates the whole

set of q equations with the minimum Euclidean norm. We derive a closed-form

expression, i.e., a formula, for the best fit x directly from the normality conditions

(NC) of the problem at hand. This derivation readily leads to the left Moore-Penrose

generalized inverse (LMPGI) of the coefficient matrix, which is rectangular, and for

which an inverse proper cannot be defined. It is shown that computing the best fit

directly from the NC is prone to ill-conditioning, a phenomenon characterized by a

“large” roundoff-error amplification. Hence, the reader is strongly advised against

computing the best fit with the said formula. Instead, orthogonalization algorithms

are to be used. The difference between a formula, like that giving the best fit in

terms of the LMPGI, and an algorithm is stressed here: The LMPGI is seldom

needed as such, in the same way that the inverse of a nonsingular (square) matrix

is seldom needed. Therefore, the computation of such a generalized inverse is to be

avoided.

3.2 Background Facts and Definitions

We begin by recalling the concept of vector and matrix norms:

A norm is to an array of numbers, be it a column vector, a row vector, or a matrix,

what the absolute value is to real numbers and the module is to complex numbers.

44

Vector norms can be defined in various ways:

The Euclidean norm: The best known. For a n-dimensional vector a with

components ai, for i = 1, . . . , n:

‖a‖E ≡
√

a2
1 + · · ·+ a2

n (3.1)

Computing this norm thus requires n multiplications, n additions, and one

square root. Not very “cheap” to compute!

The Chebyshev norm, a.k.a. the maximum norm, or the infinity norm:

‖a‖∞ ≡ max
i
{|ai|}n1 (3.2)

Notice that this norm requires no floating-point operations (flops): quite eco-

nomical.

The p-norm:

‖a‖p ≡
(

n∑

j=1

|ai|p
)1/p

(3.3)

This is the most general case. For p = 2, the p-norm becomes the Euclidean

norm; for p→∞, the p-norm becomes the Chebyshev norm.

Likewise, matrix norms can be defined in various ways:

• The Euclidean norm, a.k.a. the 2-norm: the square root of the largest (non-

negative) eigenvalue of the positive-semidefinite product of the matrix by its

transpose, regardless of the ordering of the factors. For example, for the n×n
matrix A,

‖A‖E ≡ max
i
{
√

λi} (3.4)

where { λi }n1 is the set of non-negative eigenvalues of AAT , or of ATA for that

matter. This norm is also called the spectral norm. Notice that λi is identical

to the square of the module of the ith eigenvalue of A itself.

• The Frobenius norm: the square root of the sum of the squares of the entries

of the matrix. For the same matrix A,

‖A‖F ≡

√
√
√
√

n∑

j=1

n∑

i=1

a2
ij ≡

√

tr(AAT) (3.5)

45

• The Chebyshev norm or infinity norm: the maximum absolute value of the

entries of the matrix. For the above matrix A,

‖A‖∞ ≡ max
i,j
{|aij |} (3.6)

• The p-norm:

‖A‖p ≡
(

n∑

j=1

n∑

i=1

|aij |p
)1/p

(3.7)

For p = 2, the p-norm becomes the Frobenius norm; for p → ∞, the p-norm

becomes, such as in the vector case, the Chebyshev norm.

Remarks:

• The trace of A, tr(A), is defined as the sum of its diagonal entries:

tr(A) ≡∑n
i=1 aii.

• The counterpart of the vector Euclidean norm is not the Euclidean matrix

norm, but rather the Frobenius norm.

• The counterpart of the vector Chebyshev norm is the matrix Chebyshev norm.

Furthermore,

Definition 3.2.1 A n×n matrix A is symmetric if it equals its transpose: A = AT

Definition 3.2.2 A n × n matrix A is skew-symmetric if it equals the negative of

its transpose: A = −AT

Fact 3.2.1 (The Matrix Cartesian Decomposition) Every n×nmatrix A can

be decomposed into the sum of a symmetric and a skew-symmetric components:

A = As + Ass (3.8a)

As =
1

2
(A + AT) (3.8b)

Ass =
1

2
(A−AT) (3.8c)

Equation (3.8a) is termed the Cartesian decomposition of A, because of its resem-

blance with the Cartesian representation of a complex number Z as x + jy, with

x, y ∈ IRand j =
√
−1. Notice that the eigenvalues of the symmetric component

As are all real, but those of Ass are imaginary. Also notice that the Cartesian

decomposition is unique.

46

Definition 3.2.3 A quadratic form q of a n-dimensional vector x is associated with

a n× n matrix A:

q ≡ xTAx (3.9)

Fact 3.2.2 The quadratic form associated with a skew-symmetric matrix vanishes

identically. That is, if A = −AT , then, for any n-dimensional vector x,

xTAx = 0 (3.10)

Proof: Note that, since q ≡ xTAx is a scalar, q = qT , and hence,

(xTAx)T = xTAx

Expanding the left-hand side,

xTATx = xTAx

However, by assumption, AT = −A, and hence,

−xTAx = xTAx

whence the proof follows immediately.

Definition 3.2.4 A n × n matrix A is positive-definite (positive-semidefinite) if it

is symmetric and, for every n-dimensional vector x, the quadratic form xTAx is

greater than (or equal to) zero.

Characterization of positive-definiteness (semidefiniteness): A n× n (sym-

metric) matrix A is positive-definite (positive-semidefinite) if and only if its eigen-

values are all positive (nonnegative).

Remarks:

• Negative-definiteness and negative-semidefiniteness are defined and character-

ized likewise;

• If a matrix is neither positive- nor negative-definite, or semidefinite, then it is

said to be sign-indefinite.

47

3.3 Background on Linear Transformations

The general form of a linear transformation mapping a vector space U of dimension

n into a m-dimensional vector space V is

v = Lu (3.11)

where u and v are n- and m-dimensional vectors, respectively, with u ∈ U and

v ∈ V. Apparently, L is a m× n matrix.

We distinguish two vector subspaces associated with L, namely,

The range of L, denoted by R(L): the set of vectors v that are images of

u under transformation (3.11). Notice that, if the n columns of L are not

linearly independent, then R(L) is not all of V, but only a proper subspace of

it, of dimension m′ < n, i.e., R(L) ⊂ V. The dimension of R(L), known as

the rank of L, is denoted by ρ(L).

The nullspace or kernel of L, denoted by N (L): the set of all vectors u of U
that are mapped by L into 0m, the zero of V. The dimension of N is termed

the nullity of L, and is denoted by ν(L). Obviously, ν < n, with ν = n

occurring only when L = Omn, Omn denoting the m× n zero matrix.

A fundamental result of linear algebra follows:

ρ(L) + ν(L) = n (3.12)

The most frequent linear transformations used in optimum design are studied in

the balance of this section. They all pertain to square matrices.

3.3.1 Rotations

A rotation Q is an orthogonal transformation of U into itself, with a constraint on its

determinant, as we shall outline presently. Orthogonality requires that the inverse

of Q be its transpose, i.e.,

QQT = QTQ = 1 (3.13)

where 1 denotes the n× n identity matrix. Hence, taking the determinant of both

sides of the above equation,

det(QQT) = det(QT Q) = det(Q)T det(Q) = [det(Q)]2 = 1

48

whence

det(Q) = ±1

A proper orthogonal matrix Q is one whose determinant is positive, and hence,

det(Q) = +1 (3.14)

Proper orthogonal transformations of U into itself represent rotations about the

origin of U .

The best-known rotations are those in two and three dimensions. Thus, for two

dimensions, the 2 × 2 matrix Q rotating vectors through an angle φ ccw takes the

form

Q =

[
cosφ − sinφ

sinφ cos φ

]

(3.15a)

which can be expressed alternatively as

Q = (cosφ)12 + (sin φ)E2 (3.15b)

with 12 defined as the 2 × 2 identity matrix and E2 as a skew-symmetric matrix,

namely,

E2 ≡
[

0 −1

1 0

]

(3.15c)

In three dimensions, the rotation matrix takes the form

Q = eeT + cosφ(13 − eeT) + sinφE3 (3.16a)

where e is the unit vector indicating the direction of the axis about which the

rotation takes place, 13 is the 3 × 3 identity matrix, and E3 is the cross-product

matrix (CPM) of vector e, expressed as

E3 ≡ CPM(e) (3.16b)

The Cross-Product Matrix

We will start by defining the partial derivative of a vector with respect to another

vector. This is a matrix, as described below: In general, let u and v be vectors of

spaces U and V, of dimensions m and n, respectively. Furthermore, let t be a real

variable and f be real-valued function of t, u = u(t) and v = v(u(t)) being m- and

n-dimensional vector functions of t as well, with f = f(u,v). The derivative of u

with respect to t, denoted by u̇(t), is an m-dimensional vector whose ith component

49

is the derivative of the ith component of u in a given basis, ui, with respect to t.

A similar definition follows for v̇(t). The partial derivative of f with respect to

u is an m-dimensional vector whose ith component is the partial derivative of f

with respect to ui, with a corresponding definition for the partial derivative of f

with respect to v. The foregoing derivatives, as all other vectors, will be assumed,

henceforth, to be column arrays. Thus,

∂f

∂u
≡








∂f/∂u1

∂f/∂u2
...

∂f/∂um







,

∂f

∂v
≡








∂f/∂v1

∂f/∂v2
...

∂f/∂vn








(3.17)

Furthermore, the partial derivative of v with respect to u is an n × m array

whose (i, j) entry is defined as ∂vi/∂uj , i.e.,

∂v

∂u
≡








∂v1/∂u1 ∂v1/∂u2 · · · ∂v1/∂um

∂v2/∂u1 ∂v2/∂u2 · · · ∂v2/∂um
...

...
. . .

...

∂vn/∂u1 ∂vn/∂u2 · · · ∂vn/∂um








(3.18)

Hence, the total derivative of f with respect to u can be written as

df

du
=
∂f

∂u
+

(
∂v

∂u

)T
∂f

∂v
(3.19)

If, moreover, f is an explicit function of t, i.e., if f = f(u, v, t) and v = v(u, t),

then, one can write the total derivative of f with respect to t as

df

dt
=
∂f

∂t
+

(
∂f

∂u

)T
du

dt
+

(
∂f

∂v

)T
∂v

∂t
+

(
∂f

∂v

)T
∂v

∂u

du

dt
(3.20)

The total derivative of v with respect to t can be written, likewise, as

dv

dt
=
∂v

∂t
+
∂v

∂u

du

dt
(3.21)

Example 3.3.1 Let the components of v and x in a certain reference frame F be

given as

[v]F =





v1

v2

v3



 , [x]F =





x1

x2

x3



 (3.22a)

Then

[v × x]F =





v2x3 − v3x2

v3x1 − v1x3

v1x2 − v2x1



 (3.22b)

50

Hence,
[
∂(v × x)

∂x

]

F

=





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (3.22c)

Henceforth, the partial derivative of the cross product of any 3-dimensional vec-

tors v and x will be denoted by the 3×3 matrix V. For obvious reasons, V is termed

the cross-product matrix of vector v. Thus, the foregoing cross product admits the

alternative representations

v× x = Vx (3.23)

Note that given any 3-dimensional vector a, its cross-product matrix A is uniquely

defined. Moreover, this matrix is skew-symmetric. The converse also holds, i.e.,

given any 3× 3 skew-symmetric matrix A, its associated vector is uniquely defined

as well. This result is made apparent from Example 3.3.1.

The cross-product matrix is defined only for three-dimensional vectors. Let a

and v be two arbitrary three-dimensional vectors. We define

CPM(a) ≡ ∂(a × v)

∂v
≡ A ∀v (3.24)

Because of the relation a× v = −v × a, the CPM is skew-symmetric.

Rotations in higher dimensions can be defined as well, but then, the axis and

the angle of rotation are not unique.

3.3.2 Reflections

Reflections are improper orthogonal matrices, preserving the distance between any

two points of the n-dimensional space. For any n× n reflection R, we have

det(R) = −1 (3.25)

In two dimensions, a reflection R about a line passing through the origin normal

to the unit vector e maps a vector p into p′ in the form

p′ = p− 2(pTe)e = (1− 2eeT)p ≡ Rp

and hence, the reflection R sought is given by

R = 1− 2eeT (3.26)

51

In three dimensions, the reflection about a plane passing through the origin,

of unit normal e, takes exactly the same form as R in the two-dimensional case,

eq.(3.26). However, in this case, e is three-dimensional, while R is of 3 × 3, and 1

is the 3× 3 identity matrix.

In all foregoing instances, the reflections are represented by symmetric matrices,

and are hence termed pure reflections. However, this need not always be the case,

for reflections can combine with rotations, thereby yielding a new reflection—notice

that the product of a rotation by a pure reflection is a reflection!—but this time,

the matrix representing the reflection is no longer symmetric. A rotation can be

distinguished from a reflection by the sign of its determinant.

3.3.3 Projections

Henceforth, a projection P means an orthogonal projection onto a plane in n di-

mensions, which we call the projection plane. When n = 2, the “projection plane”

becomes a line in the plane.

Let us consider a plane Π in a n-dimensional space, of unit normal n. Any point

P in this space is given by its n-dimensional position vector p. Let the projection

of P onto Π be P ′, which is given by its position vector p′, namely,

p′ = p− (nT p)n = (1− nnT)p ≡ Pp (3.27)

where P is obviously defined as

P ≡ 1− nnT (3.28)

Matrix P is also called a projector. A projector P is represented by a symmetric,

singular, idempotent matrix. Symmetry is obvious; singularity is less so, but rather

straightforward. To prove that P is singular, all we have to do is prove that its

nullspace is non-empty. However, this is so because all vectors r of the form αn, for

a scalar α 6= 0, are mapped by P onto the zero vector. Indeed,

Pr = αPn = α(1− nnT)n = α(n− n) = 0

A matrix is idempotent of degree k when it equals its kth power, but is different

from any lower power. When k = 2, the degree is self-understood and need not be

spelled out. To prove idempotency, let us calculate

P2 = (1− nnT)(1− nnT) = 1− 2nnT + nnTn
︸︷︷︸

=1

nT = 1− nnT ≡ P

52

thereby completing the proof.

The foregoing projection has a nullity of 1, its nullspace being spanned by vector

n. In three-dimensional space, we can have projections onto a subspace of dimension

1, namely, a line L passing through the origin and parallel to the unit vector e. In

this case, the projection P ′ of P onto L is given by

p′ = (pTe)e ≡ e(eT p) = (eeT)p

whence the projection P sought takes the form:

P = eeT (3.29)

Notice that this projection is symmetric, singular and idempotent as well, its nullspace

being of dimension two. Indeed, we can find two mutually-orthogonal unit vectors

f and g, lying in a plane normal to e, which are mapped by P onto the zero vector.

These two linearly-independent vectors lie in the nullspace of P. For n dimensions,

the projection “plane” can in fact be a subspace of dimension ν ≤ n− 1.

Also notice that the projection of eq.(3.27) maps vectors in three-dimensional

space onto the nullspace of the rank-one matrix nnT , while that of eq.(3.29) does

so onto the range of the rank-one matrix eeT . Now, the range of this matrix is the

nullspace of a matrix A defined as

A ≡
[

fT

gT

]

(3.30)

where f and g are mutually orthogonal unit vectors normal to e. Then, we can

define a projector P in the form

P = 1−ATA = 1− (ffT + ggT) (3.31)

This projector maps three-dimensional vectors onto the nullspace of A, which is

vector e, as the reader can readily verify.

In general, if we have a full-rank m×n matrix A, with m < n, then, rank(A) =

min{m, n } = m. This means that the m n-dimensional rows of A are linearly

independent. By virtue of the basic relation (3.12), then, ν = n −m. A projector

that maps n-dimensional vectors onto the nullspace of A is defined below:

P = 1−AT (AAT)−1A (3.32)

Note that, by virtue of the definition of f and g, matrix A of eq.(3.30) produces

AAT = 12, the 2× 2 identity matrix.

53

Exercise 3.3.1 Prove that P, as given by eq.(3.32), is a projector; then prove that

its projection maps n-dimensional vectors onto the nullspace of A.

Example 3.3.2 Let

A =

[
1 0 1

0 1 −1

]

≡
[
aT

1

aT
2

]

The nullspace of A is spanned by a unit vector u that can be found as

u ≡ b

‖b‖ , b ≡ a1 × a2

The projector P mapping vectors in three-dimensional space onto the nullspace of

A, spanned by u, is given by

P = 1−AT (AAT)−1A =
1

3





1 −1 −1

−1 1 1

−1 1 1





In this case,

b =





−1

1

1



 , u =

√
3

3





−1

1

1





Notice that the image of any vector p = [x, y, z]T under P can be expressed as the

product of a scalar times u:

Pp =
1

3





x− y − z
−x+ y + z

−x+ y + z



 =
1

3
(−x+ y + z)





−1

1

1



 =

√
3

3
(−x+ y + z)u

3.4 The Numerical Solution of Determined Lin-

ear Systems of Equations

We consider the system

Ax = b (3.33)

where

A: n× n matrix of known coefficients,

b: n-dimensional right-hand side known vector,

x: n-dimensional vector of unknowns.

54

Definition 3.4.1 If

det(A) = 0 (3.34)

then A is said to be singular. Otherwise, A is nonsingular.

Fact 3.4.1 If A is nonsingular, then eq.(3.33) has a unique solution, which is given

by

x = A−1b (3.35)

Caveat: Never compute A−1 explicitly ... , unless instructed to do so. The inverse

is seldom needed as such, and incurs a waste of precious CPU time! Instead, find

a good numerical approximation to the solution, while taking into account that A

and b are usually known only up to a random roundoff error.

Avoid roundoff-error amplification!

3.4.1 Roundoff Error of the Solution and Condition Num-

bers

Regarding the roundoff-error amplification when solving the system (3.33), let δA

be the matrix roundoff error in A, δb be the vector roundoff-error in b, and δx be

the vector roundoff-error incurred when solving eq.(3.33), by virtue of δA and δb.

The relative roundoff errors in the data, ǫA and ǫb, and in the computed solution,

ǫx, are defined as

ǫA ≡
‖δA‖
‖A‖ , ǫb ≡

‖δb‖
‖b‖ , ǫx ≡

‖δx‖
‖x‖ (3.36)

where ‖ · ‖ denotes any vector or matrix norm.

The relative roundoff error in the computed solution is known to be related to

the relative roundoff error in the data via the relation (Golub and Van Loan, 1983)

ǫx ≤ κ(A)(ǫA + ǫb) (3.37)

with κ(A) defined as the condition number of matrix A, which is defined, for non-

singular square matrices, as

κ(A) ≡ ‖A‖‖A−1‖ (3.38)

where ‖A‖ is a norm of a matrix A.

55

Now, if the Euclidean norm is adopted for the condition number, then we have

κ ≡ κE =

√

λl

λs
≡
√

λl

λs
(3.39)

in which λs is the smallest and λl is the largest eigenvalue of AAT . It is now

apparent that κE is bounded from below but unbounded from above:

κE ≥ 1 (3.40)

In fact, the above result holds for κ defined based on any norm. Moreover, if κ(A)

is based on the Frobenius norm ‖A‖F , then

κ = κF (A) =

√

1

n
tr(AAT)

√

1

n
tr(A−1A−T)

=
1

n

√

tr(AAT)tr[(AAT)−1] ≡ 1

n

√

tr(ATA)tr[(ATA)−1] (3.41)

Remarks:

• The condition number of a singular matrix is unbounded (tends to ∞)

• If a matrix AAT has all its eigenvalues identical, then A is said to be isotropic.

Isotropic matrices have a κ = 1 for κ defined in any matrix norm. Isotropic

matrices are optimally conditioned.

3.4.2 Gaussian Elimination

Various methods for computing a good approximation to the solution (3.35):

Iteratively : Various types of methods, by the names Gauss-Jordan, Gauss-

Seidel, successive-overrelaxation (SOR), etc. Used mainly for “large” systems

(thousands of unknowns) that are weakly coupled; we will not handle such

systems.

Symbolically : Only possible for certain classes of A matrices, like tridiagonal,

and for arbitrary matrices of modest size (n is below 5 or so.)

Gaussian elimination, a.k.a. LU-decomposition: This is based on the observa-

tion that a triangular system is readily solved by either backward or forward

substitution. A is decomposed into a lower-triangular and an upper-triangular

factor, L and U, respectively.

56

If A is nonsingular, but otherwise arbitrary, of n× n, then, using Gaussian elim-

ination we decompose A into

A = LU (3.42)

where L is lower-triangular and U is upper-triangular, namely,

L =








1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1








(3.43)

U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn








(3.44)

Now, eq.(3.33) is rewritten as

LUx = b ⇒
{

Ly = b

Ux = y
(3.45)

and hence, x is computed in two stages: First y is computed from a lower-triangular

system; then, x is computed from an upper-triangular system. The lower-triangular

system is solved for y by forward substitution; the upper-triangular system is solved

for x by backward substitution. Note that

det(A) = det(L)det(U) (3.46a)

But, apparently,

det(L) = 1, det(U) =

n∏

1

uii ⇒ det(A) = det(U) =

n∏

1

uii (3.46b)

Hence, A is singular iff any of the diagonal entries of U vanishes.

3.4.3 Cholesky Decomposition

If A is symmetric and positive-definite, then it admits the Cholesky decomposi-

tion:

A = LTL (3.47)

L =








l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

ln1 ln2 · · · lnn








(3.48)

57

where L is a real, lower-triangular matrix.

The solution of system (3.33) proceeds as in the general case, in two steps:

LTy = b (3.49)

Lx = y (3.50)

3.5 The Least-Square Solution of Overdetermined

Linear Systems

We start with

Definition 3.5.1 A system of linear equations of the form

Ax = b (3.51)

is overdetermined if A is rectangular, of q × n, with q > n.

This means that the system has more equations than unknowns. In general, no x

that verifies all the equations is available.

Definition 3.5.2 A is of full rank if its n (< q) q-dimensional columns are linearly

independent.

Remark: If A is of full rank, i.e., if rank (A) = n, then

• The product ATA is nonsingular, and hence, positive-definite; moreover,

• as a consequence,

det(ATA) > 0 (3.52)

For an arbitrary x, there will be an error e:

e ≡ b−Ax (3.53)

3.5.1 The Normal Equations

Problem: Find a particular x, xL, that minimizes the Euclidean norm of the error,

or its square, for that matter: ‖e‖2 = eTe.

Solution: Define the objective function f to be minimized as

f ≡ 1

2
‖e‖2 → min

x
(3.54)

58

The normality conditions (NC) of Problem (3.54) are obtained upon zeroing the

gradient of f with respect to x:

∇f ≡ ∂f

∂x
= 0 (3.55)

Moreover, ∇f is obtained from the “chain rule”:

∂f

∂xi

=
∂ej

∂xi

∂f

∂ej

, i = 1, . . . , n

where the repeated index j indicates summation, for j = 1, . . . , q. The foregoing

relation can be written in compact form as

∇f ≡
(
∂e

∂x

)T
∂f

∂e
(3.56)

Apparently, from the definitions of f and e,

∂e

∂x
= −A,

∂f

∂e
= e ≡ b−Ax (3.57)

Upon plugging expressions (3.57) into eq.(3.55),

ATAx = ATb (3.58)

which is a system of n linear equations in n unknowns. This set of equations yields

the NC of the problem at hand; the set is known as the normal equations of the

given problem.

If A is of full-rank, then eq.(3.58) admits one unique solution—determined case—

which is the least-square solution of the given system:

xL = AIb (3.59a)

with AI defined as

AI ≡ (ATA)−1AT (3.59b)

Here, AI is termed the left Moore-Penrose generalized inverse (LMPGI) of the rect-

angular matrix A.

Remarks:

• The condition number κE of the rectangular matrix A of q × n, with q > n,

based on the Euclidean norm, is defined in a similar way to that of a square

matrix, with the difference that, in the case at hand, this is done in terms of

the eigenvalues of ATA;

59

• The condition number κE of ATA is the square root of the ratio of the largest

to the smallest eigenvalues of (ATA)(ATA)T = (ATA)2;

• Hence, κE is given by the ratio of the largest to the smallest eigenvalues of

(ATA), i.e.,

κE(ATA) = κ2
E(A) (3.60)

• Thus, the roundoff-error amplification factor incurred in solving the normal

equations (3.58) is the square of that incurred when “solving” eq.(3.33) in the

determined case.

• Not only this. Formula (3.59a) is computationally expensive, for it involves:

– the multiplication of A by its transpose from the left, which consumes n2

scalar products of two q-dimensional vectors. Hence, ATA requires n2q

products and n2(q − 1) additions;

– the computation of the right-hand side of eq.(3.58), which entails, in turn,

n scalar products of two q-dimensional vectors, i.e., q× n multiplications

and (q − 1)n additions.

• In consequence,

solving numerically normal equations should be avoided!

• In some cases, the normal equations allow for handling them with computer

algebra, in which case roundoff-error amplification is not an issue. In these

cases it is safe to work with these equations.

3.5.2 Householder Reflections

The good news is that there are alternatives to numerical normal-equation solving.

One of these relies on Householder reflections, to be described presently.

Premultiply both sides of eq. (3.51) by n Householder reflections—q×q improper

orthogonal matrices— Hi, for i = 1, . . . , n, i.e.,

HAx = Hb (3.61)

where

H = HnHn−1 . . .H1

60

The set {Hi }n1 is chosen so that

HA =

[
U

O

]

, Hb =

[
bU

bL

]

(3.62)

in which

• U: a n× n upper-triangular matrix

• O: the (q − n)× n zero matrix

• bU : a n-dimensional vector containing the upper n components of Hb

• bL: a (q−n)-dimensional vector containing the lower q−n components of Hb

Thus, eq.(3.61) leads to two subsystems of equations:

Ux = bU (3.63a)

Ox = bL 6= 0 (3.63b)

The least-square solution can be readily calculated by backward substitution

from eq.(3.63a), and symbolically expressed as

xL = U−1bU . (3.64)

Remark: Equation (3.63b) expresses a contradiction: The left-hand side is the

product of the (q − n) × n zero matrix times the unknown vector; the right-hand

side is not necessarily zero. Thus, eq.(3.63b) yields the least-square error associated

with the solution xL: ‖bL‖. Now we have an important result:

Theorem 3.5.1 (The Projection Theorem) Let eo denote the error vector of

minimum Euclidean norm, i.e.,

eo ≡ b−AxL (3.65)

Then, eo is orthogonal to the image of xL under A.

Proof: We have

eT
o AxL = (b−AxL)TAxL

Upon expansion,

eT
o AxL = bTAxL − xT

LATAxL

61

Plugging expressions (3.59a & b) into the above equation,

eT
o AxL = bTA(ATA)−1ATb− bT A(ATA)−1ATA(ATA)−1ATb

= bTA(ATA)−1ATb− bT A(ATA)−1ATb = 0 (3.66)

thereby completing the proof. The Projection Theorem is illustrated in Fig. 3.1.

Remark: A n× n improper orthogonal matrix represents a reflection, i.e., a linear

eo

Figure 3.1: The Projection Theorem

transformation of a n-dimensional vector space that preserves both the magnitude

of vectors—their Euclidean norm—and the inner product of any two vectors. Prob-

lem: Find a linear transformation of the columns of the q × n matrix A that will

render this matrix in upper-triangular form without changing the geometric rela-

tions among the columns, i.e., while preserving the inner products of any two of

these columns, including the product of a column by itself.

Solution: Assume that we have applied reflections H1, H2, . . ., Hi−1, in this order,

to A that have rendered its first i− 1 columns in upper-triangular form, i.e.2,

Ai−1 ≡ Hi−1 . . .H2H1A

2The entries of Ai−1 are superscripted with an asterisk to distinguish them from the entries of

the original A.

62

i.e.,

Ai−1 =


















a∗11 a∗12 · · · a∗1,i−1 a∗1i · · · a∗1n

0 a∗22 · · · a∗2,i−1 a∗2i · · · a∗2n

0 0 · · · a∗3,i−1 a∗3i · · · a∗3n
...

...
. . .

...
...

. . .
...

0 0 · · · a∗i−1,i−1 a∗i−1,i · · · a∗i−1,n

0 0 · · · 0 a∗i,i · · · a∗i,n
...

...
. . .

...
...

. . .
...

0 0 · · · 0 a∗q,i · · · a∗qn


















(3.67)

The next Householder reflection, Hi, is determined so as to render the last q− i
components of the ith column of HiAi−1 equal to zero, while leaving its first i − 1

columns unchanged. We do this by setting

αi = sgn(a∗ii)
√

(a∗ii)
2 + (a∗i+1,i)

2 + · · ·+ (a∗qi)
2 (3.68)

ui = [0 0 · · · 0 a∗ii + αi a∗i+1,i · · · a∗qi]
T (3.69)

Hi = 1− 2
uiu

T
i

‖ui‖2
(3.70)

where the signum of x, sgn(x), is defined as +1 if x > 0, as −1 if x < 0, and is left

undefined when x = 0.

Notice that
1

2
‖ui‖2 = αi(ui)i = αi(a

∗
ii + αi) ≡ βi

and hence, the denominator appearing in the expression for Hi is calculated with

one single addition and one single multiplication.

Exercise: Show that HiH
T
i = HT

i Hi = 1 and det(Hi) = −1.

Remark: Hi reflects vectors in q-dimensional space onto a hyperplane of unit nor-

mal n ≡ ui/‖ui‖, as depicted in Fig. 3.2. It is noteworthy that

(a) αi is defined with the sign of a∗ii because βi is a multiple of the ith component

of ui, which is, in turn, the sum of a∗ii and αi, thereby guaranteeing that the

absolute value of this sum will always be greater than the absolute value of

each of its terms. If this provision were not made, then the resulting sum

could be of a negligibly small absolute value, which would thus render βi a

very small positive number, thereby introducing unnecessarily an inadmissibly

large roundoff-error amplification upon dividing the product uiu
T
i by βi;

63

Figure 3.2: The geometric interpretation of the ith Householder reflection

(b) an arbitrary q-dimensional vector v is transformed by Hi with unusually few

flops, namely,

Hiv = v − 1

βi
(vTui)ui

Upon application of the n Householder reflections thus defined, the system at hand

becomes

HAx = Hb (3.71)

with H defined as

H ≡ Hn . . .H2H1 (3.72)

Notice that HA is in upper-triangular form. That is,

HA =

[
U

Oq′n

]

, Hb =

[
bU

bL

]

(3.73)

where: q′ ≡ q−n; Oq′n is the (q−n)×n zero matrix; bU is a n-dimensional vector;

and bL is a (q − n)-dimensional vector, normally different from zero.

The unknown x can thus be calculated from eq.(3.71) by back-substitution.

Remarks:

• The last m′ components of the left-hand side of eq.(3.71) are zero.

• However, the corresponding components of the right-hand side of the same

equation are not necessarily zero. What went wrong?

• Nothing! Recall that the overdetermined system (3.51) in general has no

solution. The lower part of b, bL, is then nothing but a q′-dimensional array

64

containing the nonzero components of the approximation error in the new

coordinates. That is, the least-square error eo in these coordinates, takes the

form

eo =

[
0n

bL

]

(3.74a)

Therefore,

‖eo‖ = ‖bL‖ (3.74b)

3.6 Nonlinear-Equation Solving: The Determined

Case

Definition 3.6.1 A system of algebraic equations containing some that are not

linear is termed nonlinear. If the number of equations is identical to the number of

unknowns, the system is determined.

Example: Find the intersection of the circle and the hyperbola depicted in Fig. 3.3.

Solution: The equations of the circle and the hyperbola are

Figure 3.3: Intersection of a circle and a hyperbola

φ1(x, y) ≡ x2 + y2 − 4 = 0

φ2(x, y) ≡ x2 − y2 − 1 = 0

The solution to a nonlinear system of equations, when one exists at all, is usually

multiple: The circle and the hyperbola of Fig. 3.3 intersect at four points {Pi}41,

65

Pi xi yi

1
√

5/2
√

3/2

2
√

5/2 −
√

3/2

3 −
√

5/2
√

3/2

4 −
√

5/2 −
√

3/2

Table 3.1: The four intersection points of the circle and the hyperbola of Fig. 3.3

of coordinates (xi, yi), as displayed in Table 3.1. The problem may have no real

solution, e.g., the circle and the hyperbola of Fig. 3.4 do not intersect. The system

of equations from which the coordinates of the intersection points are to be computed

is given below:

φ1(x, y) ≡ x2 + y2 − 1 = 0

φ2(x, y) ≡ x2 − y2 − 16 = 0

This system of equations admits no real solution!

Figure 3.4: A circle and a hyperbola that do not intersect

In general, a determined nonlinear system of equations takes the form

φ(x) = 0 (3.75)

66

where x and φ are both n-dimensional vectors:

x ≡








x1

x2
...

xn







, φ ≡








φ1(x1, x2, . . . , xn)

φ2(x1, x2, . . . , xn)
...

φn(x1, x2, . . . , xn)








(3.76)

3.6.1 The Newton-Raphson Method

We outline below the method of solution of determined nonlinear systems using

the Newton-Raphson method. This is an iterative method, whereby a sequence of

approximations is obtained that, if converging, it approaches the solution in a finite

number of iterations within a prescribed tolerance.

A value x0 of x is given as an initial guess:

x0 ≡ [p1 p2 . . . pn]T

and φ is evaluated at x0:

φ0 ≡ φ(x0)

If the value x0 was chosen randomly, most likely it will not verify the given system

of equations, i.e.,

φ0 6= 0

Next, we look for a “small” increment ∆x of x (the increment is small if its norm—

any norm—is small):

∆x ≡ [∆x1 ∆x2 . . . ∆xn]T

Now, φ(x0 + ∆x) is evaluated up to its linear approximation (all quadratic and

higher-order terms are dropped from its series expansion):

φ(x0 + ∆x) ≈ φ(x0) +
∂φ

∂x

∣
∣
∣
x=x0

∆x (3.77)

The Jacobian matrix of φ with respect to x is defined as the matrix of partial

derivatives of the components of φ with respect to all the components of x:

Φ ≡ ∂φ

∂x
=








∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xn

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xn
...

...
. . .

...

∂φn/∂x1 ∂φn/∂x2 · · · ∂φn/∂xn








(3.78)

67

In the next step, we find ∆x that renders zero the linear approximation of

φ(x0 + ∆x):

φ0 + Φ(x0)∆x = 0

or

Φ(x0)∆x = −φ0 (3.79)

whence ∆x can be found using, for example, Gaussian elimination:

∆x = −Φ−1
0 φ

0, Φ0 ≡ Φ(x0) (3.80)

Next, x is updated:

x ← x0 + ∆x (3.81)

the procedure stopping when

‖∆x‖ ≤ ǫx (3.82)

for a prescribed tolerance ǫx.

Remarks:

• Use the maximum norm to test convergence in eq.(3.82), for it costs virtually

nothing;

• no guarantee that the Newton-Raphson method will converge at all;

• whether the Newton-Raphson method converges is dependent upon the initial

guess, x0;

• the boundary between regions of convergence and divergence is a fractal (Man-

delbrot, 1983; Gleick, 1988);

• when the Newton-Raphson method converges, it does so quadratically : At

every iteration, two decimal places of accuracy are gained (Dahlquist and

Björck, 1974).

Example 3.6.1 (Minimum value of the Rosenbrock function) We include an

example where the ODA package is used to find the minimum value of the Rosenbrock

function (Rosenbrock, 1960), a.k.a. the banana function, defined as

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 (3.83)

68

Figure 3.5: The contours of the Rosenbrock (a.k.a. the banana) function

The problem can be treated as finding an “approximate” solution of a system of

nonlinear equations, namely,

φ =

[
x2 − x2

1

1− x1

]

(3.84)

such that the least-square error f is a minimum, i.e.,

f(x) =
1

2
φTWφ → min

x1, x2

(3.85)

with

W =

[
200.0 0

0 2.0

]

(3.86)

By taking x0 = [0.2 0.2]T as initial guess, we obtained the sequence of values

x1,x2, . . . shown in Table 3.2. The optimum was reached after 3 iterations, and

found to be xopt = [1 1]T . The contours of the banana function are plotted in

Fig. 3.5. Now, since φ = 0 at xopt, the normality condition (3.99) is readily verified.

Table 3.2: Iterations toward the minimum of the Rosenbrock function

i 1 2 3

xi [1.000000, 0.360000]T [1.000000, 1.000000]T [1.000000, 1.000000]T

69

3.7 Overdetermined Nonlinear Systems of Equa-

tions

A system of nonlinear equations of the form

φ(x) = 0 (3.87)

where x is a n-dimensional vector and φ is a q-dimensional vector, is overdetermined

if q > n. Just as in the linear case, in general, no vector x can be found that verifies

all the q scalar equations of the system. However, approximations can be found that

minimize the least-square error of the approximation, as described in the balance of

this Section. The method of solution adopted here is the overdetermined counterpart

of the Newton-Raphson method.

3.7.1 The Newton-Gauss Method

Problem: Find an approximate solution to system (3.87) that verifies those equa-

tions with the least-square error :

f(x) =
1

2
φTWφ → min

x
(3.88)

where W is a q × q positive-definite weighting matrix.

Solution: We follow a procedure similar to Newton-Raphson’s, which is known as

the Newton-Gauss method, as described below:

First, an initial guess x0 of x is given; then, we produce the sequence

x1, x2, . . . , (3.89)

such that

xk+1 = xk + ∆xk (3.90)

Calculation of ∆xk:

• Factor W into its two Cholesky factors:

W = VTV (3.91)

which is possible because W is assumed positive-definite.

70

• Compute ∆xk as the least-square solution of the unconstrained overdetermined

linear system

VΦ(xk)∆xk = −Vφ(∆xk) (3.92)

with Φ(x) defined as the q × n Jacobian matrix of the vector function φ(x),

i.e.,

Φ(x) =
∂φ(x)

∂x
(3.93)

Drop superscripts for the sake of notation-simplicity and recall eqs.(3.59a &

b):

∆x = −(ΦT WΦ)−1ΦTWφ (3.94)

This procedure is iterative, stopping when a convergence criterion is met.

The Damping Factor

When implementing the Newton-Gauss method, the objective function f may in-

crease upon correcting xk according to eq.(3.90), i.e.

f(xk+1) > f(xk) (3.95)

This increase gives rise to oscillations and sometimes even leads to divergence. One

way to cope with this situation is by introducing damping. Instead of using the

whole increment ∆xk, we use a fraction of it, i.e.

xk+1 = xk + α∆xk, 0 < α < 1 (3.96)

where α is known as the damping factor.

3.7.2 Convergence Criterion

Calculate first ∇f(x):

∇f(x) ≡ ∂f

∂x
=

(
∂φ

∂x

)T
∂f

∂φ
(3.97)

∂φ

∂x
≡ Φ,

∂f

∂φ
= Wφ (3.98)

Hence, the condition for a stationary point is

ΦTWφ = 0 (3.99)

which is the normality condition of eq.(3.88).

71

It is thus apparent that, at a stationary point of f , φ(x) need not vanish, as

is the case of unconstrained optimization, to be discussed in Chapter 4; however,

φ(x) must lie in the nullspace of ΦTW. Moreover, from eqs.(3.94) and (3.99)

follows that, at a stationary point, ∆x vanishes. Hence, the convergence criterion is

‖∆x‖ < ǫ (3.100)

where ǫ is a prescribed tolerance.

Remarks:

• The normality condition (3.99) alone does not guarantee a minimum, but only

a stationary point.

• However, as it turns out, if the procedure converges, then it does so, to a

first-order approximation, to a minimum, and neither to a maximum nor a to

saddle point, as we prove below.

The sequence f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequence of

x values, evolves, to a first order, as ∆f(x), given by

∆f =

(
∂f

∂x

)T

∆x (3.101)

i.e.,

∆f = φTWΦ∆x (3.102)

Upon plugging expression (3.94) of ∆x into eq. (3.102), we obtain

∆f = −φT WΦ(ΦTWΦ)−1ΦTW
︸ ︷︷ ︸

M

φ = −φTMφ (3.103)

where, apparently, M is a q × q positive-definite matrix. As a consequence, φTMφ

becomes a positive-definite quadratic expression of φ; hence, ∆f is negative definite.

Thus, the first-order approximation of ∆f(x) is negative-definite, and hence, the

sequence of f values decreases monotonically. That is, in the neighbourhood of a

stationary point, the first-order approximation of φ(x) is good enough, and hence,

if the procedure converges, it does so to a minimum.

The reader may wonder whether the Newton-Raphson method can be used to

solve nonlinear least-square problems. Although the answer is yes, the Newton-

Raphson method is not advisible in this case, as made apparent below.

72

Recall ∇f from eqs.(3.88) and (3.89):

∇f(x) =
∂f

∂x
= ΦT (x)
︸ ︷︷ ︸

n×q

W
︸︷︷︸

q×q

φ(x)
︸ ︷︷ ︸

q−dim

∇f(x) = 0 ⇒ ΦT (x)Wφ(x)
︸ ︷︷ ︸

≡ψ(x)∈IRn

= 0 (NC)

thereby obtaining a determined system of n equations in n unknowns. This system

can be solved using Newton-Raphson method which requires ∇ψ(x):

∇ψ(x) =
∂ψ

∂x
=

∂

∂x
[ΦT (x)
︸ ︷︷ ︸

(∂φ/∂x)T

Wφ(x)]

That is, ∇ψ(x) involves second-order derivatives of φ with respect to x:

∂2φi

∂xj∂xi
, i = 1, . . . , n

In summary, the Newton-Raphson method is too cumbersome, besides being prone

to ill-conditioning, for it is based on the normality conditions of the problem at

hand.

3.8 Computer Implementation Using ODA—

C-Library of Routines for Optimum Design

ODA is a C library of subroutines for optimization problems. The source file of

this package, implemented in C, consists of a number of subroutines designed and

classified based on their application. At the beginning of each subroutine a detailed

description of the purpose and usage of the subroutine is included. Moreover, data

validation has been considered in the software. In order to solve a problem, the user

simply calls one corresponding C subroutine.

Since the solutions for linear problems are direct—as opposed to iterative—the

use of ODA to solve linear problems requires only information on the problem pa-

rameters, such as matrices A, C, and W, as well as vectors b and d, as applicable.

For nonlinear problems, the solution is iterative, and hence, the user is required to

provide functions describing φ(x), h(x), Φ(x) and J(x), as needed. These func-

tions are provided via subroutines in forms that can be called by the package. In

addition to this information, the user is also required to provide an initial guess x0

of x, so that the iterative procedure can be started.

73

1. Unconstrained linear problems: Subroutine MNSLS is used to find the

minimum-norm solution of an underdetermined linear system, while subrou-

tine LSSLS is used to find the least-square approximation of an overdetermined

linear system. LSSLS can also handle determined systems, i.e., systems of as

many equations as unknowns.

2. Unconstrained nonlinear problems: Subroutine LSSNLS is used to solve

this type of problems. Since the nonlinear functions and their associated gra-

dient matrices are problem-dependent, the user is required to provide two

subroutines that are used to evaluate the foregoing items, namely,

• FUNPHI: This subroutine is used to evaluate the q-dimensional vector

function φ(x) in terms of the given n-dimensional vector x.

• DPHIDX: This subroutine is used to evaluate the q× n gradient matrix Φ

of the vector-function φ(x) with respect to x, at the current value of x.

Moreover, an initial guess of x is required when calling this subroutine.

3. Constrained linear problems: Subroutine LSSCLS is used to solve this type

of problems.

4. Constrained nonlinear problems: Subroutine LSSCNL is used for solving

this type of problems. Before calling LSSCNL, the user is required to provide

four problem-dependent subroutines: Two of these are FUNPHI and DPHIDX,

already derscribed in item 2 above. The other two are used to evaluate the

left-hand sides of the constraint equations and their gradient matrix, as listed

below:

• FUNH: This subroutine is used to evaluate the l-dimensional constraint

function h in terms of the given n-dimensional vector x.

• DHDX: This subroutine is used to evaluate the l × n gradient matrix J of

the vector-function h(x) in terms of the given n-dimensional vector x.

Moreover, an initial guess of x is required when calling LSSCNL.

5. Constrained problems with arbitrary objective function: Subroutine

ARBITRARY is used for solving this type of problems. Before calling ARBITRARY,

the user is required to provide four problem-dependent subroutines: Two of

these are FUNPHI and DPHIDX, as described in item 2 above. The other two

74

subroutines are used to evaluate the left-hand sides of the constraint equations

and their gradient matrix, as listed below:

• phi: Subroutine used to evaluate the objective function φ(x) in terms

of the given n-dimensional vector x.

• h: Subroutine used to evaluate the l-dimensional constraint function h

in terms of the given n-dimensional vector x.

• J: Subroutine used to evaluate the l×n gradient matrix J of the vector-

function h(x) at the current value of x.

• gradient: Subroutine used to evaluate the n-dimensional gradient ∇f
of the objective function f(x) at the current value of vector x.

• Hessian: Subroutine used to evaluate the n×n Hessian matrix ∇∇f of

the objective function f(x) at the current value of vector x. Moreover,

an initial guess of x is required when calling ARBITRARY.

75

76

Chapter 4

Unconstrained Optimization

4.1 Introduction

We start by studying the simplest problem in multivariable optimization, namely,

the unconstrained minimization of a smooth scalar objective function f(x) of the n-

dimensional design-variable vector, or design vector (DV) for brevity, that we denote

by x. The main result here is the normality conditions (NC) of the problem at hand.

We derive the first-order (FONC), which are necessary for a stationary point (SP);

then, we derive the second-order (SONC), which are sufficient for a minimum, a

maximum or a saddle point. These three kinds of SP are duly characterized.

4.2 The Normality Conditions

Under the smoothness assumption, the objective function is continuous and has

continuous first- and second-order derivatives. The problem at hand is, moreover,

f(x) → min
x

(4.1)

Since the problem under study is unconstrained, the search of the minimum is

conducted over the whole design space R
n, which eases the search tremendously.

Notice that every point of the design space is characterized by a position vector

x, which defines a design, and hence, every such point represents one design. For

conciseness, we will refer to a point and the design that the point represents by its

position vector.

Now, for f(x) to attain a minimum at a certain point xo of the design space, the

point must be, first and foremost, stationary, i.e., the gradient ∇f of the objective

77

function with respect to the design vector must vanish:

∇f ≡ ∂f

∂x

∣
∣
∣
∣
xo

= 0 (4.2a)

which is known as the first-order normality condition. As a matter of fact, the above

relation is short-hand for n normality conditions, one for each component of the ∇f
vector, namely,

∇f ≡ ∂f

∂x
=








∂f/∂x1

∂f/∂x2
...

∂f/∂xn








(4.2b)

However, a stationary point can be a minimum, a maximum or a saddle point, to a

second-order approximation. To characterize each case, we expand, to this order of

approximation, f(x) around x = xo:

f(x) = f(xo) +∇f |xo
(x− xo) +

1

2
(x− xo)

T∇∇f |xo
(x− xo) + HOT (4.3a)

where HOT stands for “higher-order-terms”, while ∇∇f , the Hessian of f with

respect to x, is a matrix of second derivatives, namely,

∇∇f ≡ ∂2f

∂x2
=








∂2f/∂x2
1 ∂2f/∂x1∂x2 · · · ∂2f/∂x1∂xn

∂2f/∂x2∂x1 ∂2f/∂x2
2 · · · ∂2f/∂x2∂xn

...
...

. . .
...

∂2f/∂xn∂x1 ∂2f/∂xn∂x2 · · · ∂2f/∂x2
n








(4.3b)

Notice that, by virtue of the smoothness assumption,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
, for i, j = 1, 2, . . . , n (4.4)

which follows after Schwartz’s Theorem: Given a continuous function f(x) with first-

and second-order continuous derivatives, the order of differentiation in computing

the second derivatives is immaterial.

As a consequence of eq.(4.4), then,

• The Hessian of f with respect to x is a symmetric n× n matrix, and

• the eigenvalues of the Hessian matrix are all real and its eigenvectors are

mutually orthogonal.

78

At a stationary point xo, then, and up to a second-order approximation, eq.(4.3a)

leads to

∆f ≡ f(x)− f(xo) ≈
1

2
(x− xo)

T∇∇f |xo
(x− xo) (4.5)

Now we have that

• If, for any ∆x ≡ x − xo, ∆f(x) > 0, then the stationary point (SP) xo is a

local minimum of f(x);

• if, for any ∆x ≡ x − xo, ∆f(x) < 0, then the SP xo is a local maximum of

f(x); and

• otherwise, the SP xo is a saddle point.

It is not practical to test a stationary point for the sign of ∆f for every possible

∆x. However, it is possible to characterize the nature of the stationary point xo

by means of the signs of the eigenvalues of the Hessian matrix. To this end, we re-

call the characterization of positive-definite, positive-semidefinite and sign-indefinite

matrices given above. In this light, then,

• the stationary point xo is a local minimum if the Hessian evaluated at this

point is positive-definite;

• the SP is a local maximum if the Hessian evaluated at this point is negative-

definite;

• the SP is a saddle point if the Hessian evaluated at this point is sign-indefinite.

4.3 Methods of Solution

The variety of methods available is immensely rich. In a nutshell, the various meth-

ods can be classified according to one criterion: the requirement of partial derivatives

of the objective function. We thus have:

(i) Direct methods: No derivatives are required.

(ii) Gradient Methods: Only first-order derivatives of the objective function

with respect to all design variables are required.

(iii) Newton methods: First- and second-order derivatives of the objective func-

tion with respect to all all design variables are required.

79

Needless to say, direct methods are the most general—the least demanding—and

simplest to implement, the price to be paid for the lack of information on deriva-

tives being the speed of convergence. These methods are the slowest to converge.

Gradient methods are faster, with a linear convergence rate, which means that the

error between the current iterate xk and the closest local minimum decreases by one

order of magnitude at each iteration. The Newton-Raphson method, and variations

thereof, generically termed Newton methods, resort to first- and second-order deriva-

tives. Newton methods converge quadratically, which means that the aforementioned

error decreases by two orders of magnitude per iteration.

4.4 Direct Methods

Direct methods are based on function evaluations and nothing else. While these

methods are slow to converge, they can handle discontinuous functions. There are

various of these: random (random jumps, random walks); Hooke and Jeeves; Powell;

and the simplex (Nelder-Mead) method. We outline the last three of these methods

below.

The main concept behind direct methods is the pattern directions, namely, the

directions of search, along which the minimum is approached. These three methods

differ on the way of defining the pattern directions.

4.4.1 The Hooke and Jeeves Method

In this method, the search directions are fixed. The method thus starts by defining

a set of unit vectors {ui}n1 in the directions of the n design variables, along which

the search is conducted.

Hooke & Jeeves Algorithm

1. Define starting base point x1 and prescribed length ∆x of search

step

2. fk ← f(xk); 1← i; yk,0 ← xk, where yk,j denotes a temporary base point

obtained from xk upon perturbing (xk)j

3. For i = 1 to n do

f+ ← f(yk,i−1 + ui∆xi)

f− ← f(yk,i−1 − ui∆xi)

80

if f+ < f(yk,i−1) then yk,i ← yk,i−1 + ui∆xi

if f− < f(yk,i−1) then yk,i ← yk,i−1 − ui∆xi

else yk,i ← yk,i−1

enddo

4. if yk,n = xk then ∆x← 1
2
∆x go to 3

else xk+1 ← yk,n

5. s← xk+1 − xk % pattern direction

Find λ that minimizes f(xk+1 + λs)

yk+1,0 ← xk+1 + λs

6. k ← k + 1, fk ← f(yk,0), 1← i

go to 3

if f(yk,n) < f(xk) then xk+1 ← yk,n

else xk+1 ← xk; ∆x← 1
2
∆x go to 2

7. if ‖∆x‖ < ǫ then stop

else go to 2

4.4.2 The Powell Method (Conjugate Directions)

Let A = AT ∈ IRn×n be positive-definite. Vectors x, y ∈ IRn are said to be

A-conjugate if

xTAy = yTAx = 0 (4.6)

In the area of mechanical systems under linear vibrations, for n degrees of freedom,

the ith and jth modal vectors ui and uj are K- and M-conjugate, i.e.,

(ui)TKuj = 0, and (ui)TMuj = 0

where K and M are the n× n positive-definite stiffness and mass matrices, respec-

tively.

Theorem 4.4.1 (cf. Theorem 6.1 of (Rao, 1996)) Let x ∈ IRn and

f(x) =
1

2
xTAx + bT x + c, A = AT > O (4.7)

81

Further, let Π1 and Π2 be two hyperplanes in IRn parallel to each other. If xi is the

minimum of f(x), with xi ∈ Πi, i = 1, 2, then x2 − x1 is A-conjugate with any

vector y ∈ IRn parallel to Π1 and Π2, i.e.,

(x2 − x1)TAy = 0

Proof : Π1 and Π2 are defined by

Πi : Cx = di, i = 1, 2; C ∈ IRp×n, p < n (4.8)

The algebraic interpretation of y parallel to Π1 and Π2 is that y ∈ R (CT), i.e.,

there exists a v ∈ IRp such that

y = CTv

and hence, if L is an orthogonal complement of C, i.e., if

C
︸︷︷︸

p×n

L
︸︷︷︸

n×n′

= O
︸︷︷︸

p×n′

, n′ ≡ n− p

then we can write

y = Lu, u ∈ IRn−p

Now, xi is found as the solution to

min
x
f(x)

subject to eq.(4.8). We solve the foregoing problem as an unconstrained problem by

means of the Lagrangian1

Fi ≡ f(x) + (λi)T (Cx + di)→ min
x
, i = 1, 2

subject to no constraints, and denote the solution xi. The normality conditions of

the foregoing problem are, for i = 1, 2,

∇Fi = Ax + b + CTλi = 0n, (4.9a)

Cx− di = 0p (4.9b)

which yield a system of p + n equations for the p + n unknowns x and λi. Upon

solving for x = xi from eq.(4.9a), for i = 1, 2, we obtain

xi = −A−1(CTλi + b) (4.10)

1Constrained optimization is the subject of Chapter 5.

82

Substitution of the foregoing expression into eq.(4.8) yields, always for i = 1, 2,

−CA−1(CTλi + b) = di

or

CA−1CTλi = −CA−1b− di

Hence,

λi = −(CA−1CT)−1(CA−1b + di) (4.11)

Further, substitution of eq.(4.11) into eq.(4.10) leads to

xi = A−1[CT (CA−1CT)−1(CA−1b + di) + b]

= A−1[CT (CA−1CT)−1CA−1 + 1]b + A−1[CT (CA−1CT)−1di

Therefore,

x2 − x1 = A−1CT (CA−1CT)−1(d2 − d1)

Hence,

(x2 − x1)TAy ≡ (x2 − x1)TALu = (d2 − d1)T (CA−1CT)−1 CA−1A
︸ ︷︷ ︸

1

L

︸ ︷︷ ︸

CL=Opn′

u

That is,

(x2 − x1)TAy = 0

thereby completing the proof.

The Powell Algorithm

Data: A set of linearly independent directions D = {ξi}n1 , which, in the absence

of any background information, can be taken as the coordinate axes, and an initial

guess x0

1. For k = 1 to n do

find minimizer λk of f(xk−1 + λkξ
k)

xk ← xk−1 + λkξ
k

enddo

2. Find m ∈ {1, . . . , n} such that f(xm−1)− f(xm) is a maximum; then

∆ ← f(xm−1)− f(xm)

3. f1 ← f(x0), f2 ← f(xn), f3 ← f(2xn − x0)

83

4. if

{

f3 ≥ f1, or

(f1 − 2f2 + f3)(f1 − f2)
2 ≥ 1

2
(f1 − f3)

2∆

then keep D; else

5. ξ ← xn − x0

find λ that minimizes f(xn + λξ)

D ← {ξ1, . . . , ξm−1, ξm+1, . . . , ξn, ξ}
x0 ← xn + λξ

if x0 is a minimum, stop; else, go to 1.

We shall prove presently that, if the function to be minimized is quadratic in its

n arguments, then the Powell Algorithm converges to the minimum in at most n

steps. In the sequel, we shall need a previous result:

Lemma 4.4.1 Let y = Lx denote a linear transformation, with L ∈ IRn×n non-

singular, and Q(x) a quadratic function of x ∈ IRn, of the form of eq.(4.7), with

A positive-definite. Under the foregoing transformation, Q = Q(y), its minimum

being found at yopt = Lxopt, with xopt denoting the minimizer of Q(x).

Proof: The minimizer of Q(x) = 1
2
xTAx+bTx+c is found upon zeroing the gradient

of Q with respect to x:

∇Q = Ax + b ⇒ Ax + b = 0 (4.12)

whence,

xopt = −A−1b (4.13)

On the other hand,

Q(y) =
1

2
yTL−TAL−1y + bTL−1y + c

whence,

∇Q(y) = L−TAL−1y + L−Tb

which, upon zeroing, yields

yopt = −L−A−1b = Lxopt

thereby completing the proof. Now we have

Theorem 4.4.2 If the quadratic function Q(x), of the form (4.7), with A positive-

definite is minimized sequentially, along each direction of a set D = {ξi}n1 of A-

conjugate directions, then the minimum of Q(x) will be found in at most n steps,

irrespecive of the initial guess.

84

Proof: Since A is positive-definite, it admits a real Cholesky decomposition, namely,

A = BTB (4.14)

Alternatively, A can be factored into its two real square roots, A =
√

A
√

A—an

arbitrary n × n matrix has 2n square roots, one of which is positive-definite if the

matrix is so. Now let us introduce the linear transformation

y = Bx (4.15)

under which Q becomes

Q(y) =
1

2
‖y‖2 + (B−Tb)T y + c (4.16)

which is a quadratic form associated with the n × n identity matrix. Hence, a set

of 1-conjugate directions is obviously the set E = ei}n1 , with ei denoting the unit

vector in the yi-direction, i.e., a n-dimensional array with zeros everywhere, except

for the ith entry, which is unity. 1-conjugacy can thus be readily verified, as

eT
i ej = 0, i 6= j

Proof: We shall prove the theorem for n = 3. For n > 3, the proof follows the same

pattern, although the pattern cannot be visualized. The set of vectors y verifying

Q(y) = Q0 = const

defines a sphere with centre C of position vector c, not to be confused with the

scalar c of eq.(4.16) and radius r, to be determined presently. Vector c and scalar r

thus verify

‖y− c‖2 = r2

Upon comparing the above expression with its counterpart of eq.(4.16), it is apparent

that

c = B−Tb & r2 = 2(Q0 − c)− ‖c‖2

Under a search along the set E of conjugate directions, let y0 be the initial guess,

the position vector of point P0. The first search direction e1 thus takes place along

the y1-axis. Along this direction, Q(y) reaches a minimum at a point P1, of position

vector y1, such that (y1 − c)Te1 = 0. That is, P1 lies on a line L1 passing through

P0 and parallel to the y1-axis. It is found as the point of L1 tangent to a sphere of

centre C.

85

The second search takes places along a line L2 passing through P1 and parallel

to the y2-axis. Along this line, a point P2 is determined, at which L2 is tangent to a

sphere centred at C. Notice that L1 and L2 define a plane Π12 parallel to the y1-y2

plane.

The third search thus takes place along a line L3 passing through P2 and parallel

to the y3-axis. A sketch should help the reader visualize that the orthogonal pro-

jection of point C onto Π12, labelled C ′, is exactly point P2. Consequently, P3, the

point at which L3 is tangent to a sphere centred at C is exactly C, the minimum

of Q(y) finding itself at C, thereby completing the search in exactly n = 3 steps.

Apparently, the optimum xopt is given by

xopt = B−1c (4.17)

Example 4.4.1 (cf. Example 6.6 of (Rao, 1996)) Using the Powell Algorithm,

find the minimum of

Q(x) = 6x2
1 + 2x2

2 − 6x1x2 − x1 − 2x2

To this end, transform the above quadratic form into one associated with the 2× 2

identity matrix. Hint: For 2× 2 positive-definite matrices, their square root can be

found graphically using the Mohr circle, as explained in Angeles (1992).

4.4.3 The Nelder-Mead Simplex Method

With a few changes in the notation, this subsection is taken from (Rao, 1996). This

method, first proposed by Spendley et al. (1962), and later improved by Nelder and

Mead (1965), is based on the concept of simplex Sn. A simplex is a (n + 1)-vertex

hyperpolyhedron in IRn. The search for the minimum of the objective function f(x)

is conducted by means of function evaluations at all n + 1 vertices of the simplex.

The strategy followed is outlined below.

We start by defining an initial simplex, which is done by means of a base point

P0 ∈ IRn, of position vector x0. The remaining n vertices of Sn are generated so as

to yield a regular hyperpolyhedron of unit-length edges. To this end, let

p =
1√
2n

(
√
n+ 1 + n− 1), q =

1√
2n

(
√
n+ 1− 1) (4.18a)

Then, if ei denotes the unit vector in the direction of the ith coordinate axis, corre-

sponding to xi, let

xi = x0 + pei +

n∑

j=1,j 6=i

qej, i = 1, 2, . . . , n (4.18b)

86

Shown in Fig. 4.1 are displays of the simplexes in IR2 and IR3, respectively,

defined as described in eqs.(4.18a & 4.18b), with the base point at the origin.

Figure 4.1: The initial simplex in IR2 The initial simplex in IR3

The search strategy is based on three operations: a) reflection; (b) contraction;

and (c) expansion.

Reflection

Let fi = f(xi), for i = 0, 1, . . . , n, and

fM = max
i
{ fi }n0 , fm = min

i
{ fi }n0 (4.19)

the corresponding vertices being PM and Pm, of position vectors xM and xm, respec-

tively. With the foregoing information, we now seek a new simplex, by replacing the

worst vertex PM of the current simplex by a new one, Pn+1, of position vector xn+1.

The new vertex is found by means of a reflection of PM about the centroid P , of

position vector x, of all the simplex vertices, except for PM , namely,

x =
1

n

n∑

i=0, i6=M

xi (4.20)

Let, moreover, α > 0 be the user-prescribed reflection coefficient, which is used to

define the new vertex a distance α‖x−xM‖ from the centroid P , the position vector

87

xn+1 of the new vertex thus being

xn+1 = x + α(x− xM) (4.21)

The intended effect is that Pn+1 lie the farthest from the worst vertex PM , so

that this new vertex, Pn+1, will very likely be the best of all the vertices of the

new simplex, {Pi }n+1
i=0, i6=M . An unlikely, although quite possible scenario, is that

fn+1 = fM , and hence, no gain will be made by defining the new simplex. In this

case, we can define the new vertex in one of two possible ways:

1. PM is preserved, the rejected vertex being PM ′ , which is the next worst vertex,

i.e., with the subscript M ′ defined such that

fM ′ = max
i
{ fi }ni=0, i6=M (4.22)

2. Alternatively, redefine α—make it either larger or smaller—while rejecting

always the same worst vertex PM .

Expansion

If the outcome of the reflection stage yields fn+1 ≡ f(xn+1) < fm, then the direction

defined by the vector difference xn+1−x is very likely to point towards the minimum,

and hence, it may be advisable to place a new vertex Pe away from P in the said

direction, i.e., by defining the position vector xe of the new vertex Pe in the form

xe = x + γ(xn+1 − x) (4.23)

with γ > 1, for expansion.

Now, there are two possible outcomes:

• If fe ≡ f(xe) < f(xm), then replace PM by Pe and start a new reflection;

• if fe > f(xm), then the expansion failed, and the new simplex obtained by the

reflection, with PM replaced by Pn+1, is kept, and a new reflection is started.

An alternative outcome of the reflection is described below.

88

Contraction

If fn+1 > fi ≡ f(xi), for i = 0, 1, . . . ,M − 1,M + 1, . . . , n, and fn+1 < fM , then we

replace PM by Pn+1. In this case, we define a new vertex Pc, of position vector xc,

a distance β‖xM − x‖ from P , with 0 ≤ β ≤ 1. That is,

xc = x + β(xM − x) (4.24)

which can be readily proven to yield a Pc lying between PM and P , for xc has been

defined as a convex combination2 of xc and x. Now,

• If fc ≡ f(xc) > fM , then no vertex of the simplex is changed, and we keep the

new vertex with Pn+1, as obtained in the reflection operation;

• if fc < min{fM , fn+1}, then PM is replaced by Pc, a new simplex thus being

obtained, and a new reflection operation is started;

• if fc > min{fM , fn+1}, then the contraction failed, in which case Pi is replaced

by P i, of position vector xi, halfway between Pi and Pm, i.e.,

xi =
1

2
(xi + xm) (4.25)

thereby defining a new simplex, and a new reflection is started.

Convergence criterion

The method converges when the rms value frms of the objective function is smaller

than a prescribed tolerance ǫ, i.e., when

√
√
√
√ 1

n+ 1

n+1∑

1

|fi − f |2 < ǫ (4.26)

where (i) a relabelling of the vertices has been assumed, with the order f1 ≤ f2 ≤
. . . ≤ fn+1 and (ii) f is the mean value of the objective function evaluated at all the

vertices of the current complex, i.e.,

f ≡ 1

n + 1

n+1∑

1

fi (4.27)

2See Section 5.4 for a definition of this term.

89

4.5 Gradient Methods

4.5.1 The Method of Steepest Descent(Cauchy)

Algorithm:

1. Pick up an initial guess x1 to start the iterations. Set the iteration

counter i at i = 1

2. Define the ith search direction si as

si = −∇f |x=xi (4.28)

3. Define the next test point, xi+1, as

xi+1 = xi + λsi = xi − λ∇f
∣
∣
x = xi (4.29)

To find λ, conduct a one-dimensional search along the direction si

so that λopt is the value of λ that minimizes F (λ) = f(xi−λ∇f |x=xi)

4. If xi+1 satisfies the convergence criteria adopted at the outset,

stop; else, go to step 5.

5. Update the iteration counter: i+ 1 ← i. Go to step 2.

Convergence criteria: Use one or more of those applicable, namely,

|f(xi+1)− f(xi)| ≤ ǫ1|f(xi)| (4.30a)

‖∇f |x=xi ‖ ≤ ǫ2 (4.30b)

‖xi+1 − xi‖ ≤ ǫ3 (4.30c)

Remark: In criteria (4.30b & c), any norm can be used ⇒ Use the most economic

one, i.e., the Chebyshev or maximum norm.

4.5.2 The Conjugate-Gradient Method (Fletcher-Reeves)

We use here the concept of A-conjugacy introduced in Subsection 4.4.2, for a sym-

metric, positive-definite A.

90

Preliminary Remarks:

• The conjugate-gradient method of Fletcher-Reeves 1964 (FR method) is aimed

at minimizing a C2-continuous function f(x) under no constraints.

• The FR method works on the concept of sequential quadratic programming

(SQP).

• The FR method is based on the quadratic approximation of f(x): It is assumed

that

f(x) =
1

2
xTAx + bTx + f0 + HOT (4.31)

where HOT stands for higher-order terms

• It is assumed that A in eq.(4.31) is positive-definite

Algorithm Overview: The FR algorithm works on the base of two items:

• A search direction si at each iteration, and

• a step of optimum length λ∗ in direction si that minimizes f in that direction

Begin with an initial guess x0

Next, a search direction s0 is defined in the direction of steepest descent of f(x), i.e.,

along −∇f at x0, namely,

s0 ≡ −∇f |x=x0 (4.32)

Further, a new iterate, x1 is sought along the above direction, from the current

iterate x0:

x1 ≡ x0 + λs0 (4.33)

where λ is a real number, as yet to be determined. This is done by imposing that

∇f , when evaluated at x = x1, be normal to s0, i.e.,

(∇f
∣
∣
x=x1)T s0 = 0 (4.34)

Now susbtitute x1 as given by eq.(4.33) and the quadratic approximation of f(x)

into eq.(4.34), to obtain, with ∇f ≈ Ax + b,

[A(x0 + λs0

︸ ︷︷ ︸

x1

) + b]T s0 = 0 (4.35)

91

whence the optimum value of λ, λ∗, is readily derived:

λ∗ =
−(Ax0 + b)T s0

(s0)TAs0
≡ −(s0)T∇f |x=x0

(s0)TAs0
(4.36)

where, from the assumed positive-definiteness of A,

(s0)TAs0 > 0

and hence, s0 can be expressed, upon recalling eq.(4.33), as

s0 =
1

λ∗
(x1 − x0) (4.37)

The new search direction, s1, is defined as a linear combination of s0 and −∇f |x=x1 ,

i.e.,

s1 ≡ −∇f
∣
∣
x=x1 + β1s

0 (4.38)

where β1 is chosen so as to make s1 conjugate to s0 with respect to A:

(s0)TAs1 = 0 ⇒ (s0)TA(−∇f |x=x1 + β1s
0) = 0

or

(−∇f |x=x1 + β1s
0)TAs0 = 0 (4.39)

Recall eq.(4.37) and substitute that expression into eq.(4.39), to obtain

(−∇f |x=x1 + β1s
0)TA

[
1

λ∗
(x1 − x0)

]

= 0 (4.40)

Next, we find an expression for the difference x1 − x0 in terms of the gradients at

x0 and x1. Indeed, recalling the quadratic approximation, eq.(4.31),

∇f |x=x1 −∇f |x=x0 ≈ Ax1 − b− (Ax0 − b) = A(x1 − x0) (4.41)

Substitute expression (4.41) into eq.(4.40), after clearing the denominator:

(−∇f |x=x1 + β1s
0)T (∇f |x=x1 −∇f |x=x0) = 0 (4.42)

Upon expansion,

−(∇f |x=x1)T∇f |x=x1 +(∇f |x=x0

︸ ︷︷ ︸

−s0

)T∇f |x=x1

︸ ︷︷ ︸

0

+β1 (∇f |x=x1)T s0

︸ ︷︷ ︸

0

−β1(∇f |x=x0)T s0 = 0

92

where we have recalled eqs.(4.32) and (4.34). Hence, the above equation simplifies

to

(∇f |x=x1)T∇f |x=x1 + β1(∇f |x=x0)T s0
︸︷︷︸

−∇f|x=x0

= 0

whence we can solve for β1 as

β1 =
(∇f |x=x1)T∇f |x=x1

(∇f |x=x0)T s0
≡ (∇f |x=x1)T∇f |x=x1

(∇f |x=x0)T∇f |x=x0

or

β1 =
‖∇f |x=x1 ‖2
‖∇f |x=x0 ‖2 (4.43)

A third search direction s2 is now defined as a linear combination of s1 and−∇f |x=x2 :

s2 = −∇f |x=x2 + β2s
1 (4.44)

Now impose the conjugacy condition (4.6):

(s1)TAs2 = 0 ⇒ β2 =
(∇f |x=x2)T∇f |x=x2

(∇f |x=x1)t∇f |x=x1

=
‖∇f |x=x2 ‖1
‖∇f |x=x1 ‖1 (4.45)

In general, we have

si = −∇f |x=xi + βis
i−1, βi =

‖∇f |x=xi ‖1
‖∇f |x=xi−1 ‖1 , i = 1, 2, , . . . (4.46)

The procedure stops when ‖∇f |x=xi ‖ < ǫ, for a user-prescribed tolerance ǫ, which

indicates that the normality condition (4.2a) has been satisfied.

Summary of the Fletcher-Reeves Algorithm

1. Choose an initial guess x0

2. Let s0 = −∇f |x=x0

3. Let

x1 = x0 + λ∗s0 (4.47)

where λ∗ is the value of λ that makes (s0)T∇f |x=x1 = 0

4. Let i = 1

5. Let

si = −∇f |x=xi +
‖∇f |x=xi ‖2
‖∇f |x=xi−1 ‖2 s

i−1

93

6. Find the value of λ, λ∗, that makes (si)T∇f |x=xi+1 = 0. Then,

xi+1 = xi + λ∗si

7. If ‖∇f |x=xi+1 ‖ < ǫ, stop; else i← i+ 1 and go to step 5

4.5.3 Quasi-Newton Methods

As we will see in Section 4.6, Newton methods rely on the normality conditions,

which lead to a determined system of n nonlinear equations in n unknowns. In

applying those methods it is assumed that the Hessian of the objective function,

which is the Jacobian Φ of the Newton-Raphson method, is available, and hence,

the Hessian can be used to update the iterations. Quasi-Newton methods replace

the update ∆x = −Φ−1
0 φ

0 of eq.(3.80) by an expression that a) does not rely

on the Hessian, but only on the gradient of the objective function and b) does

not require any matrix inversion. These features make quasi-Newton methods quite

attractive, and many times, preferable over Newton methods. The two quasi-Newton

methods outlined below differ only in the form in which the update of the solution is

computed. These two methods aim at finding an approximation to (∇∇f)−1 using

only information on ∇f .

Moreover, while the Newton-Raphson method is known to have a quadratic con-

vergence rate, quasi-Newton methods show a convergence rate that lies between

gradient methods and Newton methods. That is, quasi-Newton methods have a

superlinear convergence rate.

The Davidon-Fletcher-Powell Method

The method is summarized below:

Algorithm

1. Give an initial guess: x0

2. Define an initial search direction: s0 = −∇f |x=x0

3. Define an initial Hessian-inverse: B0 = 1, the n×n identity matrix

4. Find λi that minimizes3 f(xi+1). Then, let

xi+1 = xi − λiBi∇f |x=xi

3In this step, any of the methods studied in Chapter 2 can be applied. A thorough discussion

of univariable minimization is available in (Brent, 1972).

94

5. gi = ∇f |x=xi+1 −∇f |x=xi

6.

Mi = λi
si(si)T

(si)Tgi
, Ni = −Big

i(Big
i)T

(gi)TBigi
, Bi+1 = Bi + Mi + Ni

7. si+1 = Bi+1g
i

8. if convergence criterion reached, stop; else, go to 4

The Broyden-Fletcher-Goldfarb-Shanno Method

This is an improved DFP method, but still with superlinear convergence. Only

difference with the DFP Algorithm lies in step 6, which is replaced by:

M′
i = αi

si(si)T

(si)Tgi
, αi = 1 +

(gi)TBig
i

(si)Tgi

N′
i = −si(gi)TBi

(si)Tgi

Bi+1 = Bi + M′
i + N′

i + (N′
i)

T

4.6 Newton Methods

4.6.1 The Newton-Raphson Method

Here, we resort to the normality condition (4.2a), and let

φ(x) ≡ ∇f

the normality condition thus leading to a system of n nonlinear equations in n

unknowns of the form of eq.(3.75), repeated below for quick reference:

φ(x) = 0

which can be solved using the Newton-Raphson method because, by assumption,

second-order derivatives of the objective function are available, and hence, the Ja-

cobian Φ of φ(x) with respect to x is nothing but the Hessian matrix of f(x),

i.e.,

Φ = ∇∇f

95

Let us introduce the notation

Φk ≡ Φ(xk), φk ≡ φ(xk) (4.48)

at the kth iteration

This method, while offering a quadratic convergence, is not as favoured as meth-

ods of the gradient type. One reason argued in the past is the cost of solving a

system of linear equations, namely, eq.(3.79) at each iteration, although with fast

processors this argument loses weight. Another reason why Newton methods are

not popular is the inherent requirement of a Hessian. In many practical problems,

e.g., structural optimization, the objective function is not an analytic function of

the design parameters. This is the case when the objective function is the maximum

von Mises stress in a structure. As this function is not analytic, its gradient, not

to speak of its Hessian, is not available. That is, not even with finite differences

is it possible to approximate the gradient of a non-anaytic function of the design

variables.

4.6.2 The Levenberg-Marquardt Method

The Levenberg-Marquardt method aims at enhancing the robustness of the Newton-

Raphson method, when the Hessian becomes ill-conditioned, by adding to the Hes-

sian, which is assumed positive-definite, a symmetric, isotropic matrix α1, where

α > 0 and 1 is the n× n identity matrix:

∇∇f ← ∇∇f + α1 (4.49)

Notice that the eigenvalues4 of ∇∇f , denoted by { λi }n1 , and those of ∇∇f , denoted

by {µi }n1 , are related by

µi = λi + α, i = 1, 2, . . . , n

If we denote by κ the 2-norm condition number of ∇∇f and by κ that of ∇∇f , we

have

κ =
λM

λm
, κ =

λM + α

λm + α
(4.50)

the result being that κ < κ, and hence, the numerical behaviour of the Hessian is

stabilized.

4By virtue of the assumed positive-definiteness of the Hessian, its eigenvalues are identical to

their singular values.

96

Chapter 5

Equality-Constrained

Optimization:

Normality Conditions

5.1 Introduction

In this chapter we introduce the simplest class of constrained-optimization problems,

namely, those subject to equality constraints. The problem statement at hand is

f(x) → min
x

(5.1a)

subject to

h(x) = 0l (5.1b)

where h is a smooth1 l-dimensional vector function of the n-dimensional vector

argument x, 0l denoting the l-dimensional zero vector.

Moreover, l < n, for an n-dimensional design vector x, as otherwise x would be

either fully constrained or overconstrained, thereby leaving no room for optimization!

The main outcome is the derivation of the two normality conditions of the prob-

lems at hand. We derive the first of these in two forms: (i) the primal form, in

terms of the gradients of the objective function f(x) to be minimized and of the

constraint functions of (5.1b), h; and (ii) the dual form, in terms of an orthogonal

complement of the gradient of h with respect to x, and ∇f(x).

As a special case, that lends itself to a closed-form solution, we study minimum-

norm problems, whereby a weighted Euclidean norm of the design vector is to be

1Smoothness implies that h(x) is continuous and has a continuous gradient with respect to x.

97

minimized subject to l linear equality constraints. In this vein, we introduce the

right Moore-Penrose generalized inverse.

5.2 The First-Order Normality Conditions

5.2.1 The Primal Form

We derive here the first-order normality conditions of problem (5.1a) in primal form.

To this end, we resort to Lagrange multipliers λ1, λ2, . . ., λl, one for each scalar

constraint hi(x) = 0, and group them in the l-dimensional array λ. Upon adjoining

the l constraints to the objective function f(x), we obtain the Lagrangian F (x;λ)

that we aim at minimizing under no constraints, while choosing λ in such a way

that the l equality constraints are satisfied. That is,

F (x;λ) ≡ f(x) + λTh → min
x, λ

(5.2)

subject to no constraints. We have thus transformed the equality-constrained min-

imization problem into an unconstrained one. We derive now the first-order nor-

mality conditions (FONC) of the problem at hand by recalling those of Chapter 2,

requiring that the gradient of the objective function with respect to the whole set

of design variables—x and λ in the case at hand—vanish. However, note that we

now have l additional variables besides the original n design variables. Hence, the

design-variable vector must be augmented correspondingly, which we do by defining

an augmented (n+ l)-dimensional design vector y:

y ≡
[
x

λ

]

(5.3)

Therefore, the unconstrained minimization problem (5.2) can be formulated in

a more compact form, namely,

F (y) → min
y

(5.4)

subject to no constraints. The first-order normality conditions of the above problem

are, thus,
∂F

∂y
=

[
∂F/∂x

∂F/∂λ

]

= 0n+l (5.5a)

where 0n+l denotes the (n + l)-dimensional zero vector. The above equation can

thus be broken down into two, namely,

98

∂F

∂x
= 0n (5.5b)

∂F

∂λ
= 0l (5.5c)

To gain insight into the geometric significance of the foregoing normality condi-

tions, we expand the left-hand side of eq.(5.5b) componentwise:

∂F

∂x1
≡ ∂f

∂x1
+ λ1

∂h1

∂x1
+ λ2

∂h2

∂x1
+ · · ·+ λl

∂hl

∂x1
= 0

∂F

∂x2
≡ ∂f

∂x2
+ λ1

∂h1

∂x2
+ λ2

∂h2

∂x2
+ · · ·+ λl

∂hl

∂x2
= 0

...
∂F

∂xn
≡ ∂f

∂xn
︸︷︷︸

∇f

+λ1
∂h1

∂xn
+ λ2

∂h2

∂xn
+ · · ·+ λl

∂hl

∂xn
= 0 (5.6)

where the first term of the ith equation can be readily identified as the ith component

of ∇f = ∂f/∂x. The remaining terms of the same equation can be identified as the

ith component of an inner product pi defined as

pi ≡ [∂h1/∂xi ∂h2/∂xi · · · ∂hl/∂xi]








λ1

λ2
...

λl








Therefore, if we let p =
[

p1 p2 . . . pn

]T

, then

p =








∂h1/∂x1 ∂h2/∂x1 · · · ∂hl/∂x1

∂h1/∂x2 ∂h2/∂x2 · · · ∂hl/∂x2
...

...
. . .

...

∂h1/∂xn ∂h2/∂xn · · · ∂hl/∂xn








︸ ︷︷ ︸

(∇h)T : n×l








λ1

λ2
...

λl








︸ ︷︷ ︸

λ

(5.7)

which can be readily identified, in turn, as the product (∇h)Tλ. The first n nor-

mality conditions, displayed in eq.(5.5b), thus amount to

∇f + JTλ = 0n (5.8a)

where J ≡ ∇h is the gradient of h with respect to x. The remaining l normal-

ity conditions, displayed in eq.(5.5c), yield nothing but the constraints themselves,

namely

h(x) = 0l (5.8b)

99

Equation (5.8a) is the vector representation of the first-order normality conditions

(FONC) sought. What eq.(5.8a) represents has a geometric significance that will be

made apparent upon rewriting it in the alternative form

JTλ = −∇f (5.9)

The foregoing equation states that, at a stationary point x0, −∇f , or ∇f for that

matter, lies in the range of the transpose of the gradient of the constraints. Notice

that the range J ′ of JT is a subspace of the n-dimensional space of design variables.

In fact, dim[R(JT)] = l < n, for this subspace is spanned by l linearly independent

vectors, the columns of JT , or the n-dimensional rows of J.

Algebraically, eq.(5.9) represents an overdetermined system of n linear equations

in the l < n unknowns { λi }l1. The normality condition then states that the least-

square approximation of this overdetermined system yields a zero error. That is, at

a stationary point, the n (> l) equations (5.9) become all consistent. Note that the

least-square approximation λo of the foregoing equations can be expressed in terms

of the left Moore-Penrose generalized inverse of JT , namely,

λo = −(JJT)−1J∇f (5.10)

The least-square error eo of this approximation is thus

eo = JTλo − (−∇f) = −JT (JJT)−1J∇f +∇f = [1− JT (JJT)−1J]∇f (5.11)

with 1 denoting the n× n identity matrix.

We can now express the first-order normality condition (5.9) in an alternative

form:

[1− JT (JJT)−1J]∇f = 0n (5.12)

The matrix inside the brackets in the foregoing equation can be readily identified

as a projector. This projector maps vectors in Rn onto the nullspace of J. In

other words, at a stationary point P0 the gradient of the objective function need not

vanish; only its projection onto the nullspace of the gradient of the constraints must

vanish, which is an alternative form of stating the first-order normality condition.

Sometimes the product ∇f , defined as

∇f ≡ [1− JT (JJT)−1J]∇f ∈ R
n (5.13)

is referred to as the constrained gradient. The FONC (5.12) can then be simply

stated as:

100

At a stationary point of the equality-constrained problem (5.1a & b), the

constrained gradient vanishes.

Exercise 5.2.1

Prove that

P ≡ 1− JT (JJT)−1J (5.14)

indeed maps vectors in Rn onto the nullspace of J and that P is a projector.

5.2.2 The Dual Form

One more form of the FONC of the problem at hand is now derived in what we can

term the dual form. To this end, we realize that the solution sought xo must lie

in a subset of the space Rn of design variables, of reduced dimension n − l, which

contains all design vectors x satisfying the constraints. Now, this set need not be a

vector space, and in general it is not. Indeed, if the constraints are nonlinear, then

the sum of two distinct vectors x1 and x2 will most likely not satisfy the constraints,

even if these two designs do so independently. Neither need the zero vector satisfy

the constraints, which thus disqualifies the set from being a subspace of R
n. What

we have as a feasible subset of the design space is a manifold F , i.e., a smooth surface

embedded in Rn. We shall term this subset the feasible manifold.

Finding F may be a tremendous task when the constraints are nonlinear and

algebraically complicated. The good news is that we do not actually need the feasible

manifold to obtain a feasible solution. What we really need is a feasible subspace

tangent to the said manifold at a feasible point. We discuss below how to obtain

this subspace. Assume that we have a feasible point PF , of position vector xF , i.e.,

h(xF) = 0l (5.15)

An arbitrary “move” ∆x from xF will most likely take PF away from the constraints

h(x) = 0l. What we would like to find is a feasible move, i.e., a vector ∆xF such

that xF + ∆xF still verifies the constraints, i.e.,

h(xF + ∆xF) = h(xF) + J(xF)∆xF + HOT = 0l (5.16)

Since we assumed at the outset that xF is feasible, eq.(5.15), we have, from the

foregoing equation and to a first-order approximation, i.e., neglecting HOT,

J(xF)∆xF = 0l (5.17)

101

Moreover, J is of l× n, with l < n, and hence, it is possible to find n− l linearly

independent vectors of R
n lying in N [J(xF)], i.e., in the nullspace of J(xF). These

vectors can be produced in many ways. We will not dwell, for the time being, in

the pertinent computing methods, but rather on the concepts behind those n − l

vectors. Let us thus assume that we have found such n − l linearly independent

vectors, arrayed in the n× n′ matrix L, with n′ ≡ n− l, and hence,

JL = Oln′ (5.18)

matrix L being termed an orthogonal complement of J and Oln′ denoting the l× n′

zero matrix.

Now, if we define

∆xF = L∆u (5.19a)

for arbitrary ∆u ∈ R
n′

, we will have

J∆xF = JL∆u = 0n′ (5.19b)

the “move” ∆xF thus verifying the constraints to a first order. Now, the first-order

normality condition of the problem at hand can be cast in the form

∆f ≡ (∇f)T ∆xF = (∇f)TL∆u = (LT∇f)T ∆u = 0 ∀ ∆u

Hence, the alternative form of the FONC is

LT∇f = 0n′ (5.20)

That is, at a stationary point, the gradient of f need not vanish; however, it must lie

in the nullspace of LT , i.e., in the range of JT . The latter is, in fact, a restatement

of the primal form of the FONC, as per eq.(5.9). We can thus call LT∇f the feasible

gradient, and represent it by ∇uf , i.e.,

∇uf = LT∇f (5.21)

which is a (n− l)-dimensional vector. Sometimes the feasible gradient is also called

the reduced gradient. Notice that, from eq.(5.19a), L has the differential interpreta-

tion

L =
∂x

∂u
(5.22)

and hence, the FONC (5.20) can be restated as

(
∂x

∂u

)T (
∂f

∂x

)

≡ ∂f

∂u
= 0n′ or ∇uf = 0n′ (5.23)

102

That is, the FONC (5.23) states that, at a stationary point of problem (5.1a & b),

the gradient of f(x) with respect to the vector of independent design variables u

vanishes.

Remark: When comparing the two forms of the FONC, eqs.(5.12) and (5.20),

the simplicity of the latter with respect to the former is apparent. This simplic-

ity, however, is more than formal, for eq.(5.12) involves n scalar equations, while

eq.(5.20) involves only n− l scalar equations.

5.3 The Second-Order Normality Conditions

5.3.1 The Primal Form

The second-order normality conditions (SONC) of the problem at hand are now

derived. To this end, the second variation ∆∆F of the Lagrangian at a stationary

point yo = [xT
o , λ

T
o]T is first derived. This is defined up to second-order terms, i.e.,

∆∆F ≡ ∂F

∂y

∣
∣
∣
∣
y=yo

∆y +
1

2
∆yT ∂

2F

∂y2

∣
∣
∣
∣
y=yo

∆y (5.24)

where

∆y = [∆xT
F ∆λF]T (5.25)

As we have assumed that the above variation is computed at a stationary point

yo, the first variation, i.e., the first term in the right-hand side of eq.(5.24), vanishes.

Moreover, let us assume that the variation ∆xF of the design-variable vector is

feasible, and hence, verifies the constraints (5.1b) to a first order, i.e.,

h(xo + ∆xF) = h(xo) + J∆xF = 0l (5.26a)

Now, since xo is feasible, the first term of the above expression vanishes, and hence,

the feasible move ∆xF verifies

J(xo)∆xF = 0l (5.26b)

We thus have, upon expansion of ∆∆F , as given by eq.(5.24),

∆∆F ≡ 1

2
∆yT ∂

2F

∂y2
∆y

=
1

2
[∆xT

F ∆λT]

[∇∇f + ∂(JTλ)/∂x JT

J Ol

] [
∆xF

∆λ

]

=
1

2
∆xT

F

(

∇∇f +
∂(JTλ

∂x

)

∆xF + ∆xT
FJT (xo)∆λ

103

where, as usual, ∇∇f represents the Hessian of f(x) with respect to x, and Ol

denotes the l × l zero matrix.

Further, by virtue of eq.(5.26b), the second term of the above expansion vanishes,

the expansion thus reducing to

∆∆F =
1

2
∆xT

F

[

∇∇f +
∂(JTλ)

∂x

]

∆xF (5.27)

which is a quadratic form associated with the n× n matrix Hc, defined as

Hc ≡ ∇∇f +
∂(JTλ)

∂x
(5.28)

which thus plays the role of the Hessian of the objective function under constrained

minimization. For this reason, we term this matrix the constrained Hessian. Notice

that computing the above Hessian requires the computation of the unconstrained

Hessian ∇∇f and ∂(JTλ)/∂x, which involves the second derivatives of h(x) with

respect to x. Notice also that, while the unconstrained Hessian is symmetric, its

constrained counterpart need not be so. However, in light of Fact 3.2.2, the skew-

symmetric component of the second term of Hc does not contribute to the second

variation of F . Hence, the SONC can be stated in terms of the sign-definition of

the symmetric component of the foregoing matrix. To this end, we redefine first the

constrained Hessian, to read:

Hc ≡ ∇∇f +
1

2

[

∂(JTλ)

∂x
+

(
∂(JTλ)

∂x

)T
]

(5.29)

which is symmetric. A stationary point xo of the constrained problem eq.(5.1) is

thus

(i) a local minimum if the constrained Hessian is positive-definite;

(ii) a local maximum if the constrained Hessian is negative-definite;

(iii) a saddle point if the constrained Hessian is sign-indefinite.

Remarks:

1. The above conditions are sufficient, but not necessary, as we shall show in

Subsection 5.3.2;

2. the verification of the SONC requires the computation of: the unconstrained

Hessian ∇∇f of the objective function; the Hessian of each scalar constraint;

and the Lagrange multipliers;

104

3. the verification of the SONC requires, additionally,the solution of an eigenvalue

problem associated with a n× n symmetric matrix, although the problem, in

fact, involves only n− l independent variables.

In Subsection 5.3.2 we shall derive an alternative form of the SONC, the dual

form, that a) is necessary and sufficent and b) requires solving an eigenvalue problem

associated with a n− l matrix, and hence, is simpler to apply.

5.3.2 The Dual Form

The alternative, dual form of the SONC is readily derived if we define the feasible

move ∆xF as the image of a (n − l)-dimensional vector ∆u under the orthogonal

complement L of J:

∆xF = L∆u (5.30)

If now this expression is substituted into eq.(5.27), an alternative expression for the

second variation is derived, namely,

∆∆F =
1

2
∆uTLT

[

∇∇f +
∂(JTλ)

∂x

]

L∆u (5.31)

which, again, can be rewritten in terms of the symmetric component of the second

term in brackets in the above form, whence the (n− l)× (n− l) matrix Hu, that we

shall call the reduced Hessian, is derived:

Hu ≡ LT

{

∇∇f +
1

2

[
∂(JTλ)

∂x
+

(
∂(JTλ)

∂x

)]}

L (5.32)

Therefore, Hu is a (n − l) × (n − l) symmetric matrix. The reduced Hessian can

be regarded, in fact, as a projection of the constrained Hessian onto the space of

increments ∆u of the feasible variables. We can thus state the SONC in exactly

the same form as we did for the primal form, if by substituting constrained Hessian

by reduced Hessian, and noting that the conditions thus resulting are necessary and

sufficient.

Example 5.3.1 (Taken from Luenberger (1984)) Find all the stationary points

(SPs) of

f = x1x2 + x2x3 + x1x3

subject to

h(x) = x1 + x2 + x3 − 3 = 0

and identify the nature of each SP, i.e., maximum, minimum or saddle point.

105

We start by calculating ∇f , JT = ∇h and ∇∇f :

∇f =





x2 + x3

x1 + x3

x1 + x2



 ,∇∇f =





0 1 1

1 0 1

1 1 0



 , ∇h = JT =





1

1

1





whence J is constant. The four FONC of the Lagrangian are

x2 + x3 + λ = 0

x1 + x3 + λ = 0

x1 + x2 + λ = 0

x2 + x2 + x3 = 3

with only one Lagrange multiplier, given that there is one single constraint. More-

over, the FONC form a determined system of linear equations, and hence, they

admit, if the coefficient matrix is not singular, one unique solution.

Summation of the first three equations leads to

2(x2 + x2 + x3) = −λ

which, by virtue of the fourth equation, leads to λ = −2. Hence, x1 = x2 =

x3 = 1 is the solution of the foregoing equations. Now we verify the FONC in dual

form. To this end, we first find an orthogonal complement of J. Given that J is a

1 × 3 matrix in this case, i.e., a row vector, an orthogonal complement L of J is

a 3 × 2 matrix, whose two three-dimensional columns are orthogonal to the single

row of J. A suitable candidate is given below, normalized so that its two columns

be unit vectors, although this normalization is not essential. It is convenient from

a numerical viewpoint, though, in order to avoid multiplication by too large or too

small numbers. Thus,

L =

√
2

2





1 0

−1 1

0 −1





Further,

JTλ =





1

1

1



λ =





λ

λ

λ



 ⇒ ∂(JTλ)

∂x
= O33

It is noteworthy that the second term of the constrained Hessian vanishes because

J is constant, a consequence of the linearity of the constraint h in the design vector

x. We can thus state that

106

In the case of linear equality constraints h(x), the constrained Hessian

is identical to its unconstained counterpart.

Therefore,

∇∇f +
∂(JTλ)

∂x
=





0 1 1

1 0 1

1 1 0





Therefore, the reduced Hessian is

Hu = LT

(

∇∇f +
∂(JTλ)

∂x

)

L

=
1

2

[
1 −1 0

0 1 −1

]




0 1 1

1 0 1

1 1 0









1 0

−1 1

0 −1





︸ ︷︷ ︸
2

6

6

6

4

−1 0

1 −1

0 1

3

7

7

7

5

=
1

2

[−2 1

1 −2

]

which is constant throughout the whole feasible manifold. Moreover, notice that: a)

Hu is a 2 × 2 symmetric matrix, and hence, has two real eigenvalues; b) tr(Hu) =

−4 < 0; and c) det(Hu) = 3 > 0. From b) it is apparent that the larger eigenvalue

is negative; from c), it is apparent that the two eigenvalues bear the same sign,

and hence, the two eigenvalues of Hu are negative, the reduced Hessian thus being

negative-definite, and the unique SP is, consequently, a maximum. Moreover, this

is the global maximum of the given f(x).

Example 5.3.2 (The Design of a Positioning Robot for a Given Reach)

In designing the manipulator of Fig. 5.1 Angeles (2007), the value of the length a

that will produce the reach of a Puma 560 robot, namely, 0.8772 m is to be computed.

Thus, the global maximum of the distance d of the robot operation point C from the

Z1-axis has to be found. This can be done by: (i) finding all stationary points of d;

(ii) identifying each SP as a local maximum, minimum or saddle point; and (iii)

upon comparing all local maxima, select the maximum maximorum, i.e., the largest

of all local maxima.

Solution: It is apparent that the maximum reach is independent of θ1, the angle of

rotation of the first joint, for motions about the first joint do not affect the reach. So,

107

Figure 5.1: Manipulator configuration for C(0, a, 0).

we lock the first joint and, in the posture of Fig. 5.1, rotate the third joint through

one full turn, point C thus describing a circle C of radius a lying in the Y1-Z1 plane,

with centre at point O′
3 of coordinates (0, a, −a). Next, upon performing a full

rotation of the second joint, the circle describes a toroid—not a torus, for this is

generated by a circle turning about an axis contained in the plane of the circle—of

axis Z2, the problem now reducing to one of finding the point of the surface of the

toroid lying the farthest from the Z1 axis. Figure 5.2 includes side views of circle C.
Let the trace of the toroid with the X2-Z2 plane be the contour T of Fig. 5.3.

It is most convenient to represent this contour with the aid of the non-dimensional

variables u and v, which are defined as

u ≡ x2

a
, v ≡ z2

a
(5.33)

In terms of these new variables, the equation of T becomes

T : h(u, v) ≡ (u2 + v2)(u2 + v2 − 4v)− 4(u2 − v2 − 1) = 0 (5.34)

The contour T defined by the implicit function h(u, v) = 0 is displayed in Fig. 5.3.

The distance of point C from the Z1-axis can be shown to be d = (u + 1)2 + v2.

108

Figure 5.2: Side views of circle C: (a) and (b) at the position of Fig. 5.1; and (c) at

an arbitrary position for a given value of θ2

Now, the maximum distance rM of O1 to T can be found as the solution of the

optimization problem defined below:

f(u, v) ≡ 1

2
[(u+ 1)2 + v2] → max

u,v
(5.35)

subject to eq.(5.34). Notice that, rather than maximizing d, we aim at maximiz-

ing d/2, which amounts exactly to the same goal, the difference being that, upon

differentiation, the factor 1/2 will help eliminate an inconvenient factor of 2 in the

gradient of f(x).

We thus have an equality-constrained maximization problem. In order to find

the normality conditions of this problem, we resort to Lagrange multipliers, thus

defining a new, unconstrained, maximization problem:

F (u, v, λ) ≡ f + λh → max
u,v,λ

(5.36)

The normality conditions of the foregoing problem are, thus,

∂F

∂u
≡ u+ 1 + 4λu(u2 + v2 − 2v − 2) = 0 (5.37a)

∂F

∂v
≡ v + 4λ(v − 1)(u2 + v2 − 2v) = 0 (5.37b)

∂F

∂λ
≡ (u2 + v2)(u2 + v2 − 4v)− 4(u2 − v2 − 1) = 0 (5.37c)

109

the last equation being just a restatement of the constraint, eq.(5.34). Now we

eliminate λ, the Lagrange multiplier, dialytically Salmon (1885) from eqs.(5.37a &

b). We do this by rewriting these two equations in linear homogeneous form in the

“variables” λ and 1, namely,
[

4u(u2 + v2 − 2v − 2) u+ 1

4(v − 1)(u2 + v2 − 2v) v

] [
λ

1

]

=

[
0

0

]

(5.38a)

Obviously, the foregoing equation requires a nontrivial solution—note that one com-

ponent of the vector of “unknowns” is unity!—which in turn requires that the coef-

ficient matrix be singular, i.e.,

det

[
4u(u2 + v2 − 2v − 2) u+ 1

4(v − 1)(u2 + v2 − 2v) v

]

= 0 (5.38b)

Upon expansion,

4u(u2 + v2 − 2v − 2)v − 4(v − 1)(u2 + v2 − 2v)(u+ 1) = 0

or

S : u3 − v3 − u2v + uv2 + u2 + 3v2 − 4uv − 2v = 0 (5.38c)

Now, the maximum reach is found via the solution of the system of polynomial

equations (5.34) and (5.38c). The former is a quartic equation, the latter cubic. The

Bezout number2 of the foregoing system of equations is defined as the product of

the degrees of those equations, i.e., 4 × 3 = 12, which gives an upper bound of 12

for the number of solutions, both real and imaginary, of the problem at hand. One

graphical means of obtaining estimates of the real solutions of this system consists in

plotting the two corresponding contours in the u-v plane, as shown in Fig. 5.4. The

global maximum reach occurs apparently, at point A, of approximate coordinates

(2.2, 1.4), estimated by inspection, which leads to a visual estimate of rM , namely,

rm ≈ 3.5a (5.39)

The four intersections of these two curves correspond to the four stationary values

of the distance from a point in the trace T to the point O1 in the u-v plane. Of these

four intersections, two are local maxima and two local minima. The normality of

∇f , which in this case is identical to the vector from O1 to T at the intersection

points, is to be highlighted.

2To define the Bezout number of a system of p polynomial equations in p variables x1, x2,

. . ., xp, we look first at the ith equation: A typical term of this equation involves the product

xd1i

1
xd2i

2
· · ·xdpi

p . The degree di of this equation is the maximum of d1i + d2i + . . . + dpi, for

i = 1, . . . , Ni, where Ni denotes the number of terms of the ith equation. The Bezout number NB

of this system is defined as NB = d1d2 . . . dp.

110

T T

Figure 5.3: Contour of the trace T of the toroid on the u-v plane

The foregoing system is solved more precisely using computer algebra, thus ob-

taining the four real solutions given below:

(u)A = 2.132242, (v)A = 1.4689944

(u)B = −1.578095, (v)B = 1.975316

(u)C = −1.132242, (v)C = 0.116796

(u)D = 1.025308, (v)D = 0.366325

which lead to stationary reach values of

rA = 3.459606a, rB = 2.058171a, rC = 0.176435a, rD = 2.058171a

for a global maximum reach of

rM = 3.459606a

111

T T

S

Figure 5.4: Plots of the two contours, S and T

The value of a that will yield the foregoing maximum reach is thus found as

3.460a = 0.8772 ⇒ a = 0.2535 m

thereby completing the solution.

The first- and second-order normality conditions are next verified. It is apparent

that points A and B yield local maxima, C and D local minima. We verify the

normality conditions for each point. First, we list below the general expressions for

the various items needed in the sequel:

∇f =

[
u+ 1

v

]

, J = (∇h)T = [4u(u2 + v2 − 2v − 2) 4(v − 1)(u2 + v2 − 1)] ,

∇∇f = 1,
∂(JTλ)

∂x
≡ ∂λ∇h

∂x
= λ∇∇h

112

i.e.,

∂(JTλ)

∂x
= λ

[
12u2 + 4v2 − 8v − 8 2u(2v − 4) + 4uv

2u(2v − 4) + 4uv 4u2 + 4v2 − 8v + 4v(2v − 4) + 8

]

the expression for ∂(JTλ)/∂x in terms of the Hessian ∇∇h following in this partic-

ular case because λ is a scalar. Moreover, numerical values for λ will be needed, at

each of the four stationary points. These are computed from the FONC in primal

form, eq.(5.9):
[

4u(u2 + v2 − 2v − 2)

4(v − 1)(u2 + v2 − 1)

]

λ = −
[
u+ 1

v

]

which is, as expected, an overdetermined system of two linear equations in one single

unknown, λ. This is computed using the left Moore-Penrose generalized inverse of

JT , as in eq.(5.10)3, using computer algebra,

λ = −1

4

N

D

where

N = u4 + u3 + 2vu2v2 + uv2 − 3vu2 − 2uv − 2u2 − 2u+ v4 − 3v3 + 2v2

D = u6 + 3u4v2 − 6u4v − 3u4 + 3u2v4 − 12u2v3 + 4vu2 + 4u2 + 13v4

+ 4v2 + v6 − 6v5 − 12v3 + 10u2v2

Using the above expressions, the various items appearing in the FONC and SONC

are now calculated at each SP. These are displayed in Table 5.1.

From the numerical results recorded in Table 5.1, it is apparent that:

The constraint is respected to the precision of the data, as the values of h at

the four stationary points is smaller than 10−4;

the maximum maximorum, i.e., the global maximum of the distance d is found

at the SP A;

∇f does not vanish at any of the SPs, but it need not vanish anyway; however,

this vector lies in the range of J at the four SP, which is reflected by the

proportionality between the two components of the two arrays;

3While the verbatim use of the formula of this equation is not recommended for numerical

computations, because of the inherent round-off error amplification, the use of the formula here is

safe, as all computations are done symbolically, and hence, with infinite accuracy.

113

Table 5.1: Summary of FONC & SONC for Example 5.3.2

SP A B

f 5.984442 2.118034

h 0.000033 −0.000002

(∇f)T [3.132242, 1.468994]T [−0.578095, 1.975316]T

J [15.065669, 7.065704]T [−2.787706, 9.525424]T

LT (norm’zed) [−0.424615, 0.905374] [−0.959744,−0.280878]

∇∇f 122 122

Hc

[−8.030863 −1.663262

−1.663262 −2.498075

] [−3.497832 2.553411

2.553411 −2.603403

]

Hu −2.216791 −2.050618

SP C D

f 0.015565 2.118033

h 0.000001 0.000002

(∇f)T [−0.132242, 0.116796]T [2.025308, 0.366325]T

J [4.248076,−3.751926]T [−6.345424,−1.147713]T

LT (norm’zed) [0.661981, 0.749521] [0.177985,−0.9840333]

∇∇f 122 122

Hc

[
1.202463 0.249038

0.249038 1.326504

] [
1.708971 −1.658981

−1.658981 2.603399

]

Hu 1.519277 3.156182

114

∇∇f equals the 2 × 2 identity matrix everywhere in the u-v plane, but this

value alone doesn’t give information on the nature of each SP; what gives this

information is the reduced Hessian Hc, which turns out to be a 1×1 matrix, i.e.,

a scalar, which is negative at SPs A and B, thereby indicating local maxima,

and positive at the two other SPs, which indicates local minima. The global

minimum is attained at C. Interestingly, for this example, the smaller local

maximum equals the greater local minimum, up to the ninth digit.

A visualization of the workspace of the given robot is included in Fig. 5.5, while

the intersection of the paraboloid f(u, v) = (1/2)[(u+ 1)2 + v2 with the cylindrical

surface generated by h = (u2 + v2)(u2 + v2 − 4v) − 4(u2 − v2 − 1) is illustrated in

Fig. 5.6.

A Maple worksheet, x5-3-1-fonc+sonc.mw, is available on the course website

with all calculations leading to the results of the above table.

Example 5.3.3 (The Equilibrium Configuration of a Four-Link Chain)

We consider here the problem of determining the equilibrium configuration of a chain

composed of four identical links of length ℓ each, suspended at two points located at

the same level, a distance d apart. This problem was proposed by Luenberger (1984)

to illustrate methods of nonlinear programming. Here, we use a simplified version

of this problem with the purpose of obtaining a solution by simple equation-solving.

The principle determining the equilibrium configuration is one of minimum energy.

This leads to the need of finding the stationary points of its potential energy, and

then finding the nature of these points.

At the outset, we exploit the symmetry of the problem, which enables us to

reduce the number of design variables to only two, namely, the inclination of the

two links on the left half of the chain. Let θi, for i = 1, 2, denote the angle made

by the axis of the ith link from the vertical and µ denote the mass distribution per

unit length, while g represents the gravity acceleration. The potential energy V of

the whole chain is, thus, for an arbitrary configuration of the chain,

V (θ1, θ2) = −2µgℓ

(
1

2
cos θ1 + cos θ1 +

1

2
cos θ2

)

which is a minimum at an equilibrium configuration. However, notice that the two

design variables are not independent, for their horizontal span must be exactly d/2,

i.e.,

ℓ(sin θ1 + sin θ2)−
d

2
= 0

115

f(u, v)

v u

O

Figure 5.5: The toroidal workspace of the given robot

116

f(u, v)

v u

O

A

D

C

B

Figure 5.6: The distance paraboloid and its intersection with the cylindrical surface

generated by h(x) = 0

117

d

θ1

θ2

θ3

θ4

ℓ

ℓ
ℓ

ℓ
g

Figure 5.7: A four-link chain

The optimum design problem at hand now has the form

f(θ1, θ2) ≡
V

µgℓ
= −3 cos θ1 − cos θ2 → min

θ1,θ2

subject to

h(θ1, θ2) = sin θ1 + sin θ2 − p = 0, p ≡ d

2ℓ

The Lagrangian of the problem is to be minimized, i.e.,

F (θ1, θ2) = −3 cos θ1 − cos θ2 + λ(sin θ1 + sin θ2 − p) → min
θ1,θ2,λ

subject to no constraints. The normality conditions of the unconstrained problem

are, thus

∂F

∂θ1
= 3 sin θ1 + λ cos θ1 = 0

∂F

∂θ2
= sin θ2 + λ cos θ2 = 0

∂F

∂λ
= sin θ1 + sin θ2 − p = 0

The problem has thus been reduced to solving the foregoing system of three nonlinear

equations in three unknowns, θ1, θ2 and λ. While this nonlinear system can be solved

using the Newton-Raphson method, the simplicity of the equations lends itself to

a more comprehensive approach. Indeed, the Newton-Raphson method yields one

single solution at a time, the user never knowing whether any other solutions exist.

Moreover, there is no guarantee that the solution found is a minimum and not a

maximum or a saddle point.

118

For starters, we can eliminate λ from the above equations, for it appears linearly

in the first two of those. We thus rewrite those two equations in the form

Ax = 02

with 02 denoting the two-dimensional zero vector, while A and x are defined as

A ≡
[

cos θ1 3 sin θ1

cos θ2 sin θ2

]

, x ≡
[
λ

1

]

6= 02

Since the solution sought cannot be zero, the above homogeneous system must admit

a nontrivial solution, which calls for A to be singular, i.e.,

∆(θ1, θ2) ≡ det(A) = 0

Upon expansion,

∆(θ1, θ2) = cos θ1 sin θ2 − 3 sin θ1 cos θ2 = 0

which we shall call the reduced normality condition. We thus have eliminated λ

dialytically Salmon (1885), the problem thus reducing to a system of two equations

in two unknowns, h(θ1, θ2) = 0 and ∆(θ1, θ2) = 0. We can further reduce the same

system to one single equation in one single unknown, which can be done by dialytic

elimination as well. However, notice that dialytic elimination is applicable to systems

of polynomial equations, while the two equations at hand are not polynomial; they

are trigonometric. Nevertheless, by application of the well-known trigonometric

“tan-half” identities:

cosx ≡ 1− T 2

1 + T 2
, sin x ≡ 2T

1 + T 2
, T ≡ tan

(x

2

)

the two equations can be transformed into polynomial equations. We will not pursue

here this elimination procedure. Instead, we plot the two foregoing functions in the

θ1-θ2 plane, the solutions sought being found visually at the intersection of the

corresponding contours. In order to plot the contours, however, we must assign a

numerical value to parameter p. By assuming d = 1.25 m and ℓ = 0.5 m, we obtain

p = 1.25. These contours are plotted in Fig. 5.8.

The contours apparently intersect at two points, of coordinates estimated visually

at

θ1 = 0.45, θ2 = 1.00 and θ1 = 2.70, θ2 = 2.20

with all values in radians. These values are quite rough. More precise values can

be obtained by means of Newton-Raphson’s method applied to the two nonlinear

119

321-1-2-3

3

2

1

-1

-2

-3

θ2

θ1

Figure 5.8: The reduced normality condition and the equality constraint (dashed

contour)

equations, using the foregoing estimates as initial guesses. Alternatively, the two

equations can be solved dialytically by means of computer algebra. For example,

upon invoking Maple’s solve procedure, the real roots below were reported:

θ1 = 0.4449420670, θ2 = 0.9607027573 and θ1 = 2.696650587, θ2 = 2.180889896

Translated into degrees, the foregoing angles read:

θ1 = 25.49330256◦, θ2 = 55.04421335◦ and θ1 = 154.5066974◦, θ2 = 124.9557866◦

The first solution corresponds, apparently, to a minimum, the second to a maximum.

If this is the case, then the sum of the corresponding roots for the two solutions

should be π, which is the case. Moreover, upon evaluation of the objective function

at the two solutions, we obtain

f(0.4449420670, 0.9607027573) = −1.640425478

f(2.696650587, 2.180889896) = 1.640425479

which clearly shows that the first solution is a minimum, the second a maximum.

Notice the symmetry of the objective function at the two foregoing extrema.

120

The reader is invited to verify the first- and second-order normality conditions.

The chain at its equilibrium configuration is displayed in Fig. 5.9. A similar dis-

play of the second stationary point should show that the two stationary points are

symmetric with respect to the line joining the two supports.

Figure 5.9: The equilibrium configuration of a four-link chain

5.3.3 A Mechanical Interpretation of the Lagrange Multi-

pliers

The Lagrange multipliers bear a mechanical interpretation, as illustrated below.

This is done with the aid of Example 5.3.3.

The force f of constraint acting at the bottom joint is first calculated. To this

end, the chain is cut into two halves, the left half being illustrated in Fig. 5.10,

which depicts the force f required to balance the weight of the links. This force is

provided by the right half. By symmetry, this force is bound to be horizontal.

The constraint force is found by application of the Principle of Virtual Work:
∑
πi = 0, where πi is the power developed by the ith external force. Further, let π1

and π2 denote the power developed by the weight of the first and the second links,

respectively, while π3 denotes the power developed by the constraint force, i.e.,

π1 = µℓg · ċ1, π2 = µℓg · ċ2, π3 = f · ȯ2

where, as illustrated in Fig. 5.10, ċi denotes the velocity of the centre of mass Ci of

link i, while ȯi denotes the velocity of the ith joint Oi, for i = 1, 2. In the same

figure, the velocity triangles of C2 and O2 are included.

121

O0

θ1

ċ1

C1

O1

θ2 ȯ1

ȯ1

ȯ1

µℓg

µℓg
O2

ċ2

ċ2/O1

ȯ2

ȯ2/O1

C2

f

Figure 5.10: The left-hand half of a four-link chain

The power developed by each of the external forces is calculated as the inner

product of the corresponding force by its velocity, and hence,

g · ċ1 = −g ℓ
2
θ̇1 sin θ1

g · ċ2 = g · (ȯ1 + ċ2/o1
) = 2g · ċ1 + g · ċ2/o1

= −gℓ
(

θ̇1 sin θ1 +
1

2
θ̇2 sin θ2

)

f · ȯ2 = f · (ȯ1 + ȯ2/o1
) = Fℓ(θ̇1 cos θ1 + θ̇2 cos θ2)

where F ≡ ‖f‖. The Principle of Virtual Work thus yields

−µg ℓ
2

2
θ̇1 sin θ1 − µgℓ2

(

θ̇1 sin θ1 +
1

2
θ̇2 sin θ2

)

+ Fℓ(θ̇1 cos θ1 + θ̇2 cos θ2) = 0

or
[

−µgℓ
(

1

2
sin θ1 + sin θ1

)

+ F cos θ1

]

θ̇1 +

(

−1

2
µgℓ sin θ2 + F cos θ2

)

θ̇2 = 0

Since θ̇1 and θ̇2 are independent, the foregoing relation holds if and only if their

respective coefficient vanishes, namely,

−µgℓ3
2

sin θ1 + F cos θ1 = 0, −µgℓ1
2

sin θ2 + F cos θ2 = 0

122

or, with λ defined as

λ ≡ F

µgℓ/2

a simpler form of the foregoing equations is obtained, namely,

3 sin θ1 − λ cos θ1 = 0 and sin θ2 − λ cos θ2 = 0

which are identical to the first two of the FONC of Example 5.3.3. Hence the

mechanical interpretation:

The Lagrange multiplier of the optimization problem under study is pro-

portional to the force required to keep the two halves of the chain together.

5.4 Linear-Quadratic Problems

5.4.1 The Minimum-Norm Solution of Underdetermined Sys-

tems

We start by recalling a concept of paramount importance in optimization:

Definition 5.4.1 (Convex set) A set of points C is convex if, given any two dis-

tinct points P1 and P2 of the set, then any point P of C comprised between P1 and

P2 also belongs to the set. Otherwise, the set is nonconvex.

More formally, if xi denotes the position vector of Pi, for i = 1, 2, and x that of P ,

then, for any scalar α comprised in the interval [0, 1], we can express the position

vector of P as a convex combination of those of P1 and P2, namely,

x = αx1 + (1− α)x2, 0 ≤ α ≤ 1 (5.40)

We can thus rephrase the definition of convex set as

Definition 5.4.2 (Convex set—An alternative definition) A set of points C
is convex if, given any two distinct points of position vectors x1 and x2, then the

point whose position vector is a convex combination of x1 and x2 also belongs to C.
Germane to the concept of convex set is that defined below:

Definition 5.4.3 (convex function) A function f(x) is convex if, for any x1 and

x2, and a x defined as a convex combination of x1 and x2, and given, e.g., as in

eq.(5.40),

f(x) ≤ αf(x1) + (1− α)f(x2) (5.41)

123

Now we study the underdetermined system of linear equations

Cx = d (5.42)

where C is a p×n matrix with p < n, all equations being assumed linearly indepen-

dent. Apparently, the system admits infinitely-many solutions. Notice that the set

of solutions of this equation does not form a vector space. Indeed, since 0 is not a

solution, the solution set does not include the origin, which disqualifies the set from

being a vector space. However, the same set has a quite interesting property:

Fact 5.4.1 The set of solutions of the system (5.42) is convex.

Proof : Assume that x1 and x2 are two distinct solutions of eq.(5.42), i.e.,

Cx1 = d (5.43a)

Cx2 = d (5.43b)

Now, for a real α such that 0 ≤ α ≤ 1, we have

C(αx1) = αd (5.44a)

C[(1− α)x2] = (1− α)d (5.44b)

Upon adding sidewise eqs.(5.44a & b), we obtain

C[αx1 + (1− α)x2] = d (5.45)

thereby completing the proof.

Geometrically, eq.(5.42) represents a plane embedded in n-dimensional space,

offset from the origin. Each point of the plane thus has a position vector that is a

solution. Out of the infinity of solutions satisfying the equation, then, there is one

that lies closest to the origin. This is the minimum-norm solution of eq.(5.42). We

derive below this solution upon solving the problem below:

f(x) ≡ 1

2
‖x‖2 → min

x
(5.46)

subject to eq.(5.42). As before, we transform the above constrained problem into

an unconstrained one. We do this by means of Lagrange multipliers:

F (x) ≡ f(x) + λT (Cx− d) → min
x,λ

(5.47)

124

subject to no constraints. The normality conditions of this problem are, thus,

∂F

∂x
≡ ∇f + CTλ = x + CTλ = 0n (5.48a)

∂F

∂λ
≡ Cx− d = 0p (5.48b)

the second set of the above equations thus being just a restatement of the system

of underdetermined equations (5.42). Solving for x from eq.(5.48a) yields

x = −CTλ (5.49a)

which, when substituted into eq.(5.48b), leads to

−CCTλ− d = 0p (5.49b)

Since we assumed at the outset that the given eqs.(5.42) are linearly-independent,

C is of full rank, and hence, the p× p symmetric matrix CCT is nonsingular. As a

result, this matrix is, in fact, positive-definite, the outcome being that eq.(5.49b) can

be solved for λ by means of the Cholesky decomposition. The result is, symbolically,

the minimum-norm solution xo sought:

xo = C†d (5.50a)

where

C† = CT (CCT)−1 (5.50b)

which is the right Moore-Penrose generalized inverse of the rectangular matrix C.

One can see that the straightforward evaluation of C† by its definition, eq. (5.50a),

involves the inversion of a matrix product, which is computationally costly and

prone to ill conditioning, similar to the case of the left Moore-Penrose generalized

inverse of eq.(3.59b). Moreover, the solution of eq. (5.50a) does not hold when C is

rank-deficient.

An efficient and robust alternative to computing explicitly the right Moore-

Penrose generalized inverse relies in Householder reflections, as explained below:

First, a set of n× n Householder reflections4 H1, H2, . . . , Hp is defined, such that

the product H = Hp · · ·H2H1 transforms CT into upper-triangular form, thereby

obtaining

HCT =

[
U

On′p

]

(5.51)

4See Subsection 3.5.2

125

where U is a p × p upper-triangular matrix, which is nonsingular because we have

assumed that C is of full rank, while On′p is the n′×p zero matrix, with n′ ≡ n−p.
Further, we rewrite eq.(5.42) in the form

CHTHx = d (5.52)

which does not alter the original equation (5.42) because H is orthogonal. Letting

y = Hx, from eqs. (5.51) and (5.52), one can realize that x and y have the same

Euclidean norm, and hence, minimizing the norm of y is equivalent to minimizing

that of x. Thus, x will be the minimum-norm solution of the underdetermined

system (5.42) if y is, correspondingly, the minimum-norm solution of the system

(HCT)Ty = d (5.53a)

Upon substitution of eq.(5.51) into eq.(5.53a), we obtain, with a suitable partitioning

of y,

[UT OT
n′p]

[
yU

yL

]

= d, y ≡
[
yU

yL

]

(5.53b)

which, upon expansion, leads to

UT yU + OT
n′pyL = d (5.53c)

whence it is apparent that yL is undetermined, and hence, can be assigned any

value, while yU is determined because we have assumed that C is of full rank, U

thus being nonsingular. If our intention is to minimize ‖x‖ or, equivalently, ‖y‖,
whose square is given by

‖y‖2 = ‖yU‖2 + ‖yL‖2

it is apparent that the optimum choice of yL is yL = 0n′, with 0n′ denoting the (n−
p)-dimensional zero vector. Therefore, the minimum-norm solution y0 of eq.(5.53a)

takes on the form:

y0 =

[
U−Td

0n′

]

(5.54)

i.e., the last (n − p) components of y0 are zero. In this way, y0 verifies eq. (5.52)

and has a minimum norm. Then, the minimum-norm solution x0 can be readily

computed as

x0 = HTy0 (5.55)

126

The Case of a Rank-Deficient C Matrix

If C is rank-deficient, with rank(C) = r < p, then we can proceed as described

above with only r Householder reflections, namely, H = HrHr−1 . . .H1, such that

HCT =

[
U

O

]

, y ≡ Hx (5.56)

where U is a full-rank r× p matrix with zero entries in its lower-left “corner”—this

matrix has an upper-trapezoidal form—and O defined as the (n−r)×p zero matrix.

Note that, in general, the rank of C is not known in advance. It is first learned

when the p Householder reflections introduced above are defined to bring CT into

upper-triangular form. In the presence of a rank-deficient matrix C, of rank r < p,

The last n − r rows of HCT are all zero, and the last p − r Hi matrices are all

identical.

Upon application of the foregoing r Householder reflections, eq. (5.53b) becomes

[U
T

O]

[
yU

yL

]

= d, y ≡
[
yU

yL

]

(5.57)

whence,

U
T
yU + OyL = d (5.58)

Apparently, ‖x‖ = ‖y‖, and hence, upon minimizing one norm, one minimizes the

other one as well. Moreover,

‖y‖2 = ‖yU‖2 + ‖yL‖2

Therefore, the optimum choice of y is the one for which yL = 0n′′, with 0n′′ denoting

the n′′-dimensional zero vector, and n′′ ≡ n− r, eq.(5.58) thus reducing to

U
T
yU = d (5.59)

where U
T

is a p × r matrix with zero entries in its upper corner, i.e., this matrix

has the form

U
T

=

[
L

M

]

(5.60)

in which L is a nonsingular r × r lower-triangular matrix and M is a (p − r) × r
matrix. Moreover, since U has been assumed of full rank, U

T
is also of full rank,

its last p− r rows being linearly dependent from its first r rows. That is, the p− r
rows of M are linearly dependent from the r rows of L. This means that yU is

127

determined from the first r equations of eq.(5.59). We can thus use only those

equations, which are, moreover, in lower-triangular form already, to compute yU by

forward substitution. Symbolically, then, we have

yU = L
−1

d, x0 = HT

[
L

−1
d

0n′′

]

(5.61)

Alternatively, and if CPU time is not an issue, we can use all redundant scalar

equations of that vector equation. We do this, then, by application of another set

of r Householder reflections, H1, H2, . . . ,Hr, thereby obtaining

HUTyU = Hd, H ≡ H1H2 . . .Hr (5.62)

whence the optimum solution is obtained in the way explained for overdetermined

systems in Section 3.5. The details are left as an exercise.

Example 5.4.1 (The Solution of a× x = b)

Let a, b, and x be three 3-dimensional Cartesian vectors. We would like to solve

the equation

a× x = b

for x. It is well known, however, that the foregoing equation contains only two

independent scalar equations, which prevents us from finding “the x” that verifies

that equation. Thus, we can proceed by finding a specific x, x0, that verifies any two

of these three equations and that is of minimum norm. To this end, we expand that

equation into its three components:

a2x3 − a3x2 = b1

a3x1 − a1x3 = b2

a1x2 − a2x1 = b3

Note that the foregoing equation can be cast in the form of eq.(3.33) if we define

matrix A as

A ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0





which is apparently skew-symmetric, i.e.,

AT = −A

128

In fact, A is the cross-product matrix of a. Picking up, for example, the first two

scalar equations above, we obtain an underdetermined system of the form (5.42),

with

C ≡
[

0 −a3 a2

a3 0 −a1

]

, d =

[
b1

b2

]

and hence, the corresponding minimum-norm solution x0 is given by eqs.(5.50a &

b), with

CCT =

[
a2

2 + a2
3 −a1a2

−a1a2 a2
1 + a2

3

]

Hence,

(CCT)−1 =
1

∆

[
a2

1 + a2
3 a1a2

a1a2 a2
2 + a2

3

]

where

∆ ≡ det(CCT) = (a2
2 + a2

3)(a
2
1 + a2

3)− a2
1a

2
2 > 0

a relation that the reader can readily prove. Therefore,

C† =
1

∆





a1a2a3 (a2
2 + a2

3)a3

−(a2
1 + a2

3)a3 −a1a2a3

a2a
2
3 −a1a

2
3





and

x0 =
1

∆





a1a2a3b1 + (a2
2 + a2

3)a3b2

−(a2
1 + a2

3)a3b1 − a1a2a3b2

a2a
2
3b1 − a1a

2
3b2





Notice that the foregoing solution depends on the condition a3 6= 0. If a3 = 0, or

very close to 0, then C becomes either ill-conditioned or rank-deficient, which is

bad news. Apparently, the foregoing solution has an element of arbitrariness that

may lead either to ill-conditioning or to rank-deficiency. There is no guarantee that

the two equations chosen are the best choice from the condition-number viewpoint.

Besides, that approach leaves aside useful information, that of the deleted equation.

The alternative approach uses all three equations, to which one fourth equation is

adjoined, namely, the minimum-norm condition, as described below.

First we observe that, if x has been found that verifies the given cross-product

equation, then any other vector x+αa, for α ∈ R, verifies that equation. Apparently,

then, the minimum-norm x is that whose component along a vanishes, i.e.,

aTx = 0

129

Upon adjoining the foregoing equation to the original three, we end up with an ap-

parently overdetermined system of four equations with three unknowns, of the form

Mx = n

where M and n are given by

M =

[
A

aT

]

, n =

[
b

0

]

Hence, M is a 4 × 3 matrix, while n is a 4-dimensional vector. The least-square

approximation of the new system is, then, the minimum-norm solution of the original

system, provided the latter is verified exactly, which it is, as will become apparent.

Indeed, the least-square approximation of the new system takes the form

xL = (MTM)−1MT n (5.64)

While we have strongly advised against the explicit computation of generalized in-

verses, our advice is valid only as pertaining to numerical computations. In the case

at hand, we will pursue not a numerical, but rather a symbolic computation of the

solution sought.

The first issue now is whether MTM is invertible, but it is so and, moreover, its

inverse is extremely simple to find:

MTM = [AT a]

[
A

aT

]

= ATA + aaT

But, since A is skew-symmetric,

MTM = −A2 + aaT

as the reader can readily verify; moreover,

A2 = −‖a‖21 + aaT

Hence,

MTM = ‖a‖21

which means that M is isotropic, i.e., optimally-conditioned. Therefore,

(MTM)−1 =
1

‖a‖21

130

That is ,

xL =
1

‖a‖21 [AT a]

[
b

0

]

=
1

‖a‖2A
Tb

which can be further expressed as

xL = −a× b

‖a‖2 (5.65)

thereby obtaining a much simpler, and robust, expression than that displayed above

as x0.

5.4.2 Least-Square Problems Subject to Linear Constraints

Given the system of linear equations

Ax = b (5.66)

where A is a full-rank q × n matrix, with q > n, and b is a q-dimensional vector,

find a n-dimensional vector x that verifies the above system with the least-square

error, subject to the linear equality constraints

Cx = d (5.67)

with C a full-rank p × n matrix and d a p-dimensional vector. Moreover, W is a

q × q positive-definite weighting matrix, with q, p and n subject to

q + p > n and n > p (5.68)

The error-squared of eqs.(5.66) is defined as

f ≡ 1

2
(Ax− b)TW(Ax− b) (5.69)

As usual, we solve this problem by introducing Lagrange multipliers:

F (x;λ) ≡ f(x) + λT (Cx− d) → min
x,λ

(5.70)

subject to no constraints.

The first-order normality conditions of the foregoing problem are

∂F

∂x
≡ ATW(Ax− b) + CTλ = 0n (5.71a)

∂F

∂λ
≡ Cx− d = 0p (5.71b)

131

Since A is assumed of full rank and W is positive-definite, we can solve eq.(5.71a)

for x in terms of λ, namely,

x = (ATWA)−1(ATWb−CTλ) (5.72)

Upon substituting the above expression into eq.(5.71b), we obtain

C(ATWA)−1CTλ = C(ATWA)−1ATWb− d

whence,

λ = [C(ATWA)−1CT]−1[C(ATWA)−1ATWb− d] (5.73)

Now, the foregoing expression for λ is substituted, in turn, into eq.(5.72), thereby

obtaining the optimum value of x, xo, namely,

xo = PQb + Rd (5.74a)

where P, Q and R are the n× n-, n×m- and n× p matrices given below:

P = 1n −RC (5.74b)

Q = (ATWA)−1ATW (5.74c)

R = (ATWA)−1CT [C(ATWA)−1CT]−1 (5.74d)

with 1n standing for the n × n identity matrix. The solution derived above, while

being exact, for it is symbolic, is unsuitable for numerical implementation. Indeed,

this solution contains inversions of products of several matrices times their trans-

poses, which brings about ill-conditioning. Various approaches to the numerical

solution of this problem will be studied in Ch. 6.

5.5 Equality-Constrained Nonlinear Least Squares

We consider here the problem of finding the least-square error f of an overdetermined

system of q nonlinear equations in the n-dimensional vector of unknowns x, namely,

φ(x) = 0q (5.75a)

subject to the l nonlinear constraints

h(x) = 0l (5.75b)

132

whereby

q > n, n > l (5.76)

The problem thus consists in finding a x that makes φ as close as possible to zero,

while observing strictly eqs.(5.75b).

In general, moreover, the various scalar equations of eq.(5.75a) have different

relevance and are, hence, assigned different weights, which then leads to a problem

of weighted least squares, namely,

f(x) =
1

2
φTWφ → min

x
(5.77)

subject to eq.(5.75b).

The normality conditions of the problem at hand are derived directly from those

of the general equality-constrained problem, namely, eq.(5.12) or its dual counter-

part, eq.(5.20). In our case,

∇f =

(
∂φ

∂x

)T
∂f

∂φ
(5.78a)

where
∂φ

∂x
≡ Φ(x),

∂f

∂φ
= Wφ(x) (5.78b)

i.e., Φ(x) denotes the q × n gradient of φ(x) with respect to x. Hence,

∇f = ΦTWφ (5.78c)

where we have dispensed with the argument x for the sake of simplicity.

The normality condition (5.12) thus reduces to

[1− JT (JJT)−1J]ΦTWφ = 0n (5.79)

with J defined, as usual, as J = ∂h/∂x = ∇h. What the foregoing condition states

is that, at a stationary point, ∇f = ΦTWφ need not vanish5; only the projection

of ∇f onto the nullspace of the gradient of the constraints must vanish.

The dual form of the same normality conditions, in turn, reduces to

LT ΦTWφ = 0n′ (5.80)

with L indicating a n× (n− l) orthogonal complement of J, as defined in eq.(5.18),

and 0n′ denoting the (n− l)-dimensional zero vector.

5Certainly, φ need neither vanish, as the system of nonlinear equations (5.75a) is overdeter-

mined.

133

The second-order normality conditions of f(x) are now derived by assuming that

we have found a stationary value of the design-variable vector, xo. This means that

the FONC are satisfied at x = xo. More specifically, the FONC in dual form are

verified at the given SP, which means that

LT (xo)Φ
T (xo)Wφ(xo) = 0n′ (5.81)

Now, in order to set up the SONC, we need the constrained Hessian Hc of the

problem at hand, namely,

Hc = ∇∇f +
∂(JTλ)

∂x
(5.82)

Given the form (5.78c) of ∇f , its gradient, i.e., the unconstrained Hessian ∇∇f ,

requires partial derivatives of matrix Φ, leading to a three-dimensional array. To

avoid the encumbrance of such arrays, we calculate the unconstrained Hessian in

two steps: first, we differentiate the rightmost-hand factor of ∇f in eq.(5.78c), φ,

with respect to x; then, upon fixing x at xo in φ, a constant vector φo = φ(xo)

is obtained; finally, differentiation of the whole product ΦTWφo with respect to x

yields a matrix, which is just added to the first term:

∇∇f = ΦTWΦ +
∂ΦT Wφo

∂x
(5.83)

whence,

Hc = ΦTWΦ +
∂ΦT Wφo

∂x
+
∂(JTλ)

∂x
(5.84)

Furthermore, the reduced Hessian of f is now

Hu = LT

[

ΦTWΦ +
∂ΦT Wφo

∂x
+
∂(JTλ)

∂x

]

(5.85)

It should be noted that, although the unconstrained Hessian is symmetric, the

constrained Hessian, and hence, the reduced Hessian, is not. However, as the nature

of the SP is determined by a quadratic form ∆uTLT HcL∆u, the skew-symmetric

component of Hc does not contribute to the form, and hence, only its symmetric part

need be computed. In summary, then, the optimization problem at hand can have

local minima, maxima or saddle points, depending on whether the real eigenvalues

of the symmetric component of Hu are all positive, all negative or a mixture of both.

134

5.6 Linear Least-Square Problems Under Quadratic

Constraints

An important family of design problems lends itself to a formulation whereby the

objective function is quadratic in a linear function of the design vector x, while the

constraints are quadratic in x. Contrary to the case of linear least-squares subject

to linear constraints, this family of problems does not allow, in general, for closed-

form solutions, the reason being that their normal equations are nonlinear. Let us

consider

f(x) ≡ 1

2
(b−Ax)TW(b−Ax) → min

x
(5.86a)

subject to

h(x) = 0l (5.86b)

where A is a q × n full-rank matrix, with q > n, W is a q × q positive-definite

weighting matrix, while h, x and b are l-, n- and q-dimensional vectors, respectively,

with

q + l > n, n > l (5.86c)

Moreover, in this particular case, the ith component of vector h is quadratic, namely,

hi(x) ≡ 1

2
xTPix + qT

i x + ri, i = 1, 2, . . . , l (5.86d)

in which Pi is a known n× n symmetric matrix, while qi is a n-dimensional given

vector and ri is a given scalar. Apparently, then, the ith row of J, the Jacobian of

h with respect to x, takes the form

(
∂hi

∂x

)T

= Pix + qi, i = 1, 2, . . . , l (5.87)

Therefore,

JT = [P1x + q1 P2x + q2 · · · Plx + ql] (5.88)

whence J is linear in x. To derive the FONC, we need ∇f , which is readily derived

as

∇f = ATW(b−Ax) (5.89)

the first-order normality conditions (5.12) thus taking the primal form

[1n − JT (JJT)−1J]ATW(b−Ax) = 0n (5.90)

135

It is thus apparent that, although J is linear in x, the normality conditions are

rational6

The FONC in dual form are, then,

LATW(b−Ax) = 0n′ (5.91)

The SONC are now derived. Differentiation of ∇f with respect to x leads to the

unconstrained Hessian, namely,

∇∇f = ATWA (5.92)

which is, apparently, positive-definite, but this Hessian does not tell the nature

of a SP. We need the constrained Hessian, as defined in eq.(5.29), which calls for

the computation of an additional term, namely, ∂(JTλ)/∂x; this term is computed

below. First, we have the product

JTλ = [P1x + q1 P2x + q2 · · · Plx + ql]








λ1

λ2
...

λl








=
l∑

1

λi(Pix + qi) (5.93)

whence,

∂(JTλ)

∂x
= λ1P1 + λ2P2 + . . .+ λlPl =

l∑

1

λiPi =
l∑

1

λiPi (5.94)

Therefore,

Hc = ATWA +
l∑

1

λiPi (5.95)

which is the sum of a positive-definite term plus one that is sign-indefinite. However,

notice that the two terms are symmetric, and hence, the constrained Hessian is

6A rational function of a real variable x bears the form P (x)/Q(x), with P and Q denoting

polynomials in x of degrees p and q, respectively. A similar definition follows for a n-dimensional

vector x, instead of x, P and Q then changing to multi-variable polynomials., stemming from the

inverse of JJ
T , thereby leading to a problem lacking a closed-form solution, except for special

cases, like the one included in this section.

136

symmetric as well. Now, the reduced (n− l)× (n− l) Hessian Hu is readily obtained

as

Hc = LT (ATWA +
l∑

1

λiPi)L (5.96)

In conclusion, then, a SP is a local minimum if, at this SP, Hc is positive-definite;

it is a local maximum if negative-definite; it is a saddle point if sign-indefinite.

Example 5.6.1 (A Quadratic Objective Function with a Quadratic Cons-

traint)

Find all the SPs of the objective function

f(x) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) → min

x1, x2

subject to the quadratic constraint

h(x) = x2
1 + x2

2 − 1 = 0

and determine the nature of each SP.

Solution: The objective function being quadratic, it can be shown to be associated

to a positive-definite matrix Q:

Q = ∇∇f =

[
9 −4

−4 3

]

Hence, f(x) can be factored as

f(x) =
1

2
(b−Ax)TW(b−Ax)

with

A = 12, b = 02, W =

[
9 −4

−4 3

]

x =

[
x1

x2

]

where W is, apparently, identical to ∇∇f in this case, and hence, positive-definite,

which means that the problem belongs to the least-square class.

Upon adjoining the constraint to the objective function, we obtain the La-

grangian F (x;λ), namely,

F (x;λ) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) + λ(x2

1 + x2
2 − 1)

137

which we want to minimize subject to no constraints. The normality conditions of

the unconstrained problem are, thus

∂F

∂x1

= 9x1 − 4x2 + 2λx1 = 0

∂F

∂x2

= −4x1 + 3x2 + 2λx2 = 0

∂F

∂λ
= x2

1 + x2
2 − 1 = 0

Let us now eliminate λ from the first and the second of the above equations. We do

this dialytically, i.e., we write these two equations in linear homogeneous form in λ

and 1, i.e.,

My = 02

where

M =

[
2x1 9x1 − 4x2

2x2 −4x1 + 3x2

]

, y =

[
λ

1

]

6= 02

with 02 denoting the 2-dimensional zero vector. Now, the above linear homogeneous

equation in y cannot be zero, for y 6= 02, and hence, matrix M must be singular,

which is stated as

∆ ≡ det(M) = 0

Upon expansion, the foregoing equation leads to

∆ = 2x1(−4x1 + 3x2)− 2x2(9x1 − 4x2) = 0

or, after simplification,

x2
1 +

3

2
x1x2 − x2

2 = 0

thereby reducing the problem to the solution of two quadratic equations in two

unknowns, the above equation and the third normality condition. While it is not

too difficult to manipulate two quadratic bivariate equations to derive one single

monovariate equation, one must avoid cumbersome algebraic manipulations. Notice

that

∆− h =
3

2
x1x2 − 2x2

2 + 1 = 0

which is linear in x1, and hence, readily yields an expression for x1 in terms of x2,

namely,

x1 =
2

3

2x2
2 − 1

x2

138

Substitution of the above expression into h = 0 yields, after simplifications,

25x4
2 − 25x2

2 + 4 = 0

which is a quadratic equation in x2
2, its four roots being

(x2)1 =

√
5

5
, (x2)2 = −

√
5

5
, (x2)3 =

2
√

5

5
, (x2)4 = −2

√
5

5

the corresponding values of x1 being

(x1)1 = −2
√

5

5
, (x2)2 = −2

√
5

5
, (x2)3 =

√
5

5
, (x2)4 = −

√
5

5

In fact, ∆ = 0 is a degenerate conic, that breaks down into the product of two linear

equations. The four foregoing solutions of the problem at hand are thus the four

intersections of two lines passing through the origin with the unit circle centred at

the origin, as shown in Fig. 5.11.

P1

P3

P2

P4

Figure 5.11: The intersection of ∆ = 0, a degenerate conic, with h = 0

Now we determine the nature of the SPs. To this end, we need an orthogonal

complement L of J. This is readily derived, by regarding J as a two-dimensional

139

vector array. Upon rotating this vector through 90◦ ccw and normalizing the array

thus resulting so that it will be of unit norm, we obtain7

L =
1

√

x2
1 + x2

2

[−x2

x1

]

Moreover, upon adding the first two normality conditions for the Lagrangian, one

obtains one equation in λ in terms of the design variables, namely,

λ =
−5x1 + x2

2(x1 + x2)

Hence, a general expression for Hc is

Hc =

[
9 + λ −4

−4 3 + λ

]

SP1: The first SP is x = (
√

5/5)[2, −1]T , whence

λ = −11

2
, L =

√
55

[
1

2

]

Therefore,

Hu =
1

5
[1 2]

[
7/2 −4

−4 −5/2

] [
1

2

]

= −9

2
< 0

which indicates a local maximum.

SP2: The second SP is x = (
√

5/5)[−2, 1]T , for which

λ = −11

2
, L =

√
55

[−1

−2

]

Therefore,

Hu =
1

5
[−1 −2]

[
7/2 −4

−4 −5/2

] [−1

−2

]

= −9

2
< 0

which indicates a local maximum as well.

SP3: The third SP is x = (
√

5/5)[1, 2]T , for which

λ = −1

2
, L =

√
55

[−2

1

]

Therefore,

Hu =
1

5
[−2 1]

[
17/2 −4

−4 5/2

] [−2

1

]

=
21

2
> 0

thereby identifying a local minimum.

7However, notice that every feasible point should lie on the unit circle centred at the origin,

and hence, J is ab initium a unit-norm array.

140

SP4: The fourth SP is x = (
√

5/5)[−1, −2]T , for which

λ = −1

2
, L =

√
55

[
2

−1

]

Therefore,

Hu =
1

5
[2 −1]

[
17/2 −4

−4 5/2

] [
2

−1

]

=
21

2
> 0

which indicates a local minimum as well.

The four stationary points and the ellipses they define, tangent to the unit circle,

are displayed in Fig. 5.12.

P1

P3
P2

P4

Figure 5.12: The four stationary points of Example 5.6.1

More general problems of this family can be solved using the methods discussed

in Ch. 6 for arbitrary objective functions subject to nonlinear equality constraints.

141

142

Chapter 6

Equality-Constrained

Optimization:

The Orthogonal-Decomposition

Algorithm

6.1 Introduction

The numerical solution of equality-constrained problems is the subject of this chap-

ter. We start with methods applicable to constrained linear and nonlinear least-

square problems, then develop methods applicable to arbitrary objective functions,

not stemming from a least-square problem. In the first method, the assumptions are

made that the objective function is C2-continuous and its second partial derivatives

with respect to the design variables are available. As these assumptions are rather

optimistic, and in practice seldom found, we propose a second method which relies

only on C1-continuity and first-order derivatives of the objective and the constraint

functions.

The main item introduced in this chapter is the orthogonal-decomposition al-

gorithm (ODA), which is derived first in the context of equality-constrained linear

least-square problems; then, it is applied to equality-constrained nonlinear least-

square problems. Several numerical techniques, such as Householder reflections,

Cholesky decomposition, the Newton-Gauss method, etc., are applied in order to

obtain numerical solutions by means of procedures that are both efficient and robust.

What we mean by the former is procedures that use as few floating-point operations

143

(flops) as possible; by the latter we mean procedures that keep the roundoff error in

the solution as low as possible with respect to that of the data, an item that falls

in the realm of numerical conditioning, a subject that was introduced in Subsec-

tion 3.4.1.

The orthogonal-decomposition algorithm is implemented in a C library of rou-

tines, called ODA. A Matlab version is also available.

6.2 Linear Least-Square Problems Subject to

Equality Constraints: The ODA

We recall below the linear least-square problem subject to linear equality constraints:

Given the overdetermined system of linear equations

Ax = b (6.1)

find a vector x that verifies the above system with the least-square error. For the

sake of generality, the error in the approximation is defined as

f ≡ 1

2
(Ax− b)TW(Ax− b)→ min

x
(6.2)

subject to the linear constraints

Cx = d (6.3)

Here, x is the n-dimensional vector of design variables, while A and C are q × n
and p× n matrices, while b and d are q- and p-dimensional vectors. Moreover, W

is a q × q positive-definite1 weighting matrix, with q, p and n subject to

q > n and p < n (6.4)

Note that the first of the foregoing inequalities excludes the possibility of a unique

solution upon solving for x from eq.(6.1), the second preventing a unique solution

from eq.(6.3).

If A and C are full-rank matrices, then the forgoing problem was shown to

have a unique solution, given by eqs.(5.74a–d), which is reproduced below for quick

reference:

x = PQb + Rd (6.5a)

1Should W fail to be positive-definite, we wounldn’t have a least-square problem!

144

In the foregoing expression, P, Q and R are the n × n, n × q and n × p matrices

that follow:

P = 1n −RC (6.5b)

Q = (ATWA)−1ATW (6.5c)

R = (ATWA)−1CT [C(ATWA)−1CT]−1 (6.5d)

and 1n is, as usual, the n× n identity matrix.

As pointed out in Subsection 5.4.2, the above expression is unsuitable for nu-

merical implementation. A popular approach to obtain the solution under study

consists in partitioning C into a p × p and a p × (n − p) submatrices, where care

should be taken so as to choose a well-conditioned p× p matrix, for safe inversion.

Correspondingly, vector x should be partitioned into a master part xM , of n − p

components, and a slave part xS of p components. Thus, the constraint equations

would be solved for the slave part in terms of the master part and the problem would

reduce to an unconstrained least-square problem of dimension n − p. However, an

arbitrary partitioning of C may lead to an ill-conditioned p × p block, even if C

itself is well-conditioned. This situation can be prevented if, out of all N possible

partitionings of C, the one with the lowest condition number is chosen. Note that

the number of partitionings is given by

N =
n!

p!(n− p)!
and hence, N can become quite large, even for modest values of n and p. Since

calculating the condition number of a matrix is a computationally costly procedure,

this approach is to be avoided.

Alternatively, by introduction of the singular values of C (Strang, 1988), a sub-

system of p equations in p unknowns, which are linear combinations of the compo-

nents of x, can be found that is optimally conditioned. The computation of singular

values, however, similar to that of eigenvalues, is a problem even more difficult

to solve than the one at hand, for it is nonlinear and must be solved iteratively.

Therefore, the singular-value approach is strongly recommended against.

One more approach is introduced here, which stems from the geometric inter-

pretation of the solution (6.5a). Indeed, vector Qb of that solution represents the

unconstrained least-square approximation of eq.(6.2). The second term of the right-

hand side of eq.(6.5a) is the minimum-norm solution of the underdetermined system

(6.3), based on the norm defined as

‖x‖2W = xTATWAx (6.6)

145

Thus, P is a projector2 onto the nullspace of C. Indeed, one can readily prove that

every n-dimensional vector x is mapped by P onto the nullspace of C. Moreover, P2

can be proven to equal P, thereby making apparent that P is, in fact, a projector.

Furthermore, for any p × n matrix C, the range of C and the nullspace of C are

orthogonal subspaces3 of Rn, their direct sum producing all of Rn; i.e., every n-

dimensional vector x can be uniquely decomposed into a vector lying in the range of

CT and a second one lying in the nullspace of C. Now let L be a n× (n− p) matrix

spanning the nullspace of C, i.e.,

CL = Opn′ (6.7)

where Opn′ represents the p × (n − p) zero matrix. Matrix L is thus an orthog-

onal complement of matrix C. Thus, the solution to the above problem can be

decomposed into two parts, namely,

x = xo + xu (6.8)

in which xo represents the minimum-norm solution to the constraint equation (6.3),

i.e., xo lies in the range of CT , while xu lies in the nullspace of C. Vector xo is com-

puted by means of an orthogonalization method rendering CT in upper-triangular

form, as discussed in Subsection 3.5.2, while vector xu is computed by means of a

linear least-square problem. We outline below the computation of xu.

Let us define a q × q matrix V as the Cholesky factor of the given weighting

matrix W, i.e.,

W = VTV

Moreover, with xo known, xu is found as the least-square approximation of

VAxu = V(b−Axo) (6.9)

subject to the constraints

Cxu = 0p (6.10)

Further, let us represent xu as the image of a (n − p)-dimensional vector under a

transformation given by a n× (n− p) matrix L, namely,

xu = Lu (6.11)

2Note that P is apparently not symmetric!
3Note that R(C) need not be orthogonal to N (C); in fact, for two subspaces to be orthogonal,

they must be embedded in the same space, but R(C) ⊆ Rp and N (C) ⊆ Rn, and, in our case,

n 6= p.

146

with L defined, in turn, as introduced in eq.(6.7). Equation (6.9) thus becomes

VALu = V(b−Axo) (6.12)

which is an overdetermined system of n linear equations in n − p unknowns. It is

thus apparent that u can be computed as the unconstrained least-square solution of

eq.(6.12).

However, matrix L, an orthogonal complement of C, is not unique. We have thus

reached a crucial point in the solution of the constrained linear least-square problem

at hand: How to define L. While L can be defined in infinitely many forms—notice

that, once any L has been found, a multiple of it also satisfies eq.(6.7)— we define

it here such that

HL =

[
Opn′

1n′

]

(6.13)

where 1n′ is the (n − p)× (n − p) identity matrix and Opn′ is the p× (n − p) zero

matrix. Moreover, H is defined as the n × n product of Householder reflections

rendering CT in upper-triangular from—see Subsection 5.4.1. From eq.(6.13), one

can obtain matrix L without any additional computations, for

L = HT

[
Opn′

1n′

]

(6.14)

whence it is apparent that L is isotropic, i.e., its condition number is equal to unity.

This means that the left Moore-Penrose generalized inverse LI of L can be computed

without roundoff-error amplification. In fact, this inverse reduces to LT , for

LI =









[OT
pn′ 1n′]HHT

︸ ︷︷ ︸

1n

[
O

1

]

︸ ︷︷ ︸

1n′









−1

[OT 1]H
︸ ︷︷ ︸

LT

= LT (6.15)

Once L is known, eq.(6.12) can be solved for u as the least-square approximation

of that system. Then, xu is calculated from eq.(6.11).

As the reader can readily prove, the two components of x, xo and xu, are or-

thogonal. For this reason, the foregoing procedure is known as the Orthogonal-

Decomposition Algorithm (ODA).

147

6.3 Equality-Constrained Nonlinear Least-Square

Problems

The solution of nonlinear least-square problems by means of the ODA is now straight-

forward: The problem consists in finding the least-square error f of an overdeter-

mined system of nonlinear equations, φ(x) = 0q, i.e.,

f(x) =
1

2
φTWφ → min

x
(6.16a)

subject to the nonlinear constraints

h(x) = 0l (6.16b)

where φ and x are q- and n-dimensional vectors, respectively, with q > n, and W

is a q × q positive-definite weighting matrix. Moreover, h is a l-dimensional vector

of nonlinear constraints.

The normality condition of the foregoing constrained problem was derived in

Ch. 3 in its dual form, eq.(5.80), and recalled below for quick reference:

LT ΦTWφ = 0n′ (6.17)

with 0n′ denoting the (n− l)-dimensional zero vector.

As the problem is nonlinear, the solution of the problem at hand is obtained

iteratively, within the spirit of the Newton-Gauss method introduced in Subsec-

tion 3.7.1: From an initial guess x0, not necessarily feasible, i.e., with h(x0) 6= 0l,

the sequence x1, x2, . . . , xk, xk+1 is generated as

xk+1 = xk + ∆xk (6.18)

The increment ∆xk is computed as the solution of an equality-constrained linear

least-square problem, namely,

min
∆xk

1

2
[φ(xk+1)]TWφ(xk+1) (6.19a)

subject to

J(xk)∆xk = −h(xk) (6.19b)

with φ(xk+1) given, to a first-order approximation, by

φ(xk+1) ≡ φ(xk) + Φ(xk)∆xk (6.19c)

148

Now, for compactness, we introduce a few definitions:

hk ≡ h(xk), φk ≡ φ(xk), Φk ≡ Φ(xk), Jk ≡ J(xk) (6.20)

while Lk is defined as the isotropic orthogonal complement of Jk and of unit Frobe-

nius norm à la eq.(6.14). Moreover, Φk and Jk will be assumed to be of full rank

throughout, the solution ∆xk of problem (6.19a–c) thus being expressed as

∆xk = ∆vk + Lk∆uk (6.21)

A procedure to compute ∆vk and ∆uk is introduced below. To this end,

eq.(6.19b) is first rewritten in terms of the orthogonal decomposition of ∆xk:

Jk∆vk + JkLk∆uk = −hk

By virtue of the orthogonality relation between Jk and Lk, however, the foregoing

relation reduces to

Jk∆vk = −hk (6.22)

Next, an expression is derived for fk+1 ≡ f(xk+1):

fk+1 ≡
1

2
(φk + Φk∆xk)TVTV(φk + Φk∆xk) ≡ 1

2
‖V(φk + Φk∆xk)‖2 (6.23)

Hence, in computing ∆xk the aim will be to render vector V(φk + Φk∆x
k) as close

to zero as possible, i.e.,

Vφk + VΦk∆x
k → 0p

or, in terms of the orthogonal decomposition of ∆xk given in eq.(6.21),

VΦk(∆vk + Lk∆uk) + Vφk = 0p

whence,

VΦkLk∆uk = −V(φk + Φk∆vk) (6.24)

The computation of ∆vk and ∆uk now proceeds sequentially :

1. Compute ∆vk as the minimum-norm solution of the underdetermined system

of eq.(6.22);

2. with ∆vk known, compute ∆uk as the least-square approximation of eq.(6.24).

149

The stopping criteria of the procedure are, then,

||∆xk|| ≤ ǫ1 and ||h(xk)|| ≤ ǫ2 (6.25)

for prescribed tolerances ǫ1 and ǫ2. These criteria are verified when both the nor-

mality condition (6.17) and the constraint (6.16b) hold within the given tolerances.

Moreover, we can rewrite eq.(6.22)4 as

JHTH∆v = −h

or

(HJT)T H∆v
︸ ︷︷ ︸

∆w

= −h (6.26)

Furthermore, if H is chosen as a product of l n × n Householder reflections that

render JT in upper-triangular form, then

HJT =

[

Up×p

O(n−p)×p

]

, with ∆w =

[

wU

wL

]

where ∆wU and ∆wL are, correspondingly, p- and n−p-dimensional vectors. Hence,

eq.(6.26) can be written in the form

[

UT OT
]
[

∆wU

∆wL

]

= −h

or

UT ∆wU + OT ∆wL = −h

From the last equation, wU = −U−T h, whence, and in light of the definition of ∆w

in eq.(6.26)—H∆v ≡ ∆w—we obtain ∆v = HT∆w. Now, from eq.(6.24) ∆xk can

be expressed as

∆xk = (MΦTWΦ− 1n)J†h−MΦTWφ (6.27)

where subscripts and superscripts have been dropped from the right-hand side for

compactness, J† is the right Moore-Penrose generalized inverse of J, and M is the

n× n matrix defined as

M = L(LT ΦTWΦL)−1LT (6.28)

Upon convergence, ∆xk → 0n, as its norm does within ǫ1, the right-hand side

of eq.(6.27) thus vanishing. Moreover, upon convergence as well, the constraint

4for simplicity, we drop the subscript k.

150

equations hold within ǫ2, and hence, h → 0l, the first term of the expression for

∆xk in the same equation thus vanishing. As a result, then, the second term of the

same expression vanishes, and the normality condition (6.17) is then verified.

The sequence {∆xk} produces a sequence {fk}, the increment ∆f between two

consecutive values of the sequence being given by

∆f = (∇f)T ∆x (6.29)

where ∇f is the gradient of f , i.e., ∇f = ΦTWφ, and hence,

∆f = (ΦTWφ)T ∆x

= −φTWΦMΦTWφ− φTWΦ(1−MΦTWΦ)J†h (6.30)

From eq.(6.30), if the current value of x is feasible, i.e., if h = 0, then ∆f is

negative-definite, and the procedure yields an improved value of f . Therefore, the

ODA iterations lead always to a local minimum, although the least-square problem

may contain local maxima, as found in Example 6.3.1, or even saddle points.

Furthermore,

∆(hTh) = (∆h)Th + hT ∆h = 2hT ∆h

However, since J = ∇h,

∆h = J∆x

But, from eq.(6.19b), J∆x = −h at each iteration, and hence,

∆h = −h (6.31)

Therefore,

∆(hT h) = −hT h (6.32)

the result being that the procedure converges towards a feasible solution, and hence,

the initial guess need not be feasible. This is important, as many a method requires

that the initial guess be feasible. Finding a feasible guess may be as hard a task

as that of finding a feasible stationary point. From eq.(6.30), if the current value

of x is feasible, i.e., if h = 0, then ∆f is negative-definite, and the procedure

yields an improved value of f . Therefore, the ODA iterations lead always to a local

minimum, although the least-square problem may contain local maxima, as found

in Example 6.3.1, or even saddle points.

151

Example 6.3.1 (A Quadratic Objective Function with a Quadratic Con-

straint)

We recall Example 5.6.1, which is reproduced below for quick reference:

f(x) =
1

2
(9x2

1 − 8x1x2 + 3x2
2) → min

x1, x2

subject to

h(x) = x2
1 + x2

2 − 1 = 0

The above objective function is quadratic in the design-variable vector and the as-

sociated matrix is positive-definite, as found in Example 5.6.1, which means that

the problem is of the least-square class. However, the constraint is nonlinear, which

disqualifies this problem from a direct solution, as found in Section 6.2 for linear

least-squares subject to linear constraints. This problem, due to its simplicity, could

be solved exactly in Section 5.6. Here, we solve this problem numerically, using the

ODA. First, we recall that the objective function f(x) can be factored as

f(x) =
1

2
φTWφ

with

W =

[
9 −4

−4 3

]

and φ =

[
x1

x2

]

i.e, f(x) is a special case of the f(x) defined in eq.(6.2), with A = 1 and b = 0.

We include below a Maple worksheet describing the step-by-step implementation of

the ODA in solving the foregoing problem iteratively.

> restart:with(linalg):

Warning, the protected names norm and trace have been redefined and

unprotected

> with(plots): with(plottools):

Warning, the name changecoords has been redefined

Warning, the name arrow has been redefined

Linear-least square problem subject to a quadratic constraint

152

f(x) = (1/2)(9x2
1 − 8x1x2 + 3x2

2) → min
x1,x2

subject to

h(x1, x2) = x2
1 + x2

2 − 1 = 0

> obj:= proc(x) (1/2)*(9*x[1]^2 - 8*x[1]*x[2] +
> 3*x[2]^2)

> end; #procedure to compute the objective function

obj := proc(x) 9/2 ∗ x1
2 − 4 ∗ x1 ∗ x2 + 3/2 ∗ x2

2 end proc
> constr:= proc(x) x[1]^2+x[2]^2 - 1 end;

> #procedure computing the constraint

constr := proc(x) x1
2 + x2

2 − 1 end proc
> dhdx:= proc(x) matrix([[2*x[1], 2*x[2]]])

> end; #procedure computing the gradient of the constraint

dhdx := proc(x) matrix([[2 ∗ x1, 2 ∗ x2]]) end proc
> alfa:= proc(J)

> evalf(signum(J[1,1])*sqrt(J[1,1]^2 + J[1,2]^2))
> end; #procedure computing "alpha" of Householder reflections in

> least-square solution at each iteration

alfa := proc(J) evalf(signum(J1, 1) ∗ sqrt(J1, 1
2 + J1, 2

2)) end proc

> W:=matrix([[9, -4], [-4, 3]]); #weighting matrix

W :=

[

9 −4

−4 3

]

> V:=transpose(cholesky(W)); #Maple returns a
> lower-triangular matrix with procedure "cholesky"!

V :=







3
−4

3

0
1

3

√
11







> V:= map(evalf, V);

V :=

[

3. −1.333333333

0. 1.105541597

]

> ID:=Matrix(2,2,shape=identity);

> E:= matrix([[0], [1]]);

> Phi:= ID;
> B:=evalm(V&*Phi); #Defining various auxiliary matrices

153

ID :=

[

1 0

0 1

]

E :=

[

0

1

]

Φ :=

[

1 0

0 1

]

B :=

[

3. −1.333333333

0. 1.105541597

]

> x:=vector([2, 2]); x0:= evalm(x); #initial

> guess, x^0, stored as x0 for plotting

x := [2, 2]

x0 := [2, 2]

> f:= evalf(obj(x)); #f_0

f := 8.

> phi:= evalm(x); #phi^0

φ := [2, 2]

> h:= constr(x); #h^0

h := 7

> J:= dhdx(x); #J_0

J :=
[

4 4
]

> alpha:= alfa(J); #local variable

α := 5.656854248
> t:=vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm, a local variable

t := [9.656854248, 4]
> normt2:=evalf(dotprod(t,t)/2); #half of

> Euclidean norm-squared of t, a local variable

normt2 := 54.62741700
> H:=evalm(ID - t&*transpose(t)/normt2);

> #evaluating Householder reflection

H :=

[

−.707106781 −.7071067812

−.7071067812 .7071067811

]

> P:=evalm(H&*transpose(H)); #checking whether H
> is a reflection

154

P :=

[

.9999999997 0.

0. .9999999999

]

> detH:=det(H);

detH := −.9999999998

H is indeed a reflection!

> HJT:=evalm(H&*transpose(J));

HJT :=

[

−5.656854249

−.1 10−8

]

> HJT[2,1]:=0; print(HJT); #setting last entry

> of HJ^T equal to zero

HJT 2, 1 := 0
[

−5.656854249

0

]

> w:= vector([-h/HJT[1,1], 0]); #w = Hv

w := [1.237436867, 0]

> v:=evalm(H&*w); #v^0

v := [−.8749999997, −.8750000000]
> L:= evalm(H&*E);

> BL:=evalm(B&*L); #L_0 & (BL)_0

L :=

[

−.7071067812

.7071067811

]

BL :=

[

−3.064129385

.7817359600

]

> p:=matadd(phi, Phi&*v); #auxiliary variable

p := [1.125000000, 1.125000000]
> r:= evalm(-V&*p);
> #RHS of overdetermined system to compute u in ODA

r := [−1.875000000, −1.243734297]

> u:= leastsqrs(BL, r); #u^0

u := [.4772970772]

> Deltax:= matadd(v, L&*u); #Deltax^0

155

Deltax := [−1.212500000, −.5375000001]

First iteration is complete. Update x:

> x:= evalm(x + Deltax); x1:= evalm(x); #x^1

x := [.787500000, 1.462500000]

x1 := [.787500000, 1.462500000]

> f:= evalf(obj(x)); #f_1

f := 1.392187500

> phi:= evalm(x); #phi^1

φ := [.787500000, 1.462500000]

> h:= constr(x); #h^1

h := 1.759062500

> J:= dhdx(x); #J_1

J :=
[

1.575000000 2.925000000
]

> alpha:= alfa(J);

α := 3.322085189
> t:=vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [4.897085189, 2.925000000]

> normt2:=evalf(dotprod(t,t)/2);

normt2 := 16.26853418
> H:=evalm(ID - t&*transpose(t)/normt2);

> #evaluating Householder reflection

H :=

[

−.474099823 −.8804710997

−.8804710997 .4740998233

]

> HJT:=evalm(H&*transpose(J));

HJT :=

[

−3.322085188

.1 10−8

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−3.322085188

0

]

156

> w:= vector([-h/HJT[1,1], 0]); #w = Hv

w := [.5295055366, 0]

> v:=evalm(H&*w); # v^1

v := [−.2510384812, −.4662143221]
> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);

> #L_1 & (BL)_1

L :=

[

−.8804710997

.4740998233

]

BL :=

[

−3.273546397

.5241370758

]

> p:=matadd(phi, Phi&*v); #auxiliary variable

p := [.5364615188, .9962856779]
> r:= evalm(-V&*p);
> #RHS of overdetermined system to compute u in ODA

r := [−.281003652, −1.101435259]

> u:= leastsqrs(BL, r); #u^1

u := [.03116921755]

> Deltax:= matadd(v, L&*u); #delta x^1

Deltax := [−.2784820764, −.4514370016]

Second iteration is complete. Update x:

> x:= matadd(x, Deltax); x2:= evalm(x); #x^2

x := [.5090179236, 1.011062998]

x2 := [.5090179236, 1.011062998]

> f:= obj(x); #f_2

f := .640722436

> phi:= evalm(x); #phi^2

φ := [.5090179236, 1.011062998]

> h:= constr(x); #h^2

h := .281347632

> J:= dhdx(x); #J_2

J :=
[

1.018035847 2.022125996
]

157

> alpha:= alfa(J);

α := 2.263932537
> t:=vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [3.281968384, 2.022125996]

> normt2:=evalf(dotprod(t,t)/2);

normt2 := 7.430155005
> H:=evalm(ID - t&*transpose(t)/normt2);

> #evaluating Householder

> reflection

H :=

[

−.449675877 −.8931918088

−.8931918088 .4496758759

]

> HJT:=evalm(H&*transpose(J));

HJT :=

[

−2.263932538

−.12 10−8

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−2.263932538

0

]

> w:= vector([-h/HJT[1,1], 0]); #w = Hv

w := [.1242738586, 0]

> v:=evalm(H&*w); #v^2

v := [−.05588295635, −.1110003925]
> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);

> #L_2 & (BL)_2

L :=

[

−.8931918088

.4496758759

]

BL :=

[

−3.279143260

.4971353860

]

> p:=matadd(phi, Phi&*v); #auxiliary variable

p := [.4531349672, .9000626055]
> r:= evalm(-V&*p);
> #RHS of overdetermined system to compute u in ODA

r := [−.159321428, −.9950566503]

> u:= leastsqrs(BL, r); #u^2

158

u := [.002523646038]

> Deltax:= matadd(v, L&*u); #Deltax^2

Deltax := [−.05813705632, −.1098655698]

Third iteration is complete. Update x:

> x:= matadd(x, Deltax); x3:=evalm(x); #x^3

x := [.4508808673, .9011974282]

x3 := [.4508808673, .9011974282]

> f:= obj(x); #f_3

f := .5077254992

> phi:= evalm(x); #phi^3

φ := [.4508808673, .9011974282]

> h:= constr(x); #h^3

h := .015450361

> J:= dhdx(x); #J_3

J :=
[

.9017617346 1.802394856
]

> alpha:= alfa(J);

α := 2.015391139
> t:=vector([J[1,1] + alpha, J[1,2]]);
> #u in HHR algorithm

t := [2.917152874, 1.802394856]

> normt2:=evalf(dotprod(t,t)/2);

normt2 := 5.879204055
> H:=evalm(ID - t&*transpose(t)/normt2);

> #evaluating Householder reflection

H :=

[

−.447437580 −.8943151635

−.8943151635 .4474375804

]

> HJT:=evalm(H&*transpose(J));

HJT :=

[

−2.015391138

.2 10−9

]

> HJT[2,1]:=0; print(HJT);

159

HJT 2, 1 := 0
[

−2.015391138

0

]

> w:= vector([-h/HJT[1,1], 0]); #w = Hv

w := [.007666184846, 0]

> v:=evalm(H&*w); #v^3

v := [−.003430139195, −.006855985354]
> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);
> L_3 & (BL)_3

L :=

[

−.8943151635

.4474375804

]

BL :=

[

−3.279528930

.4946608572

]

> p:=matadd(phi, Phi&*v); #auxiliary variable

p := [.4474507281, .8943414428]
> r:= evalm(-V&*p);

> #RHS of overdetermined system to compute u in ODA

r := [−.149896927, −.9887316669]

> u:= leastsqrs(BL, r); #u^3

u := [.0002276777133]

> Deltax:= matadd(v, L&*u); #Deltax^3

Deltax := [−.003633754826, −.006754113789]

Fourth iteration is complete. Update x:

> x:= matadd(x, Deltax); x4:=evalm(x); # x^4

x := [.4472471125, .8944433144]

x4 := [.4472471125, .8944433144]

> f:= obj(x); #f_4

f := .5000294132

> phi:= evalm(x); #phi^4

φ := [.4472471125, .8944433144]

> h:= constr(x); #h^4

160

h := .000058822

> J:= dhdx(x); #J_4

J :=
[

.8944942250 1.788886629
]

> alpha:= alfa(J);

α := 2.000058822
> t:=vector([J[1,1] + alpha, J[1,2]]);

> #u in HHR algorithm

t := [2.894553047, 1.788886629]

> normt2:=evalf(dotprod(t,t)/2);

normt2 := 5.789276355
> H:=evalm(ID - t&*transpose(t)/normt2);

> #evaluating Householder

> reflection

H :=

[

−.447233960 −.8944170093

−.8944170093 .4472339590

]

> HJT:=evalm(H&*transpose(J));

HJT :=

[

−2.000058823

−.3 10−9

]

> HJT[2,1]:=0; print(HJT);

HJT 2, 1 := 0
[

−2.000058823

0

]

> w:= vector([-h/HJT[1,1], 0]); #w = Hv

w := [.00002941013500, 0]

> v:=evalm(H&*w); #v^4

v := [−.00001315321114, −.00002630492499]

> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);

> #L_4 & (BL)_4

L :=

[

−.8944170093

.4472339590

]

BL :=

[

−3.279562973

.4944357453

]

> p:=matadd(phi, Phi&*v); #auxiliary variable

p := [.4472339593, .8944170095]

161

> r:= evalm(-V&*p);

> #RHS of overdetermined system to compute u in ODA

r := [−.149145866, −.9888152091]

> u:= leastsqrs(BL, r); #u^4

u := [.00002069770909]

> Deltax:= matadd(v, L&*u); #Deltax^4

Deltax := [−.00003166559420, −.00001704820661]

Fourth iteration is complete. Update x:

> x:= matadd(x, Deltax); x4:= evalm(x); #x^4

x := [.4472154469, .8944262662]

x4 := [.4472154469, .8944262662]

> f:= obj(x); #f_4

f := .5000000006

Given the norm of Deltax, we declare convergence here, and plot the iteration

history in x [1]-x [2] plane:

> o0:= evalm(x0); o1:= evalm(x1);

> o2:= evalm(x2); o3:= evalm(x3); o4:= evalm(x4);

o0 := [2, 2]

o1 := [.787500000, 1.462500000]

o2 := [.5090179236, 1.011062998]

o3 := [.4508808673, .9011974282]

o4 := [.4472154469, .8944262662]

> p0:=point(convert(o0,list), symbol=circle,

> color=blue);

> p1:=point(convert(o1,list), symbol=circle, color=blue);

> p2:=point(convert(o2,list), symbol=circle, color=blue);
> p3:=point(convert(o3,list), symbol=circle, color=blue);

> p4:=point(convert(o4,list), symbol=circle, color=blue);

p0 := POINTS([2., 2.], COLOUR(RGB , 0., 0., 1.00000000), SYMBOL(CIRCLE))

162

p1 := POINTS([.787500000, 1.462500000], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p2 := POINTS([.5090179236, 1.011062998], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p3 := POINTS([.4508808673, .9011974282], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

p4 := POINTS([.4472154469, .8944262662], COLOUR(RGB , 0., 0., 1.00000000),

SYMBOL(CIRCLE))

> l1 :=

> arrow(convert(o0,list),convert(o1,list), 10.0, 0.1, .1, arrow,
> color=red, thickness=2):

> l2 := arrow(convert(o1,list),convert(o2,list), 6.0, 0.1, .2, arrow,

> color=green, thickness=2):

> l3 := arrow(convert(o2,list),convert(o3,list), 6.0, 0.1, .7, arrow,

> color=red, thickness=2):
> l4 := arrow(convert(o3,list),convert(o4,list), 6.0, 0.1, 6.0, arrow,

> color=green, thickness=2):

> c1 := arc([0,0], 1,-Pi/6..4*Pi/6,color=black, thickness=2):

> obj_plot:= proc(ax,ay) (1/2)*(9*ax^2 - 8*ax*ay + 3*ay^2)
> end:f1:=implicitplot(obj_plot-3,-0.5..2,-0.5..2.5,numpoints=3000,

> linestyle=4,color=blue):

> f2:=implicitplot(obj_plot-2,-0.5..2,-0.5..2,

> numpoints=3000,linestyle=4,color=blue):

> f3:=implicitplot(obj_plot-1,-0.5..2,-0.5..2,numpoints=6000,

> linestyle=4,color=blue):f4:=implicitplot(obj_plot-0.5,-0.5..2,-0.5..2,

> numpoints=6000, linestyle=4,color=blue):

> display({c1,p0,p1, p2, p3, p4, p1, l1, l2,

> l3, l4,f1,f2,f3,f4},
> insequence = false, color=red, scaling=constrained);

The plots produced by the plotting commands in the Maple worksheet are repro-

duced in Fig. 6.1.

A plot of the contours of the objective function and the constraint, showing all

four stationary points, is displayed in Fig. 6.2.

163

–0.5

0

0.5

1

1.5

2

–0.5 0.5 1 1.5 2

P0

P1

P2

P3, P4

Figure 6.1: The four iterations leading to the solution of the linear least-square

problem subject to one quadratic constraint

6.3.1 A Geometric Interpretation of the ODA

The ODA admits a geometric interpretation: The objective function can be regarded

as a surface F embedded in a (n+ 1)-dimensional space Rn+1, the union of Rn, the

space of the design-variable vector x, and R, the space of f(x). Likewise, the set of

constraint functions hi(x), for i = 1, 2, . . . , l, can be regarded as a set of l surfaces

Hi embedded in the same (n+ 1)-dimensional space.

The gradient ∇f thus becomes the projection onto Rn of a vector normal to F ,

while the ith row of the Jacobian J represents the projection onto Rn of a normal

∇hi to Hi at a given point Qk, projected onto Rn as Pk, of position vector xk.

Furthermore, all n − l unit vectors li denoting the n-dimensional columns of the

orthogonal complement Lk of Jk are normal to all l vectors ∇hi. Vectors li thus

span a hyperplane, of dimension n− l+ 1, of Rn+1 that is tangent to all Hi surfaces

at Qk. The intersection of this hyperplane with Rn is thus a (n − l)-dimensional

space L on which vector ∆uk, of the orthogonal decomposition of xk, lies. Matrix

Lk then maps this vector onto Rn.

Illustrated in Fig. 6.3 is the paraboloid H defined by h(x) = x2
1 + x2

2 − 1 of

Example 6.3.1, with point Q0 indicating the location on the paraboloid of the initial

guess P0 in R2, of position vector x0 in this space, which is, the x1-x2 plane. This

is a paraboloid of revolution, of axis of symmetry passing through the origin of the

164

Figure 6.2: The contours of constant f and the constraint h = 0

x1-x2 plane and normal to this plane; the intersection of H with the x1-x2 plane is

the circle x2
1 + x2

2 − 1 = 0. Moreover, the intersection of the plane T tangent to H
at Q0 with the same plane is the line L containing vector ∆u0. In the same figure,

vector ∆v0 is the minimum-norm solution to the corresponding underdetermined

system (6.22), line L thus representing the linearized version of h(x) = 0. In this

figure, ∆v0 is normal to L, point P0 becoming the origin of the vector space R2 on

which ∆x0 lies.

Furthermore, the paraboloid F given by f(x) = (1/2)(9x2
1−8x1x2+3x2

2) is shown

in Fig. 6.4; contrary to H, F is not of revolution, its cross sections, parallel to the

x1-x2 plane, being ellipses of equal axis-length ratios. Point P1, of position vector

x1 = x0 + ∆x0, is found as the minimum of f(x) along L. This minimum is located

165

h(x)

Q0

L
P0(2, 2)

x2

x1

P ′
0

∆v0

Figure 6.3: The paraboloid H, its tangent plane T at Q0, whose projection onto the

x1-x2 plane is P0, the initial guess, and the intersection L of T with the x1-x2 plane

166

at the projection P1 of point Q1 of the parabola defined by the intersection of a

plane normal to x1-x2 passing through L with F . The one-dimensional vector ∆u0,

directed from P ′
0 to P1, is parallel to L. This vector is mapped into a two-dimensional

vector of the x1-x2 plane by matrix L0.

Details of the layout of the foregoing points and vectors in the x1-x2 plane are

displayed in Figs. 6.5 and 6.6.

Example 6.3.2 (Finding the Eigenvalues and Eigenvectors of a Symmet-

ric Matrix)

The problem of finding the eigenvalues and corresponding eigenvectors of a n ×
n symmetric positive-definite matrix M is solved as a linear least-square problem

subject to quadratic constraints: For i = 1, 2, · · · , n, and k = 1, 2, · · · , i, find λi and

xi such that

λi = min
xi

1

2
xT

i Mxi

subject to

xT
k xi =

{

0, if k = 1, 2, · · · , i− 1;

1, if k = i

where λi is the ith eigenvalue of matrix M and xi is the corresponding eigenvector.

In order to use the ODA package to solve the problem, we define, for i = 1, 2, · · · , n:

q = n and l = i, (6.33)

x = xi,

φ(x) = x,

h(x) = [xT
1 x · · · xT

i−1x xT x− 1]T ,

W = M

where xk, for k = 1, 2, · · · , i − 1, are the previously calculated eigenvectors of M,

and hence, are known. With the above definitions, for i = 1, 2, · · · , n, subroutine

LSSCNL of the ODA package is called n times. After each call, one eigenvalue and

its corresponding eigenvector are obtained. Notice that, in the last call, the number

of constraints is equal to the number of variables, namely, l = n. Matrix M is given

as

M =










4 2 1 1 1

2 4 2 1 1

1 2 4 2 1

1 1 2 4 2

1 1 1 2 4










.

167

]

f (x)

Q1

P
0

P1

P0(2 , 2)x1

x2

L

∆ x
0

Figure 6.4: The paraboloid F , its contours, and its intersection with the plane Π

normal to the x1-x2 plane, the minimum of the intersection curve denoted by Q1,

its projection onto the x1-x2 plane being P1

168

∆u
x2

J0∆v0 = −h0

L

L

l

l

r ∆x2
∆x2

P0(2, 2)P0(2, 2)

∆x1

∆x1eh

P1

P1

P ′
0

P ′
0

Q0

x1

h0 = 0

1
O

h

O

−1

P ′
0 T
L
P0

r

H

∆u0

∆x0

∆v0

Figure 6.5: The first iteration of the ODA for Example 6.3.1: finding ∆x0
o (≡ ∆v0)

and ∆u0

169

x2

l

P1
P0

Π

O

O x1

f

f(x1)

7

6

5

4

3

2

1

F

Q1

Q1

r

r

P1

P0

L

P1

Figure 6.6: The first iteration of the ODA for Example 6.3.1: detail of the location

of P1, the projection of Q1 onto the x1-x2 plane, where the minimum of f(x) along

L finds itself

170

We use the initial guess

x0 = [0.1 0.1 0.1 0.1 0.1]T .

The eigenvalues and the eigenvectors computed with the ODA package are listed

in Table 6.1. In that table, the number of iterations that the package took till con-

vergence was reached with ǫ1 = 0.0001 and ǫ2 = 0.0001, is indicated.

i 1 2 3 4 5

λi 1.27738 3.08749 9.63513 2.0 4.0

1st comp. of xi 0.26565 −0.51369 0.40689 0.5 0.5

2nd comp. of xi −0.51853 0.10368 0.46944 −0.5 0.5

3rd comp. of xi 0.56667 0.67138 0.47764 0.0 0.0

4th comp. of xi −0.51853 0.10368 0.46944 0.5 −0.5

5th comp. of xi 0.26565 −0.51369 0.40689 −0.5 −0.5

of iterations 12 11 6 38 54

Table 6.1: Eigenvalues and eigenvectors of M

Example 6.3.3 (The Constrained Minimization of the Rosenbrock Func-

tion) In this example, we find its equality-constrained minimum of the Rosenbrock

function using SQP via the ODA. We thus have

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2 → min

x1, x2

subject to

h((x1, x2) = 0.7525x2
1 − 1.1202x1 − 0.8574x1x2

+0.6168x2 + 0.2575x2
2 + 0.4053

The function is notorious for its ill-conditioning, which is apparent from its

contours, as shown in Fig. 6.7, showing elongated valleys. The outcome is that

the quadratic approximation of this function within those valleys is a family of el-

lipses that have one semiaxis much greater than the other one, thereby leading to

ill-conditioning. Notice that the constraint is a rather elongated ellipse that con-

tributes to the ill-conditioning of the problem.

171

Starting from the initial guess x = [1.5 1.5]T with a damping ratio of 0.025, the

optimum solution is found in 312 ODA iterations, the result being

xopt =

[
0.9176

0.5873

]

which yields

fmin = 6.6963

Figure 6.7: The contours of the Rosenbrock (banana) function and its quadratic

constraint (dashed)

6.4 Equality-Constrained Optimization with Ar-

bitrary Objective Function

The problem to be solved is defined as:

f = f(x) → min
x

(6.34)

subject to the nonlinear equality constraints

h(x) = 0 (6.35)

where x is the n-dimensional design-variable vector, the objective function f(x)

being a nonlinear function of x, not necessarily quadratic and positive-definite, which

172

was the case studied in Section 6.3. Moreover, h(x) is a l-dimensional vector of

nonlinear equality constraints.

In the problem defined in eq.(6.34), if the constraints in eq.(6.35) are analytic,

then there exists a feasible manifold F ⊂ Rn, of dimension l, such that, if u ∈ F ,

then

h(x(u)) = 0 (6.36)

In the particular case in which h(x(u)) is linear, F is a vector space, i.e., the feasible

space of the problem at hand.

An example of a problem that falls in the category studied here is the objective

function

f(x) =
1

2
(−9x2

1 − 8x1x2 + 3x2
2)

to be minimized subject to

h(x) = x2
1 + x2

2 − 1 = 0

It can be readily shown that this problem does not belong to the least-square

class, and hence, cannot be handled with the ODA directly. Indeed, as the objective

function is quadratic in the design variables, for the problem to be of the least-

square class, it should be possible to cast the objective function in the form (6.2).

This means that the Hessian of this function should admit the form ATWA, which

means that the unconstrained Hessian should be positive-definite, as W is so by

hypothesis. A quick computation shows that the Hessian in question is

H =

[−9 −4

−4 3

]

Further, tr(H) = −6, which means that its larger eigenvalue is negative, while

det(H) = −43, and hence, its two eigenvalues bear opposite signs, the outcome

being that the Hessian is sign-indefinite. Therefore, no matrices A and W can be

found that would allow the casting of the given objective function in the form of

eq.(6.2). The numerical solution of this problem thus cannot be found by application

of the method of Section 6.2, or that of Section 6.3 for that matter. Nevertheless,

ODA can still be applied, if with some additional work, as described below.

Two cases are studied:

1. The objective and the constraint functions are assumed to be continuous and

to have continuous derivatives up to the second order; and

173

2. the objective and the constraint functions are assumed to be continuous and

to have continuous derivatives up to the first order.

In both cases it is assumed that the derivatives in question are available, which

is a big assumption. In real-life problems, second-order derivatives are seldom avail-

able; first-order derivatives are more likely to be available. If the latter are not, then

these can be approximated, provided that they are continuous, by finite differences,

for which reliable algorithms exist.

Although the first case is less realistic, it is included here for pedagogical reasons.

6.4.1 A Sequential-Quadratic Programming Approach

In this subsection the objective and the constraint functions are assumed to be

continuous and to have continuous derivatives up to the second order. Furthermore,

we assume that, at x = xk, in general, h(xk) = hk 6= 0l, i.e., the current x is not

feasible, and note that f(xk + ∆xk) can be expanded, to a second order, as

f(xk + ∆xk) ≈ f(xk) + (∇f)T
k ∆xk +

1

2
(∆xk)T (∇∇f)k∆xk → min

∆xk
(6.37a)

subject to

Jk∆vk = −hk (6.37b)

We have thus derived a linear least-square problem in ∆xk subject to the linear

constraints (6.37b). To find the increment ∆xk, we resort to the ODA, as introduced

in Section 6.2. To this end, we decompose the foregoing vector into its two orthogonal

components:

∆xk = ∆vk + Lk∆uk

where

∆vk = −JT
k (JkJ

T
k)−1hk (6.38)

is the minimum-norm solution of eq.(6.37b), and Lk is the isotropic orthogonal

complement of Jk defined in eqs.(6.13) and (6.14), while Jk itself is defined as the

gradient of h with respect to x, evaluated at x = xk. Moreover, Lk and ∆uk are

found with the procedure described in Section 6.2 for linearly constrained linear

least-square problems. Furthermore, with ∆xk
o given by eq.(6.38), f(xk + ∆xk)

becomes a function solely of ∆uk, i.e.,

f(∆uk) ≈ f̃(∆uk) ≡ f(xk) + (∇f)T
k (∆xk

o + Lk∆uk)

+
1

2
(∆xk

o + Lk∆uk)T (∇∇f)k(∆xk
o + Lk∆uk)→ min

∆uk

174

which can be cast in the form

f̃(∆uk) =
1

2
(∆uk)TLT

k (∇∇f)kLk∆uk +
[
LT

k (∇∇f)k∆xk
o + LT

k (∇f)k

]T
∆uk

+
1

2
(∆vk)T (∇∇f)k∆vk + (∇f)T

k ∆vk + f(xk)→ min
∆uk

(6.39)

subject to no constraints, f̃(∆uk) being quadratic in ∆uk. Function f̃(∆uk) has a

minimum if its Hessian with respect to ∆uk, the feasible Hessian Hk = LT
k (∇∇f)kLk,

is positive-definite. Under the assumption that this is the case, then, the minimum

∆uk of f̃(∆uk) can be readily computed upon zeroing its gradient with respect to

∆uk, which yields

Hk∆uk = −LT
k [(∇∇f)k∆vk + (∇f)k]

Under the assumption that Hk is positive-definite, it is invertible, and hence,

∆uk = −H−1
k LT

k [(∇∇f)k∆vk + (∇f)k] (6.40)

We have thus reduced the original problem to a sequence of linear-quadratic

programs, within an iterative procedure. At each iteration, moreover, we find the

correction to the current approximation ∆xk by means of a combination of two linear

problems, one being a minimum-norm problem, the other involving a determined

linear system of equations. As the objective function at each iteration is quadratic in

∆u, and its minimization is unconstrained, the above procedure is called sequential

quadratic programming.

The foregoing procedure relies on the rather daring assumption that the Hessian

Hk is positive-definite. Below we study the more realistic case of a non-positive-

definite Hessian.

Sequential quadratic programming with Hessian stabilization

In the presence of a non-positive-definite Hessian Hk, we aim at a perturbation ∆Hk

of the Hessian that will render the perturbed Hessian H̃k positive-definite, thus

producing

H̃k ≡ Hk + ∆Hk (6.41)

How to obtain ∆Hk that is guaranteed to produce a positive-definite-Hessian is the

key issue here. We describe in the subsection below a method for the determination

of ∆Hk. Note that, once the perturbed Hessian, which is most frequently referred

to as the stabilized Hessian, is available, ∆uk is found from

H̃k∆uk = −LT
k [(∇∇f)k∆vk + (∇f)k] (6.42)

175

The process of finding a positive-definite H̃k is termed Hessian stabilization. The

rationale behind Hessian stabilization lies in the property that, if the eigenvalues of

a n × n matrix M are {µk }n1 , then the eigenvalues of matrix M + α1, where α is

a real number and 1 is the n × n identity matrix, are {µk + α }n1 . Thus, the effect

of adding the isotropic matrix α1 to M is to shift the eigenvalues of the latter to

the right of the complex plane by an amount α if α > 0; if α < 0, then the same

isotropic matrix shifts the eigenvalues of M to the left of the complex plane by an

amount |α|. If the Hessian of interest is not positive-definite, this means that it has

some negative eigenvalues, in which case Hessian stabilization consists in finding the

right value of α in the foregoing scheme, that will shift the Hessian eigenvalues to

the right of the real axis—since the Hessian is necessarily symmetric, its eigenvalues

are all real—so that none of the shifted eigenvalues will lie on the left half of the

real axis. Notice that, if α > 0 is underestimated, then the associated isotropic

matrix will fail to shift some of the negative Hessian eigenvalues to the right; if

overestimated, then all shifted eigenvalues will lie on the right half of the real axis,

but the Hessian will be overly perturbed, and the converegence will slow down.

Obviously, if we know the eigenvalues of the Hessian Hk, then we can find the

right µk that will shift all its eigenvalues to the right. However, computing eigen-

values is an iterative process, except for very special cases of simple matrices, and

hence, we cannot rely on knowledge of those eigenvalues. We discuss below how to

estimate the right amount of shift α without having to compute the Hessian eigen-

values. The basis of the procedure is a result on positive-definite matrices that we

recall below.

Diagonal-dominance in positive-definite matrices

The Gerschgorin Theorem (Varga, 2000) establishes a region in the complex plane

containing all the eigenvalues of a n × n matrix A, defined over the complex field

C, namely,

A =








a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann








According to the Gerschgorin Theorem, all the eigenvalues of A lie within a complex

region S, defined as the union of disks Di centered at aii, with radius ri, in the

176

Im{ · }

Re{ · }ann

a22

a11

rn

r2

r1

Dn

D2

D1

Figure 6.8: The Gerschgorin disks of an arbitrary n× n matrix

complex plane, for i = 1, ..., n, ri being given by

ri =
n∑

j=1,j 6=i

| aij |

in which | · | denotes the module of (·). The Gerschgorin Theorem is illustrated in

Fig. 6.8, the region S thus being

S =

n⋃

i=1

Di

If A is symmetric and real, which is so for Hessian matrices, then its eigenvalues

lie in the union of the real intervals

Ii = [aii − ri, aii + ri], i = 1, 2, ..., n

A lower bound l of the set {λi}n1 of eigenvalues of A is, thus,

l ≡ min
i
{aii − ri}n1 (6.43a)

the corresponding upper bound being

u ≡ max
i
{aii + ri}n1 (6.43b)

If A is positive-definite, all eigenvalues of A must be positive, which means that

the lower bound l should be positive as well. If, on the other hand, A is either

sign-indefinite or positive-definite, but close to singular, then l can be negative.

Now we have, with the foregoing notation,

177

Definition 6.4.1 (Diagonal dominance) A n× n matrix A is said to be diago-

nally dominant if

aii > ri

Further, we have a result allowing us to characterize positive-definite matrices with-

out the burden of computing their eigenvalues.

Theorem 6.4.1 If a symmetric matrix A is diagonally dominant, then it is positive-

definite.

Note, however, that the converse is not true, i.e., a positive-definite matrix need not

be diagonally dominant.

Hessian stabilization with the aid of diagonal-dominance

The feasible Hessian matrix LT
k (∇∇f)|kLk of the objective function can fail to be

positive-definite when the Hessian (∇∇f)|k fails to be so. However, it may well

happen that the latter fails to be positive-definite and yet the former is positive-

definite. In this light, it appears that we need not stabilize the Hessian itself, but

only its feasible projection. However, stabilizing the Hessian by the right amount

of shift requires working with the unconstrained Hessian. We will thus proceed

accordingly.

We need first a criterion to tell us when (∇∇f)k is suspected of being sign-

indefinite. The criterion is simple:

If (∇∇f)k fails to be diagonally-dominant, then sign-indefiniteness is

likely to occur—but not guaranteed!—and hence, Hessian stabilization is

warranted.

The stabilizing procedure is applied by introducing a scalar µk > 0, that we will

term the Gerschgorin shift, such that a new diagonally-dominant matrix Wk is used

to replace (∇∇f)k, with Wk defined as

Wk = (∇∇f)k + µk1 (6.44)

Wk thus being guaranteed to be positive-definite, based on the diagonal-dominance

theorem above.

The stabilized Hessian thus yields the stabilized feasible Hessian

H̃k = LT
k WkLk = LT

k (∇∇f)|kLk + µkL
T
k Lk (6.45)

178

Moreover, since Lk is isotropic, for it has been chosen as an isotropic orthogonal

complement of Jk, it turns out that

LT
k Lk = 1n′ (6.46)

with 1n′ denoting the (n − l) × (n − l) identity matrix. Therefore, the stabilized

feasible Hessian H̃k reduces to

H̃k = LT
k WkLk = LT

k (∇∇f)|kLk + µk1n′ (6.47)

which is now a fortiori positive-definite, problem (6.39) thus admitting one minimum

∆uk, which is computed from eq.(6.42).

Choice of the Gerschgorin Shift

In this subsection we stress the importance of the selection of µk, where subscript k

denotes the iteration number. With a proper selection, the number of iterations can

be effectively reduced. First, we assume that (∇∇f)k was found to fail the diagonal-

dominance test, and hence, the lower bound lk of its eigenvalues is negative.

The selection of µk is suggested to be slightly greater than the lower bound lk of

the eigenvalues, as obtained by the diagonal-dominance criterion (or test), i.e.,

µk = −(1 + ∆k)lk (6.48)

where ∆k is a positive number, that is to be chosen as small as possible.

The value of ∆k is related to the bandwidth bk of the Hessian eigenvalues, with

bk defined as

bk = uk − lk
The value of ∆k can then be chosen as a small fraction 10−p, with p = 1 or 2,

probably even smaller.

Example 6.4.1 (Powell’s Function)

A problem proposed by (Powell, 1969) is solved here:

f(x) = ex1x2x3x4x5 → min
x
, x ≡ [x1 x2 x3 x4 x5]T

subject to the nonlinear equality constraints

h1 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2 = x2x3 + x4x5 = 0

h3 = x3
1 + x3

2 + 1 = 0

179

A word of caution is in order here: while the exponential function ex is convex—

its second derivative with respect to x is positive everywhere—the bivariate exponen-

tial function ex1x2 is not convex everywhere, and neither is so the above objective

function. In fact, the Hessian of the bivariate exponential becomes sign-indefinite

in a region of the x1-x2 plane. This statement is illustrated with the plot of this

function displayed in Fig. 6.9. The conclusion of the foregoing remark is, then, that

the multivariable exponential function, like Powell’s function, has a Hessian that is

sign-indefinite in a region of R5. Optimum solutions were obtained with two different

algorithms, the corresponding results being listed in Table 6.2. Results were obtained

under the same environment, a Silicon Graphics 64-bit Octane SE workstation, with

a 250 MHz R10000 processor, running the IRIX 6.5 operating system. An initial

guess is taken as

x0 = [−1 2 −0.5 1 2]T

with tolerance of 10−6. The ODA package requires only 58 iterations, as compared

with 186 required by the Matlab Optimization Toolbox. Moreover, the CPU time

required by the ODA is only 8.9 % of the CPU time consumed by Matlab.

Figure 6.9: The bivariate exponential ex1x2

Example 6.4.2 (The Equilibrium Configuration of a N-link Chain)

Shown in Fig. 6.10a is a chain with N links in its equilibrium configuration, which

spans a distance d, with each link of length ℓ. Knowing that the chain reaches its

180

Table 6.2: A performance comparison based on Powell’s function

Matlab ODA

f 0.05395 0.05395

x1 −1.7172 −1.7171

x2 1.5957 1.5957

x3 1.8272 −1.8272

x4 0.7636 −0.7636

x5 0.7636 0.7636

of iterations 186 55

CPU time (s) 0.2903 0.0259

equilibrium configuration when its potential energy attains a minimum value, find

the said equilibrium configuration. This problem, originally proposed by Luenberger

(1984), was solved for the case of two design variables, exactly, in Example 5.3.3.

(a) (b)

Figure 6.10: An N -link chain in: (a) its unknown equilibrium configuration; and (b)

a configuration to be used as an initial guess

Angles θi, used to define the configuration of the chain, are measured from the

vertical ccw, with θi corresponding to the angle that the axis of the ith link makes

with the vertical, as shown in Fig. 6.11.

If V ≡ µℓf(θ1, θ2 . . . , θN) denotes the potential energy of the chain, and µ is

the mass density of the links per unit length, then minimizing V is equivalent to

minimizing f , which is given by

f(θ1, θ2 . . . , θN) = −
[

1

2
cos θ1 + (cos θ1 +

1

2
cos θ2) + . . .

+ (cos θ1 + . . .+ cos θN−1 +
1

2
cos θN−1)

]

→ min
{ θi }N

1

181

Figure 6.11: Definition of θi for the N -link chain

or, in compact form,

f(θ1, θ2 . . . , θN) = −1

2

N∑

i=1

[2(N − i) + 1] cos θi → min
{ θi }N

1

subject to two constraints: the two ends (1) must lie at the same height, and (2) are

separated by a distance d, as shown in Fig. 6.11. The constraints are

h1 =

N∑

i=1

cos θi = 0

h2 =

N∑

i=1

sin θi −
d

ℓ
= 0

Under the assumption that the configuration is symmetric, and that N is even, then

M = N/2 is an integer. Thus, only one half of the chain need be considered. The

problem is, thus, simplified as

f(θ1, θ2 . . . , θM) = −
[

1

2
cos θ1 + (cos θ1 +

1

2
cos θ2) + . . . + (cos θ1 + . . .+ cos θM−1

+
1

2
cos θM)

]

= −1

2

M∑

i=1

[2(M − i) + 1] cos θi → min
{ cos θi }M

1

The two constraints then reduce to only one:

h =

M∑

i=1

sin θi −
d

2ℓ
= 0

This problem, with M = 5, i.e., with N = 10, is solved now using the configura-

tion of Fig. 6.10b as an initial guess. The equilibrium configuration of the chain is

given in Table 6.3 with a comparison between ODA and Matlab.

182

Table 6.3: Luenberger’s chain with M = 5

Matlab The ODA

θ1 0.0893 0.0893

θ2 0.1147 0.1147

θ3 0.1599 0.1599

θ4 0.2625 0.2625

θ5 0.67856 0.6785

fmin -12.2650 -12.2650

Iterations 16 7

CPU time (s) 0.2825 0.003261

With the same tolerance set at 0.0001, the ODA takes less than half the number

of iterations than Matlab; additionally, the CPU time consumed by ODA is about

10% of that consumed by Matlab.

It is noteworthy that the convergence of ODA is dependent on the choice of µk

in eq.(6.44), for a given value of d/(2l).

6.4.2 A Gradient-based Approach

Now we relax the assumption of Subsection 6.4.1, and assume that both the objective

and the constraint functions are continuous and have continuous derivatives up to

the first order only. Moreover, we asume that these derivatives are available. In this

light, the objective function can be expanded at the kth iteration in the form

f(xk + ∆xk) = f(xk) + (∇fk)
T ∆xk + HOT(∆xk) (6.49)

with the usual notation. Furthermore, the constraint function is approximated to a

first order as appearing in eq.(6.37b), which then allows us to express the increment

∆xk in the form

∆xk = −JT
k (JkJ

T
k)−1hk + Lk∆uk (6.50)

The expansion (6.49) can thus be expressed as

f(xk + ∆xk) = f(xk) + f̃(−JT
k (JkJ

T
k)−1hk + Lk∆uk) (6.51)

183

Apparently, the second term of the foregoing expansion is a function of the

(n− l)-dimensional variable ∆uk, the problem at hand thus reducing to

f̃(∆uk) → min
∆uk

(6.52)

subject to no constraints. The problem has thus been reduced to one of a dimension,

n − l, lower than n, that of the original problem. Not only this, the problem has

also been reduced to one of the unconstrained type. So far, we have then the

same simplifications as in Subsection 6.4.1. However, rather than relying on the

availability of second derivatives, we resort, for the numerical solution of the problem

at hand, only to gradient evaluations.

Under the assumption that the objective and the constraint functions have con-

tinuous gradients, and these are available, we can use any of the methods introduced

in Section 4.5 to solve the problem. Of these methods, we recommend two of the

most effective ones, the Fletcher-Reeves and the BFGS methods.

184

Chapter 7

Inequality-Constrained

Optimization

7.1 Introduction

The constraints under which a design problem is formulated involve, more often than

not, inequality constraints, in addition to equalities. In fact, inequality constraints

arise naturally in design because the resources available to accomplish a design job

are finite. For example, a designed object must: fit into a designated region; be

realizable within a given budget; and be delivered by a certain date.

In this chapter we address two issues around inequality-constrained problems:

the normality conditions and the methods of solution. As to the former, we will not

dwell into their rigorous derivation, which are elusive to a simple analysis with the

tools of linear algebra; rather, we will introduce the first-order normality conditions

without derivation, and illustrate their validity with examples. The second-order

normality conditions will be derived using an intuitive approach, more so than a

mathematical formulation.

The reason why linear algebra is no longer sufficient to derive the normality con-

ditions of inequality-constrained problems lies in the nature of inequalities, which

define a region of R
n that is neither a vector subspace nor a manifold, as we en-

countered when studying equality-constrained problems. Now we will speak, more

generally, of the feasible region F , which can have sharp edges and vertices, not

occurring in manifolds. For this reason, a simple transformation of the form x(u) is

not sufficient, in general, to guarantee the fulfillment of the inequality constraints.

185

7.2 The Karush-Kuhn-Tucker Conditions

The first-order normality conditions of equality-constrained problems are classical

results, first proposed by Joseph Louis de Lagrange, brilliant mathematician born

in Turin in 1736 and dead in Paris in 1813. Lagrange founded in Turin a society

that would become the Academy of Sciences; then, Lagrange went to Berlin, to

the Academy of Friedrich II, to succeed Euler. Rather late in his life, in 1787, did

Lagrange move to Paris, invited by Louis XVI to teach at Ecole normale. Appointed

senator and made count by Napoleon, Lagrange became one of the first professors

at Ecole polytechnique.

The first-order normality conditions for inequality-constrained problems had to

wait until well into the XX century. These conditions were disclosed first by W.

Karush in his M.S. thesis in the Department of Mathematics at the University of

Chicago (Karush, 1939). Apparently, these results were never published in the

archival literature, for which reason they remained unknown. Twelve years later,

they were published in the Proc. Second Berkeley Symposium by Kuhn and Tucker

(1951). The credit of these normality conditions has gone mostly to Kuhn and

Tucker, but given their history, these conditions are sometimes referred to as the

Karush-Kuhn-Tucker conditions.

The problem at hand is formulated as

f(x) → min
x

(7.1a)

subject to

g(x) ≤ 0p (7.1b)

h(x) = 0l (7.1c)

where inequality (7.1b) is to be taken with a grain of salt: Arrays not forming ordered

sets, this relation has no verbatim meaning. It is to be interpreted as shorthand for

a set of m inequalities, namely,

g1(x) ≡ g1(x1, x2, . . . , xn) ≤ 0

g2(x) ≡ g2(x1, x2, . . . , xn) ≤ 0
...

gp(x) ≡ gp(x1, x2, . . . , xn) ≤ 0

To formulate the normality conditions, we proceed as before, namely, by defining a

186

Lagrangian upon adjoining the equality and the inequality constraints to the objec-

tive function, namely,

F (x, λ, µ) ≡ f(x) + λTh(x) + µTg(x) → min
x,λ,µ

(7.2)

where λ is found so that h(x) will vanish at a stationary point, the role played by

µ being described below. We start by introducing a

Definition 7.2.1 (Active constraint) When, at a stationary point, the ith con-

straint of (7.1b) holds with the equality sign, this constraint is said to be active.

By extension, we will define as passive any non-active constraint.

The components of µ are chosen so that the contribution of all passive constraints

to the Lagrangian vanish, that of all active constraints necessarily vanishing.

While the normality conditions cannot be derived by simply making the gradient

of the foregoing Lagrangian equal to zero, these conditions look very much like those

associated with equality-constrained problems. Indeed, xo is a feasible stationary

point if

h(xo) = 0l, g(xo) ≤ 0p (7.3a)

∇f |x=xo
+ JT

o λ+ GT
oµ = 0n (7.3b)

µ ≥ 0m, µTg(x) = 0 (7.3c)

where

Go ≡ G(xo) ≡
∂g

∂x

∣
∣
∣
∣
x=xo

, Jo ≡ J(xo) ≡
∂h

∂x

∣
∣
∣
∣
x=xo

(7.3d)

i.e., G and J are, respectively, the p× n and the l × n gradients of the inequality-

and equality-constraint functions g(x) and h(x), namely,

G ≡








(∇g1)
T

(∇g2)
T

...

(∇gp)
T







, J ≡








(∇h1)
T

(∇h2)
T

...

(∇hl)
T








(7.4)

Hence, the KKT condition (7.3b) can be expressed alternatively as

∇f |x=xo
+ λ1∇h1|x=xo

+ λ2∇h2|x=xo
+ · · ·+ λ1∇hl|x=xo

+ µ1∇g1|x=xo
+ µ2∇g2|x=xo

+ · · ·+ µp∇gp|x=xo
= 0n (7.5)

187

It is noteworthy that, the components of µ being non-negative and those of g(x)

non-positive, each µigi(x) is non-positive. Hence, µTg(xo) = 0 of eq.(7.3c) implies

µigi(xo) = 0, i = 1, . . . , p

at a feasible stationary point.

Relations (7.3a–c) are the Karush-Kuhn-Tucker (KKT) conditions. These are the

first-order normality conditions of the inequality-constrained problem at hand, and

hence, guarantee a feasible stationary point of F , but not a minimum. The latter is

guaranteed by the second-order normality conditions, to be studied in Section 7.3.

Remark: In the absence of inequality constraints, eq.(7.3b) reduces to the FONC

of equality-constrained problems, eq.(5.8a).

Relations (7.3c) of the KKT conditions are referred to as the complementary

slackness, sometimes as the transversality condition1. Complementary slackness

thus guarantees that, at a SP, the Lagrangian equals the objective function, under

the assumption that the equality constraints are verified.

Further, if a of the m inequality constraints are active, we can partition vector

g(xo), very likely after a reshuffling of its components, in the form

g(xo) =

[
ga

gp′

]

, p′ = p− a (7.6)

where ga and gp′ are a- and (p − a)-dimensional vectors, respectively. Now, the

Karush-Kuhn-Tucker conditions of eq.(7.5) can be restated as

∇f |x=xo
+ λ1∇h1|x=xo

+ λ2∇h2|x=xo
+ · · ·+ λl∇hl|x=xo

+ µ1∇g1|x=xo
+ µ2∇g2|x=xo

+ · · ·+ µa∇ga|x=xo
= 0n, ga = 0a (7.7)

where the first equation resembles the FONC of equality-constrained problems, this

time with l + a equality constraints, as derived in eq.(5.8a).

Moreover, the KKT conditions can be cast in the canonical form

∇xF ≡
∂F

∂x
= 0n, ∇µF ≤ 0p, µT∇µF = 0 (7.8)

A proof of the KKT can be found in (Culioli, 1994; Boyd and Vandenberghe, 2004).

To illustrate the validity of the KKT conditions, we give in Fig. 7.1 a mechanical

interpretation: A heavy ball of weight w is constrained to lie in a box, under the

1Not to be confused with the transversality condition of calculus of variations.

188

action of the gravity field g, as depicted in Fig. 7.1a; the ball is shown in its equilib-

rium position in Fig. 7.1b; in Fig. 7.1c, the weight of the ball, equal to −∇V , where

V is the potential energy of the ball, is decomposed into the two forces normal to

the box walls. Notice that these two components push the walls, but cannot pull

them, which is the reason why µi > 0, for i = 1, 2.

(a) The general layout (b) The ball at its equilibrium

position

(c) A decomposition of the

weight of the ball at equilib-

rium position

Figure 7.1: A heavy ball inside a box inclined with respect to the vertical

Figure 7.2: A quadratic objective func-

tion subject to linear inequality con-

straints

Example 7.2.1

Consider the problem

f =
1

2
(x2

1 + x2
2) → min

x1,x2

subject to

x1 + x2 ≥ 10

x1 ≥ 0

x2 ≥ 0

The objective function and the constraints

are illustrated in Fig. 7.2.

For starters, we must express the in-

equality constraints in the standard form

adopted at the outset, i.e., as gi(x) ≤ 0,

whence,

g1 ≡ −x1 − x2 + 10 ≤ 0, g2 ≡ −x1 ≤ 0, g3 ≡ −x2 ≤ 0

189

Apparently, the minimum is found at xo = [5, 5]T . We evaluate then the items

entering in the KKT conditions at xo:

∇g1 =

[−1

−1

]

, ∇g2 =

[−1

0

]

, ∇g3 =

[
0

−1

]

∇f =

[
x1

x2

]

, ⇒ ∇f |x=xo
=

[
5

5

]

By inspection, only the first constraint is active, and hence,

g1(xo) = 0, µ1 > 0, µ2 = µ3 = 0

The KKT condition (7.7) thus reduces to

∇f |x=xo
+ µ1∇g1|x=xo

= 02, µ1 > 0

or

µ1∇g1|x=xo
= − ∇f |x=xo

which states that, at the SP xo given above, the two gradients, ∇f |x=xo
and

∇g1|x=xo
, are linearly-dependent. As a consequence, the above overdetermined sys-

tem of two equations in one single unknown, µ1, admits one solution that verifies

the two equations. Upon solving this system, in fact, we obtain µ1 = 5 > 0, thereby

verifying the second relation of conditions (7.3c).

Example 7.2.2

f ≡ 8x2
1 − 8x1x2 + 3x2

2 → min
x

subject to

x1 ≥ 3

x2 ≤
3

2

The objective function and the constraints of this example are depicted in Fig. 7.3

Again, we start by restating the inequalities in our standard form:

g1 ≡ 3− x1 ≤ 0, g2 ≡ x2 −
3

2
≤ 0

Therefore,

∇g1|x=xo
=

[−1

0

]

, ∇g2|x=xo
=

[
0

1

]

190

3

3
2

∇f

∇g1

∇g2

g1 = 0

g2 = 0

x1

x2

P0

Figure 7.3: One more quadratic objective function subject to linear inequality con-

straints

condition (7.3b) thus leading to

µ1∇g1|x=xo
+ µ2∇g2|x=xo

= −∇f |x=xo

where, apparently,

xo =

[
3

3/2

]

, ∇f =

[
16x1 − 8x2

−8x1 + 6x2

]

Hence,

∇f |x=xo
=

[
36

−15

]

The above normality condition thus leading to

µ1

[−1

0

]

+ µ2

[
0

1

]

=

[−36

15

]

which, in this case, turns out to be a determined system of two equations in two

191

unknowns, its solution being

µ1 = 36 > 0, µ2 = 15 > 0

thereby verifying all KKT conditions.

Example 7.2.3 (A Linear Program)

A class of optimization problems finding a number of applications involves a linear

objective function subject to linear equality and inequality constraints. This class is

studied within the realm of linear programming. These problems cannot be solved

with the tools described so far, for we have focused on least-square problems, with

an extension to more general objective functions and equality constraints. By the

same token, linear programs arise seldom in mechanical design. To be true, a family

of design problems in structural engineering, known as limit design, pertain to the

design of structural elements, beams, columns and plates, for minimum weight, in

such a way that all modes of plastic failure are avoided. Problems in limit design

lead to linear programs.

Linear programming is a first instance of application of the KKT conditions. We

illustrate the concept with the problem below.

f ≡ 2x1 − x2 → min
x1,x2

subject to

g1(x) ≡ −x1 ≤ 0

g2(x) ≡ −x2 ≤ 0

g3(x) ≡ x1 + x2 − 1 ≤ 0

The gradient of the objective function and the constraints of this problem are illus-

trated in Fig. 7.4.

In this case,

G =





−1 0

0 −1

1 1



 , ∇f =

[
2

−1

]

, xo =

[
0

1

]

The KKT conditions lead to

[
2

−1

]

+

[−1 0 1

0 −1 1

]




µ1

µ2

µ3



 =

[
0

0

]

192

Figure 7.4: A linear program(the feasible region is shown dashed)

Apparently, g1 and g3 are active, and hence,

µ1, µ3 > 0, µ2 = 0

thereby ending up with a system of two equations in two unknowns, µ1 and µ3. Upon

solving this system, we obtain, successively,

µ3 = 1 > 0, µ1 = 3 > 0

thereby verifying the KKT conditions.

7.3 Second-Order Normality Conditions

The simplest way of stating the sufficient conditions for a minimum, i.e., the second-

order normality conditions, is by imposing the condition that, at a stationary point

xo within F , any feasible move ∆xF will produce a growth, and hence, a worsening,

of the objective function while respecting the constraints. In other words, at a

feasible minimum, we cannot decrease the objective function without violating the

constraints. That is,

∆f ≡ f(xo + ∆xF)− f(xo) > 0 (7.9)

∆h ≡ h(xo + ∆xF)− h(x0) = 0l (7.10)

g(xo + ∆xF) ≤ 0p (7.11)

A feasible move, moreover, is to be understood here at the first-order approximation

of the objective function and the constraint functions g(x) and h(x). In this light,

193

then, eq.(7.10) constrains ∆xF to lie in the nullspace of J, i.e.,

J∆xF = 0l (7.12)

If we recall now the partitioning of g(x) introduced in eq.(7.6), relation (7.11) can

be correspondingly partitioned as

∆ga(x) ≡ ga(x0 + ∆xF)− ga(x0) = 0a (7.13a)

gp′(x) ≡ gp′(x0 + ∆xF) < 0p′ (7.13b)

the feasible move thus requiring that the passive constraints remain passive and that

their active counterparts remain active. If we now let Ga denote ∇ga, the first-order

approximation of eq.(7.13a) leads to

Ga(x)∆xF = 0a (7.14)

and we need not worry about the passive constraints (7.13b), which will be respected

as long as ‖∆xF‖ is “small enough.” Now we can adjoin eq.(7.14) to eq.(7.12) in

the form

J∆xF = 0l+a, J ≡
[

J

Ga

]

(7.15)

Further, we introduce, correspondingly, a n× (n− l−a) orthogonal complement

L of J, i.e.,

J L = O(l+a)×(n−l−a) (7.16)

The FONC can now be restated as

∇f + J
T
λ = 0n, λ ∈ R

l+a, µp′ = 0p′ (7.17)

where µp′ is the passive-constraint counterpart of λ.

The sufficient second-order normality conditions can now be stated in exactly

the same form as for equality-constrained problems. That is, we define now the

(n− l − a)× (n− l − a) reduced Hessian as

Hr ≡ L
T

[

∇∇f +
∂(J

T
λ)

∂x

]

L (7.18)

and hence, the sufficient SONC can be stated as:

A stationary point of an inequality-constrained problem is a minimum if

the reduced Hessian, defined in eq.(7.18), is positive-definite.

194

7.3.1 Overconstrained Problems

In the special case in which l + a > n, the orthogonal complement L does not

exist for a full-rank J. In this case, the problem is overconstrained, and hence,

ill-defined. However, if J is rank-deficient, of rank smaller than n, then some of the

constraints are redundant, at least to a first order, and the problem may admit a

minimum. If l + a = n, then the equality constraints yield a determined system of

nonlinear equations, which can be solved using the Newton-Raphson method. Any

of the solutions thus obtained is a solution candidate for the original optimization

problem.

Example 7.3.1 The KKT and Second-Order Conditions

Consider the problem

f(x) = (x1 − 1)2 + (x2 + 2)2 → min
x1,x2

subject to

g(x) = x1 − x2 + 0.5 ≤ 0

Solution: We start by finding a feasible stationary point x0 via the KKT conditions:

∇f + µ∇g = 0

where

∇f = 2

[

x1 − 1

x2 + 2

]

, ∇g =

[

1

−1

]

Hence, the KKT conditions lead to

2

[

x1 − 1

x2 + 2

]

+ µ

[

1

−1

]

=

[

0

0

]

Next, we investigate whether g(x) ≤ 0 is active. As the unconstrained problem

has a minimum at [1, −2]T , the centre of the family of circles generated by the ob-

jective function, which violates the inequality constraint, this must be active. Hence,

the above equations yield, with µ > 0,

2(x1 − 1) + µ = 0 & 2(x2 + 2)− µ = 0

which, upon summation, lead to

x1 + x2 = −1

195

while the inequality constraint, written as an active constraint, leads in turn to

x1 − x2 = −0.5

The solution of the two foregoing equations is x1 = −0.25, x2 = −0.75, whence

µ = 2.5 > 0 and hence, the KKT conditions are verified. Now we turn to the

second-order sufficient conditions: In our case,

J ≡ [(∇ga)
T] = [1 −1] ⇒ L =

[

1

1

]

and

∇∇f =

[

2 0

0 2

]

Moreover, as J is constant because the constraint is linear,

∂(J
T
λ)

∂x
= O22

Therefore,

∇∇f = [1 1]

[

2 0

0 2

][

1

1

]

= 4 > 0

thereby verifying the second-order sufficient condition. Hence, xo = [−0.25 −0.75]T

is indeed a minimum.

Notice that, in this case, ∇∇f happens to be positive-definite, and hence, the

reduced Hessian is bound to be positive-definite as well. The computation of Hr in

this case could thus have been dispensed with.

7.4 Methods of Solution

Two classes of methods are available to solve inequality-constrained problems: a)

direct methods, which handle the inequalities as such, and b) indirect methods, which

transform the problem into one of two types, either unconstrained or equality-

constrained. Indirect methods being simpler to implement, we will focus on these,

which we will study first. Direct methods will be outlined at the end of the chapter.

Inequality-constrained problems can be solved using the approach introduced for

either unconstrained or equality-constrained problems, upon converting the problem

at hand into an unconstrained or, correspondingly, an equality-constrained problem.

This can be done by various methods; we focus on two, namely, slack variables and

penalty functions.

196

Figure 7.5: A quadratic objective function to be minimized under one equality and

one inequality constraint

197

7.5 Indirect Methods

In this section, the methods of slack variables and of penalty functions are discussed.

7.5.1 Slack Variables

Upon introducing the slack variables s1, s2, · · · , sp into inequalities (7.1b), we con-

vert these inequalities into equality constraints, namely,

γ(x, s) ≡








g1 + s2
1

g2 + s2
2

...

gp + s2
p








= 0, x ≡








x1

x2
...

xn







, s ≡








s1

s2
...

sp








(7.19)

Notice that the slack variables being unknown, they have to be treated as additional

design variables, the dimension of the design space being correspondingly increased.

In consequence, the design vector is now of dimension n+ p, i.e.,

ξ ≡
[
x

s

]

(7.20)

Now, the gradient of the objective function with respect to the new design-

variable vector takes the form

∇ξf ≡
[∇f
∇sf

]

(7.21a)

where

∇f ≡ ∂f

∂x
, ∇sf ≡

∂f

∂s
= 0p (7.21b)

the second relation following because the slack variables do not appear explicitly in

the objective function.

Likewise, the Hessian with respect to the new design-variable vector ξ takes the

form

∇ξ∇ξf =

[∇∇f ∇(∇sf)

∇s(∇f) ∇s∇sf

]

(7.22a)

with the notation

∇(∇sf) ≡ ∂2f

∂x∂s
=

(
∂2f

∂s∂x

)T

≡ [∇s(∇f)]T , ∇s∇sf ≡
∂2f

∂s2
(7.22b)

However, since ∇sf = 0p, the above Hessian expression reduces to

∇ξ∇ξf =

[∇∇f Onp

OT
np Op

]

(7.23)

198

That is, the Hessian of the objective function with respect to the new design-

variable vector ξ is singular. In case ∇∇f is positive-definite, ∇ξ∇ξf is positive-

semidefinite. Hence, in applying the method of slack variables to solve inequality-

constrained problems, Hessian stabilization—see Section 6.4.1—will always be needed.

Now, the problem can be formulated as an equality-constrained problem, if we

adjoin the p inequalities (7.19) to the original l, thereby obtaining a new set of

equality constraints:

h(ξ) = 0l+p (7.24)

Therefore, the problem at hand can be solved using the ODA.

Example 7.5.1 (Minimization of the Design Error of a Four-Bar Linkage

with an Input Crank)

Determine the link-lengths of the four-bar linkage shown in Fig. 7.6, that will produce

the set of input-output pairs {ψi, φi}q1 of Table 7.1 with the least-square error, and

such that its input link have a full rotatability. In Table 7.1, ψ and φ denote the

input and output angles, respectively.

Table 7.1: The input-output pairs of {ψi, φi}101
i 1 2 3 4 5

ψi 123.8668◦ 130.5335◦ 137.2001◦ 143.8668◦ 150.5335◦

φi 91.7157◦ 91.9935◦ 92.8268◦ 94.2157◦ 96.1601◦

i 6 7 8 9 10

ψi 157.2001◦ 163.8668◦ 170.5335◦ 177.2001◦ 183.8668◦

φi 98.6601◦ 101.7157◦ 105.3268◦ 109.4935◦ 114.2157◦

The link-lengths are obtained via the Freudenstein parameters k1, k2 and k3,

defined as

k1 =
a2

1 + a2
2 − a2

3 + a2
4

2a2a4
, k2 =

a1

a2
, k3 =

a1

a4
(7.25a)

with the inverse relations

a2 =
a1

k1

, a3 =

√

k2
2 + k2

3 + k2
2k

2
3 − 2k1k2k3

|k2k3|
, a4 =

a1

k3

(7.25b)

for a given value of a1. The synthesis equations for the planar four-bar linkage can

be written in the form (Liu and Angeles, 1992):

Sk = b (7.26)

199

Figure 7.6: A four-bar linkage

where S is the synthesis matrix, and k is the vector of linkage parameters. Moreover,

S, k and b are defined as

S =








1 cosφ1 − cosψ1

1 cosφ2 − cosψ2
...

...
...

1 cosφq − cosψq








k =





k1

k2

k3



 b =








cos(ψ1 − φ1)

cos(ψ2 − φ2)
...

cos(ψq − φq)








(7.27)

The design error is defined as

d ≡ b− Sk (7.28)

the purpose of the optimization exercise being to minimize the Euclidean norm of

the design error, while ensuring that its input link is a crank. The conditions for

full mobility of the input link were reported by Liu and Angeles (1992)

g1(x) = (k1 + k3)
2 − (1 + k2)

2 < 0

g2(x) = (k1 − k3)
2 − (1− k2)

2 < 0

By introducing two slack-variables s1 and s2, the inequality constraints are converted

into equality constraints, i.e.,

h1(x) = (k1 + k3)
2 − (1 + k2)

2 + s2
1 = 0 (7.29a)

h2(x) = (k1 − k3)
2 − (1− k2)

2 + s2
2 = 0 (7.29b)

The design vector ξ thus becomes ξ = [k1 k2 k3 s1 s2]
T . From the initial guess

ξ0 = [0.28 0.74 0.12 1.69 1.2]T , the solution was found to be ξopt = [0.3248 0.5875

−0.009725 1.556 0.2415]T , and the corresponding link lengths are a1 ≡ 1, a2 = 1.702,

200

a3 = 103.4 and a4 = 102.8. The Euclidean norm of the minimum design error is

5× 10−2.

The problem with this design is that it leads to a quite disproportionate linkage:

two of its links have lengths two orders of magnitude bigger than those of the other

two!

In the foregoing reference, a technique is introduced to eliminate this dimensional

unbalance by means of a penalty function.

7.5.2 Penalty Functions

Penalty-function methods are based on a transformation of the problem at hand into

an unconstrained one, which is done by suitably modifying the objective function.

The modification consists in adding one penalty term that penalizes any violation of

the constraints—both equality and inequality constraints can be handled in this way,

but we limit the discussion here to inequality constraints. The iterative procedure

approaches the optimum solution asymptotically, by extrapolation of a sequence

of optimum solutions to unconstrained problems. There are two possibilities: the

solution is approached either within the feasible region or from without, the penalty

function being correspondingly referred to as interior or exterior. It is noteworthy

that exterior penalty-function methods are applicable only to problems whereby

the optimum finds itself at the boundary of the feasible region, but misses interior

optima. Hence, we focus here on interior penalty functions.

Interior Penalty Functions

Given an objective function f(x) subject to inequality constraints, as defined in

eq.(7.1b), a sequence of interior penalty functions {φk}ν1 is constructed as

φk(x; rk) ≡ f(x)− rk

p
∑

i=1

1

gi(x)
k = 1, 2, · · · , ν (7.30)

where the term −rk

∑p
i=1[1/gi(x)] is called the penalty term, and all the rk factors

are positive and observe a decreasing order, i.e.,

r1 > r2 > r3 · · · > rν > 0 (7.31)

The idea here is that the search for the minimum is conducted within the feasible

region. Under these conditions, the summation in the penalty term remains negative,

201

and hence, a positive penalization is always added to the objective function. As the

design-variable vector approaches the constraint gi(x) = 0, it does so from the left,

i.e., gi(x) → 0−, and 1/gi(x) → −∞, the penalty term thus becoming a “large”

positive quantity, whose value is kept finite thanks to the presence of the “small”

factor rk.

Now, a sequence of unconstrained minimization problems is defined:

φk(x; rk) ≡ f(x)− rk

p
∑

i=1

1

gi(x)
→ min

x
, k = 1, 2, · · · , ν (7.32)

Let x1
o, x

2
o, . . ., x

ν
o be the sequence of corresponding unconstrained minima. Next,

these minima are interpolated to a vector function xo(r):

xo(r) ≡ c0 +

ν−1∑

1

ckr
k/2 (7.33)

thereby obtaining a system of νn equations in νn unknowns, the n components of

the ν unknown vector coefficients { ck }ν−1
0 . Note that the foregoing equations are

all linear in the unknowns, and hence, they can be solved for the unknowns using

Gaussian elimination, as described below. First, eq.(7.33) is written for r = ri, with

i = 1, 2, . . . , ν:

xo(ri) ≡ c0 + c1r
1/2
i + c2r

2/2
i + · · ·+ cν−1r

(ν−1)/2
i (7.34)

or

xo(ri) ≡ [c0 c1 · · · cν−1]








1

r
1/2
i
...

r
(ν−1)/2
i







, i = 1, 2, . . . , ν (7.35)

In the next step, we regroup all ν vector equations above to produce a matrix

equation. To this end, we define the matrices

R ≡








1 1 · · · 1

r
1/2
1 r

1/2
2 · · · r

1/2
ν

...
...

. . .
...

r
(ν−1)/2
1 r

(ν−1)/2
2 · · · r

(ν−1)/2
ν








(7.36a)

Xo ≡ [xo(r1) xo(r2) xo(rν)] (7.36b)

C ≡ [c0 c1 · · · cν−1] (7.36c)

It is noteworthy that square matrices with the gestalt of R of eq.(7.36a) occur quite

frequently in system theory, where they are termed Vandermonde matrices. For

202

this reason, scientific code includes commands that ease the construction of such

matrices. For example, Maple includes the command

VandermondeMatrix(r, output)

in which r is the array [r1, r2, . . . , rν]
T , and output is the name assigned to the

matrix thus constructed. The command includes various options.

Thus, the ν vector equations (7.34) become, in matrix form,

CR = Xo (7.37a)

whence,

C = XoR
−1 (7.37b)

or, if eq.(7.37a) is written in the usual form, with the unknown matrix C to the

right of its matrix coefficient, the foregoing equation should first be transposed, the

result then being

CT = R−TXT
o (7.37c)

with exponent −T indicating the inverse of the transpose or, equivalently, the trans-

pose of the inverse. Once the ν vector coefficients sought are available, the optimum

of the inequality-constrained problem, xopt, is calculated as

xopt = lim
r→0

x(r)

i.e.,

xopt = c0 (7.38)

In computing the above value, note that c0 is the first column of the unknown

matrix C or, equivalently, the first row of its transpose. In either case, it is not

possible to obtain c0 as the solution of one single vector equation. A matrix equation

must be solved in order to obtain c0. Such an equation is to be solved as a sequence

of linear systems using LU-decomposition, one column of the matrix at a time.

Example 7.5.2 (A Two-dimensional Optimization Problem Subject to In-

equality Constraints)

Consider an optimization problem with an objective function defined as

f = x2 + 2y2 → min
x,y

(7.39)

203

subject to the inequality constraints

g1 ≡ −x ≤ 0 (7.40a)

g2 ≡ −y ≤ 0 (7.40b)

g3 ≡ 1− x− y ≤ 0 (7.40c)

Figure 7.7: Isocontours of the penalty function with r1 = 0.1

Figure 7.8: Isocontours of the penalty function with r2 = 0.01

From a sketch of the constraints and the contours of the objective function in the

x-y plane, it should be apparent that the minimum of f is attained at a point where

the gradient ∇f is parallel to the normal to the line g3(x, y) = 0. The optimum

values of x and y are, then

xopt =
2

3
, yopt =

1

3

204

Figure 7.9: Isocontours of the penalty function with r3 = 0.001

We demonstrate below the application of penalty functions to obtain the foregoing

optimum. We have

φk ≡ x2 + 2y2 − rk

(

−1

x
− 1

y
− 1

x+ y − 1

)

, k = 1, . . . , 3 → min
x, y

subject to no constraints, for

r1 = 0.1, r2 = 0.01, r3 = 0.001

The penalty-function isocontours for different rk values are shown in Figs. 7.7–

7.9. In those figures, the isocontour of the objective function f that includes the

constrained minimum is indicated with a dashed curve.

The optima xo(rk) ≡ [xo(rk), yo(rk)]T for the three given values of rk were found

by the ODA, using subroutine ARBITRARY, as

xo(r1) =

[
0.7941

0.4704

]

, xo(r2) =

[
0.7140

0.3703

]

, xo(r3) =

[
0.6836

0.3434

]

(7.41)

We now fit the values of {xo(rk)}31 to the function

xo(r) = c0 + c1r
1/2 + c2r

We thus have

R =





1 1 1

0.3163 0.1000 0.03163

0.1000 0.0100 0.00100



 , Xo =

[
0.7941 0.7140 0.6836

0.4704 0.3703 0.3434

]

(7.42)

The coefficient matrix C is thus found to be

C = XoR
−1 =

[
0.6687 0.4790 −0.2605

0.3317 0.3612 0.2443

]

(7.43)

205

Therefore,

xopt = c0 =

[
0.6687

0.3317

]

(7.44)

which yields the optimum with two significant digits of accuracy.

7.6 Direct Methods

Of the various direct methods for the solution of inequality-constrained problems,

we shall discuss here three:

(i) The method of the feasible directions;

(ii) the generalized reduced-gradient method; and

(iii) the complex method.

7.6.1 The Method of the Feasible Directions

The method is due to Zoutendijk (1960). An outline of the method will be given in

a future edition.

7.6.2 The Generalized Reduced-Gradient Method

This method, abbreviated as the GRG method, is an evolution of the gradient-

projection method proposed by Rosen (1960). Further developments led to the

reduced-gradient method, as applicable to arbitrary objective functions with linear

equality constraints and inequalities of the form x ≥ 0. The generalization of the

reduced-gradient method lies in its applicability to nonlinear equality and inequality

constraints.

The method is best described if the problem at hand is formulated in a slightly

different format than the one we have used so far: Given the objective function f(x)

and the C1-continuous functions hj(x), for j = 1, . . . , l + p,

f(x) → min
x

(7.45a)

subject to

hj(x) ≤ 0, j = 1, . . . , p (7.45b)

hp+j(x) = 0, j = 1, . . . , l (7.45c)

li ≤ xi ≤ ui, i = 1, . . . , n (7.45d)

206

The problem is first reformulated upon elimination of the first p inequalities by

means of nonnegative slack variables xn+1, . . . , xn+p. The constraints become now:

hj(x) + xn+j = 0, j = 1, . . . , p (7.46a)

hp+j(x) = 0, j = 1, . . . , l (7.46b)

li ≤ xi ≤ ui, i = 1, . . . , n (7.46c)

xn+j ≥ 0, j = 1, . . . , p (7.46d)

Notice that the slack variables introduced in eq.(7.46a) are non-negative, while those

of Subsection 7.5.1 are quadratic. The reason for the difference is that the latter

were introdiced in the framework of least squares; the former have a historic origin,

greatly influenced by the simplex method of linear programming, whereby all decision,

or design, variables are regarded as non-negative.

We thus end up with a new problem:

f(x) → min
x

(7.47a)

subject to

hj(x) = 0, j = 1, . . . , l + p (7.47b)

li ≤ xi ≤ ui, i = 1, . . . , p+ n (7.47c)

Inequalities (7.47c) will be termed bilateral.

Remark: In light of eqs.(7.45c), the problem at hand has n′ ≡ (n − l) degrees

of freedom, and hence, (n − l) design variables—or a combination thereof—can be

freely prescribed.

Strategy: Partition the set of design variables into two sets: (n − l) independent

design variables and (l+p) dependent design variables, a.k.a. state variables. Relabel

the design variables, if necessary.

Definitions:

x ≡
[
y

z

]

, y ≡








x1

x2
...

xn−l







, z ≡








xn−l+1

xn−l+2
...

xp+n







, h ≡








h1(x)

h2(x)
...

hl+p








(7.48)

• y: (n− l)-dimensional vector of independent variables

• z: (l + p)-dimensional vector of dependent variables or state variables

207

• The partial derivatives ∂f/∂y, ∂f/∂z, ∂h/∂y, and ∂h/∂z denote derivatives

that do not take into account the dependence of z from y

• df/dy denotes the total derivative of f with respect to y, which takes into

account the dependent variables, and is, hence, a (n− l)-dimensional vector

• dh/dy denotes the total derivative of h with respect to y, which takes into

account the dependent variables, and is, hence, a (l + p)× (n− l) matrix

That is,

df

dy
≡








df/dx1

df/dx2
...

df/dxn−l







,

dh

dy
≡
[

dh

dx1

dh

dx2
. . .

dh

dxn−l

]

(7.49)

Remark: Because of the constraints (7.47b), the partial derivatives with respect to

z are dependent upon those with respect to y. Indeed, since the equalities (7.47b)

must hold, we must have

h(y, z(y)) = 0 (7.50a)

which means that the total derivative of h with respect to y must vanish. From the

chain rule,
dh

dy
≡ ∂h

∂y
+
∂h

∂z

∂z

∂y
= 0 (7.50b)

Let

C ≡ ∂h

∂y
=








∂h1/∂x1 ∂h1/∂x2 · · · ∂h1/∂xn−l

∂h2/∂x1 ∂h2/∂x2 · · · ∂h2/∂xn−l
...

...
. . .

...

∂hl+p/∂x1 ∂hl+p/∂x2 · · · ∂hl+p/∂xn−l








(7.50c)

D ≡ ∂h

∂z
=








∂h1/∂z1 ∂h1/∂z2 · · · ∂h1/∂zl+p

∂h2/∂z1 ∂h2/∂z2 · · · ∂h2/∂zl+p
...

...
. . .

...

∂hl+p/∂z1 ∂hl+p/∂z2 · · · ∂hl+p/∂zl+p








(7.50d)

whence C is a (l + p) × (n − l) matrix, while D is a (l + p) × (l + p) matrix. We

thus have

⇒ C + D
∂z

∂y
= 0

Solving for ∂z/∂y from the above equation yields

∂z

∂y
= −D−1C (7.51)

208

Also notice that
∂f

∂x
≡
[
∂f/∂y

∂f/∂z

]

(7.52)

By application of the chain rule, the total derivative of f with respect to y is given

by

df

dy
=
∂f

∂y
+

(
∂z

∂y

)T
∂f

∂z

Substitution of eq.(7.51) into the above equation leads to

df

dy
=
∂f

∂y
− (D−1C)T ∂f

∂z

= [1n−l −(D−1C)T]

[
∂f/∂y

∂f/∂z

]

≡M
∂f

∂x
(7.53)

where

• 1n−l: (n− l)× (n− l) identity matrix

• M: a (n− l)× (p+ n) matrix, namely,

M ≡ [1n−l −(D−1C)T] (7.54)

Definition: The reduced gradient of f is defined as the (n − l)-dimensional vector

df/dy of eq.(7.53).

Remarks:

• The reduced gradient of f is a linear transformation of the gradient of f with

respect to x, the transformation being given by matrix M

• In the absence of inequalities (7.47c), the normality condition of Problem

(7.47a & b) are
df

dy
≡M

∂f

∂x
= 0 (7.55)

i.e., at a stationary point of Problem (7.47a & b), the gradient of f with

respect to x need not vanish; only its projection onto matrix M must vanish.

Apart from inequalities (7.47c), which are relatively simple to handle, the prob-

lem can be treated as an unconstrained one.

209

It is noteworthy that MT plays the role of the isotropic orthogonal complement

L of J ≡ ∂h/∂x. Indeed, from eq.(7.51),

∆z =
∂z

∂y
∆y = −D−1C∆y

or

D−1C∆y + ∆z = 0l+p

which can be cast in the form

[D−1C 1l′]

[
∆y

∆z

]

= 0l+p

where l′ ≡ l + p. Further, recalling the constraints h(x) = 0, we have

∂h

∂x
∆x ≡ J∆x = 0

whence,

J = [D−1C 1l′]

Now,

JMT = [D−1C 1l′]

[
1n−l

−D−1C

]

= D−1C−D−1C = Ol′×n′

with n′ ≡ n−l. Therefore, MT is an orthogonal complement of J. However, contrary

to L, MT , or M for that matter, is not isotropic.

We need two search directions at the ith iteration: one for y and one for z. To

find these directions, we start by recalling eq.(7.50a), whence

∆h =
∂h

∂y
︸︷︷︸

≡C

∆y +
∂h

∂z
︸︷︷︸

≡D

∆z = 0l+p (7.56)

Let, at the ith iteration,

∆y = λsi, ∆z = λti, λ > 0 (7.57)

Substitution of eq.(7.57) into eq.(7.56) leads to

λCsi + λDti = 0

Since λ > 0, the above equation leads, in turn, to

Csi + Dti = 0

210

whence,

ti = −D−1Csi (7.58)

All we need now is si. Since we want to minimize f(x, y), a plausible choice is

si = − df

dy

∣
∣
∣
∣
(yi,zi)

(7.59)

Further, substitution of eq.(7.59) into eq.(7.58) leads to the desired expression for

ti, namely,

ti = D−1C
df

dy

∣
∣
∣
∣
(yi,zi)

(7.60)

thereby obtaining the two desired search directions.

We thus have an update of x:

xi+1 ≡
[
yi + λsi

zi + λti

]

(7.61)

The optimum value λ∗ of λ is found upon solving an unconstrained problem of

one-dimensional minimization:

f(yi + λsi, zi + λti) → min
λ

(7.62)

Remark: The foregoing optimization is implemented without consideration of in-

equalities (7.47c). Hence, a test must be conducted to verify whether those con-

straints are obeyed.

Adjustment: Let λi, for i = 1, . . . , p + n, be the positive value of λ that renders

one of the two inequalities of each of relations (7.47c) active. Then, let λopt be the

adjusted value of λ that does not violate the above inequalities, i.e.,

λopt = min{λ∗, { λi }p+n
1 } (7.63)

Hence,

xi+1 ≡
[
yi + λopts

i

zi + λoptt
i

]

(7.64)

Remark: After the foregoing adjustment has taken place, nothing guarantees that

the constraints (7.47b) are verified. Hence, one further adjustment is needed:

Complying with the equality constraints: With y fixed to its current value,

ycurr, we correct the current value zcurr of z by means of the Newton-Raphson algo-

rithm, i.e.,

211

1. hcurr → h(zcurr;ycurr)

2.

h(zcurr + ∆z;ycurr) ≈ hcurr +
∂h

∂z

∣
∣
∣
∣
y=ycurr, z=zcurr

∆z → 0

3.

∆z = −
[

∂h

∂z

∣
∣
∣
∣
y=ycurr, z=zcurr

]−1

hcurr ≡ −D−1hcurr

4. zcurr → zcurr + ∆z, hcurr → h(zcurr;ycurr)

5. If ‖hcurr‖ ≤ ǫ stop; else, go to 1

where ǫ is a prescribed tolerance. Once the Newton-Raphson adjustment is com-

pleted, the optimization algorithm proceeds to the next iteration. The overall iter-

ative procedure is finished when a convergence criterion has been met.

Drawbacks of the GRG method:

• Success is heavily dependent upon the user’s choice of independent and depen-

dent variables: Its rate of convergence dcereases as κ(D) grows (Luenberger,

1984)

• The speed of convergence is slowed down by the Newton-Raphson iterations:

we have an iteration loop within an exterior iteration loop!

In spite of the foregoing drawbacks, however, the GRG method is rather popular,

for it is even available in Excel, an office-automation software package that has been

used in the teaching of optimum design (Tai, 1998).

Example 7.6.1 The equilibrium configuration of a N-link chain (Luen-

berger, 1984)

We revisit here the problem of Example 6.4.2, for a N -link chain, as shown in

Fig. 6.10, which we reproduce in Fig. 7.10 for quick reference.

We recall that the chain attains its equilibrium configuration when its potential

energy attains its minimum value. As in the above-mentioned example, we use the

configuration of Fig. 7.10b as initial guess and find the equilibrium configuration for

the values N = 4, d = 1.5 m, and ℓ = 0.5 m

212

Figure 7.10: A N -link chain at: (a) its unknown equilibrium configuration; and (b)

a known configuration to be used as an initial guess

Solution: In following Luenberger’s formulation, we let the ith link span an x dis-

tance xi and a y distance yi. If V ≡ µf(x1, y1, x2, y2 . . . , xN , yN) denotes the

potential energy of the chain, and µ is the mass density of the links per unit length,

then minimizing V is equivalent to minimizing f , which is given by

f(x1, y1, x2, y2 . . . , xN , yN) =
1

2
y1 + (y1 +

1

2
y2) + . . .

+(y1 + y2 + . . .+ yN−1 +
1

2
yN−1)

=
1

2

N∑

i=1

[2(N − i) + 1] → min
{xi,yi }N

1

subject to

N∑

i=1

yi = 0

x2
i + y2

i − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , N

For N = 4, we have

f(x1, y1, x2, y2 x3, y3, , x4, y4) =
1

2
(7y1 + 5y2 + 3y3 + y4) → min

{xi,yi}4
1

subject to

h1 ≡ x1 + x2 + x3 + x4 − 1.5 = 0

h2 ≡ y1 + y2 + y3 + y4 = 0

h3 ≡ x2
1 + y2

1 − 0.52 = 0

213

h4 ≡ x2
2 + y2

2 − 0.52 = 0

h5 ≡ x2
3 + y2

3 − 0.52 = 0

h6 ≡ x2
4 + y2

4 − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , 4

Use symmetry to simplify the problem:

x3 = x2, x4 = x1, y3 = −y2, y4 = −y1

⇒ f(x1, y1, x2, y2) ≡ 3y1 + y2 → min
{xi, yi}2

1

Remark: Now constraint h2 = 0 is identically verified and hence, is deleted. We

are thus left with the constraints

h1 ≡ x1 + x2 − 0.75 = 0

h2 ≡ x2
1 + y2

1 − 0.52 = 0

h3 ≡ x2
2 + y2

2 − 0.52 = 0

−0.5 ≤ xi, yi ≤ +0.5, i = 1, . . . , 2

We thus have:

• Design variables: x1, y1, x2, y2 ⇒ n = 4

• Equality constraints: hi = 0, for i = 1, 2, 3 ⇒ l = 3

• Degree of freedom: n − l = 1 ⇒ one single independent variable. Choose y1.

Hence,

y ≡ [y1], z ≡





x1

x2

y2





Preliminary calculations:

∂f

∂y
=

[
∂f

∂y1

]

= [3],
∂f

∂z
=





∂f/∂x1

∂f/∂x2

∂f/∂y2



 =





0

0

1





h ≡





x1 + x2 − 0.75

x2
1 + y2

1 − 0.25

x2
2 + y2

2 − 0.25





214

Hence,

∂h

∂y
≡
[

∂h/∂y1 ∂h/∂y2

]

=





0

2y1

0



 ≡ C,

∂h

∂z
≡ [∂h/∂x1 ∂h/∂x2 ∂h/∂y2] =





1 1 0

2x1 0 0

0 2x2 2y2



 ≡ D

Feasible initial guess: From Fig. 7.10b, in m,

x1 = x2 = 0.37500, y1 = y2 =
1

2

√
12 − 0.752 = 0.33072 ⇒ x1 =








0.33072

0.37500

0.37500

0.33072








Hence,

fcurr ≡ f(x1) = 3× 0.33072 + 0.33072 = 1.32288

C =





0

0.66144

0



 , D =





1 1 0

0.75000 0 0

0 0.7500 0.66144





and

D−1 =





0 1.3333 0

1 −1.3333 0

−1.1339 1.5119 1.5119





Further,

∂z

∂y
= −D−1C

= −





0 1.3333 0

1 −1.3333 0

−1.1339 1.5119 1.5119









0

0.66144

0



 =





−0.88192

0.88192

−1.00000





⇒ df

dy
=
∂f

∂y
+

(
∂z

∂y

)T
∂f

∂z
=
∂f

∂y
− (D−1C)T ∂f

∂z

= 3 + [−0.88192 0.88192 −1.0000]





0

0

1



 = [3]− [1] = [2]

215

Search directions:

s1 = − df

dy

∣
∣
∣
∣
x=x1

= −[2]

Hence,

t1 = −D−1Cs1 =





−0.88192

0.88192

−1.00000



 [−2] =





1.7638

−1.7638

2.0000





⇒ ∆x =

[
y

z

]

=

[
λs1

λt1

]

= λ








−2.0000

1.7638

−1.7638

2.0000








and

xnew = xcurr + ∆x =








0.33072− 2.0000λ

0.37500 + 1.7638λ

0.37500− 1.7638λ

0.33072 + 2.0000λ








Thus,

f(x + ∆x) = f(λ) = 3(y1 + ∆y1) + (y2 + ∆y2)

= 3(0.33072− 2λ) + 0.33072 + 2λ = 1.3229− 4λ

Hence, in order to minimize f(λ) we must make λ (> 0) as large as the constraints

allow us. In the next step we find the set { λi }41 allowing us to attain the equality

on one side of the set of inequalities (7.47c):

y1 : 0.33072− 2.0000λ1 = −0.5 ⇒ λ1 =
0.83072

2.0000
= 0.41536

x1 : 0.37500 + 1.7638λ2 = 0.5 ⇒ λ2 =
0.12500

1.7638
= 0.070868

x2 : 0.37500− 1.7638λ2 = −0.5 ⇒ λ3 =
0.87500

1.7638
= 0.49608

y2 : 0.33072 + 2.0000λ1 = 0.5 ⇒ λ4 =
0.16928

2.0000
= 0.084640

whence, λopt = min{0.41536, 0.070868, 0.49608, 0.084640} = 0.070868

Therefore,

xnew =








0.33072− 2.0000× 0.070868

0.37500 + 1.7638× 0.070868

0.37500− 1.7638× 0.070868

0.33072 + 2.0000× 0.070868








=








0.18898

0.5000

0.2500

0.47246








⇒ fnew = 3× 0.18898 + 0.47246 = 1.0394

216

which means that we brought down the objective function by 21% of its original value

in one single iteration. However, nothing guarantees that the equality constraints

are satisfied. Let us verify:

hnew = h(xnew) =





0.5000 + 0.25000− 0.75000

0.50002 + 0.188982 − 0.50002

0.250002 + 0.472462 − 0.50002



 =





0.0000

0.035713

0.035718



 6= 0

Hence, a correction to z, with y kept at its current value ycurr, is warranted:

Dnew∆z = −hnew

where

Dnew ≡ D(xnew) =





1 1 0

1 0 0

0 0.5000 0.94492





Hence,





1 1 0

1 0 0

0 0.5000 0.94492









∆x1

∆x2

∆y2



 =





0.0000

0.035713

0.035718



 ⇒ ∆z =





−0.035713

0.035713

−0.056698





Thus,

h(znew + ∆z;ynew) =





0.0000

0.0012786

0.0044866





Hence, the norm of h has been brought down by one order of magnitude. Besides,

f(znew + ∆z;ynew) = 0.9827, and hence, the objective function was brought down

by an additional 5.5%, thereby completing one full iteration. Further iterations are

left to the reader as an excercise.

7.6.3 The Complex Method

A complex in IRn is a polyhedron with m > n + 1 vertices; e.g., in 2D, a complex

is a quadrilateron; in 3D a cube is an example of a complex. We describe below

a method due to Box (1965). The method is based on a complex C with m = 2n

vertices, for n ≥ 2. Implementations are reported in (Kuester and Mize, 1973) and

(Xu et al., 1994).

Box’s Algorithm

217

Figure 7.11: Replacement of the worst vertex of the complex by a reflection

1. Given one feasible vertex x1 of the initial complex, generate the

remaining 2n−1 vertices so that complex is feasible: C = {xi}2n
1 ∈

F , the feasible region

2. Let fi ≡ f(xi) and fM = max{fi}2n %xM is the worst vertex

3. Let C′ = {xi}2n
i=1, i6=M and let x be the position vector of the centroid

of C′, i.e.,

x =
1

2n− 1

(
2n∑

i=1

xi − xM

)

4. Recover lost vertex of complex by reflecting xM about x by means

of

xnew ← xM ← x− α(xM − x) ≡ (1 + α)x− αxM , α > 0 (αBox = 1.3)

5. if xnew ∈ F, continue; else

5.1 xnew ← 1
2
(x + xnew)

5.2 if xnew ∈ F , continue; else go to 5.1

abort if too many iterations

218

6. go to 2; if xnew is not new worst vertex continue; else

xnew ← β(xM − x), 0 < β < 1

7. stop when convergence criterion has been met.

A possible convergence criterion is to stop when the difference between the max-

imum value fM of the objective function and its minimum, fm, is smaller than a

prescribed ratio ǫ1 times the same difference at the original complex. An alterna-

tive criterion involves the size of the current complex, given by the rms value of

the distances of the vertices from the centroid: whenever this value is smaller than

a prescribed ratio ǫ2 times the corresponding value for the original complex, the

procedure stops. A combination of the two criteria is advisable.

219

220

Bibliography

Angeles, J., 2007, Fundamentals of Robotic Mechanical Systems. Theory, Methods,

Algorithms, Third Edition, Springer, New York.

Angeles, J., 1992, “On the application of Mohr’s circle to 2-dof vibration analysis.

A tutorial,” Journal of Sound and Vibration, Vol. 154, No. 3, pp. 556–567.

Angeles, J. and C. S. López-Cajún. 1991. Optimization of Cam Mechanisms , Kluwer

Academic Publishers, Dordrecht.

Bertsekas, D. P., 1995. Nonlinear Programming , Athena Scientific Belmont, MA.

Box, M.J., 1965, “A new method of constrained optimization and a comparison with

other methods,” Computer Journal , Vol. 8, pp. 42–52.

Boyd, S. and Vandenberghe, L., 2004, Convex Optimization. Cambridge: Cambridge

University Press.

Brent, R.P., 1972, Algorithms for Minimization Without Derivatives, Prentice-Hall,

Inc., Englewood Cliffs, NJ.

Broyden, C.G., 1970, “The convergence of a class of double-rank minimization al-

gorithm,” J. Inst. Math. Applications , Vol. 6, pp. 76–90.

Culioli, J.-C., 1994. Introduction a l’optimisation, Ellipses Publisher, Paris.

Dahlquist, G. and Å. Björck. 1974, Numerical Methods, Prentice-Hall, Englewood

Cliffs, NJ.

Fletcher, R., 1970, “A new approach to variable metric algorithms,” Computer Jour-

nal , Vol. 13, pp. 317–322.

Fletcher, R. and Reeves, C.M., 1964, “Function minimization by conjugate gradi-

ents,” Computer Journal , Vol. 7, No. 2, pp. 149–154.

221

French, M.E., 1992. Form, Structure and Mechanism, Macmillan, London.

Gleick, J., 1988. Chaos. Making a New Science, Penguin Books, New York.

Goldfarb, D.. 1970, “A family of variable metric updates derived by variational

means,” Mathematics of Computing , Vol. 24, pp. 23–26.

Kuester, J.L. and Mize., J.H., 1973, Optimization Techniques with Fortran,

McGraw-Hill Book Co., New York.

Kuhn, H.W. and Tucker, A.W., 1951, “Nonlinear programming,” in J. Neyman

(ed.), Second Berkeley Simposium, pp. 481–492, University of California Press,

Berkeley, CA.

Lalee, M., Nocedal, J. and Plantenga, T., 1998, “On the implementation of an

algorithm for large-scale equality constrained optimization,” SIAM J. Optim.,

Vol. 8, No. 3, pp. 682–706.

Liu, Z. and Angeles, J., 1992, “Least-square optimization of planar and spherical

four-bar function generator under mobility constraint,” ASME, J. Mech. Des.,

Vol. 114, pp. 569–573.

Livio, M., 2002, The Golden Ratio.The Story of Phi, the World’s Most Astonishing

Number , Broadway Books, New York.

Luenberger, D.G., 1984, Linear and Nonlinear Programming , Addison-Wesley Pub-

lishing Company, 2nd ed., Reading, MA.

Mandelbrot, B.B., 1983, The Fractal Geometry of Nature, W.H. Freeman and Com-

pany, 3rd ed., New York.

Murray, W., 1997, “Sequential quadratic programming methods for large problems,”

Comput. Optim. Appl , Vol. 7, pp. 127–142.

Nelder, J.A. and Mead, R., 1965, “A simplex method for function minimization,”

Computer Journal , Vol. 7, pp. 308–313.

Powell, M.J.D., 1969, “A method for nonlinear constraints in minimizing problems,”

in R. Fletcher (ed.), Optmization, Academic Press, London, pp. 283–297.

Rao, S.S., 1996, Engineering Optimization, John Wiley and Sons, Inc., 3rd ed., New

York

222

Rosen, J.B., 1960, “The gradient projection method for nonlinear programming.

Part I, Linear constraints,” SIAM Journal , Vol. 8, pp. 181–???.

Salmon, G., Higher Algebra, Fifth Edition (1885), reprinted 1964, Chelsea Publishing

Co., New York.

Salisbury, J.K. and Craig, J.J., 1982, “Articulated hands. Force and kinematic is-

sues,” The Int. J. Robotics Res., Vol. 1, No. 1, pp. 4–17.

Shanno, D.F., 1970, “Conditioning of quasi-Newton methods for function minimiza-

tion,” Mathematics of Computing , Vol. 24, pp. 647–656.

Shigley, J. and Mischke, C., 1989, Mechanical Engineering Design, McGraw-Hill

Book, Inc., New York.

Spendley, W., Hext, G.R. and Himsworth, F.R., 1962, “Sequential application

of simplex designs in optimization and evolutionary operation,” Technometrics,

Vol. 4, No. 4, pp. 441–461.

Taguchi, G. 1988. The development of quality engineering. The ASI Journal , Vol. 1,

No. 1, pp. ???–???.

Tai, K., 1998, “Integrated design optimization and analysis using a spreadsheet

application,” Int. Journal of Mechanical Engineering Education, Vol. 27, No. 1,

pp. 29–40.

Teng, C.P. and Angeles, J., 2001, “A sequential-quadratic-programming algorithm

using orthogonal decomposition with Gerschgorin stabilization,” ASME J. Me-

chanical Design, Vol. 123, pp. 501–509.

Varga, R.S., 2000, Matrix Iterative Analysis, Springer, New York.

Wilde, D. 1992. “Monotonicity analysis of Taguchi’s robust circuit design problem,”

ASME J. Mechanical Design, Vol. 114, pp. 616–619.

Xu, P., Ramden, T., Burton, R.T., Krus, P. and Sargent, C., 1994, “Feasibility of

training a neural network based hydraulic component simulator using the comlpex

method,” Proc. Seventh Bath International Fluid Power Workshop.

Zoutendijk, G., 1960, Methods of Feasible Directions , Elsevier Publishing Company,

Amsterdam.

223

224

Index

Bezout number, 110

Cartesian decomposition, 46

Ecole polytechnique, 186

Fibonacci Numbers, 26

Filius Bonacci, 26

Freudenstein parameters, 199

Gaussian elimination, 56

Gerschgorin Theorem, 176

Hessian, 78

feasible, 175

perturbed , 175

stabilization, 176

stabilized, 175

Hessian operator, 8

Householder reflections, 60

Jacobian matrix, 19, 67

Karush-Kuhn-Tucker (KKT), 188

Karush-Kuhn-Tucker conditions, 186

LU-decomposition, 56

Lagrange multipliers, 98

Lagrangian, 98, 187

Moore-Penrose generalized inverse

left, 59

left (LMPGI), 7, 44

right, 125

right , 98

right (RMPGI), 7

Newton-Gauss method, 70

Newton-Raphson method, 67

Orthogonal-Decomposition Algorithm (ODA),

147

Schwartz’s Theorem, 78

backward substitution, 57

banana function, 68

best fit, 44

ceiling function, 18

compex, 217

complementary slackness, 188

condition number, 44, 55

constrained gradient, 100

constraint

force of, 121

control variables, 12

convex, 123

combination, 123

cross-product matrix (CPM), 49

damping, 71

damping factor, 71

design, 9, 77

engineering, 9

industrial , 9

design error, 200

design variables, 13

design vector (DV), 77

design-variable vector, 77

determined system, 65

dexterity, 19

dexterity matrix, 19

dialytically, 110, 119

dichotomous, 17

225

direct methods, 196

divine proportions, 37

dual form, 101

equidistant points, 27

exhaustive search, 16

experiment, 16

feasible

gradient, 102

manifold, 101, 173

move, 101, 193

region, 185

space, 173

subspace, 101

feasible subset, 101

first-order normality condition, 78

first-order normality conditions (FONC),

100

forward substitution, 56, 57

fractal, 68

full mobility, 200

full-rank, 7

golden ratio, 37

golden section, 37

gradient, 8, 77

gradient operator, 8

idempotent matrix, 52

ill-conditioning, 44

images, 48

improper orthogonal matrix, 60

inconsistent, 44

indirect methods, 196

interval of uncertainty

i.o.u, 16

isotropic matrix, 56, 130

kernel, 48

least-square error, 70

least-square formulation, 14

least-square solution, 59, 71

limit design, 192

linear least squares, 44

linear programming, 192

linear system

underdetermined, 7

linear transformation, 48

linear-quadratic programs, 175

local maximum, 79

local minimum, 79

lower-triangular matrix, 56

manifold, 101

master, 145

mathematical model, 12

matrix

positive-definite, 47

positive-semidefinite, 47

sign-indefinite, 47

maximally invertible, 19

minimum-norm problem, 97

minimum-norm solution, 124

nominal values, 14

nonconvex, 123

nonlinear system, 65

nonsingular square matrices, 55

norm, 44

Chebyshev, 45, 46

Euclidean, 44, 45

Euclidean , 45

Euclidean norm

weighted, 97

Frobenius, 45, 46

infinity, 45, 46

maximum, 45

normal equations, 59

226

normal interval, 16

normality condition, 71

normality conditions, 97, 185

dual form, 97

in primal form, 97

normality conditions (NC), 44, 59

first-order, 77

second-order, 77

nullity, 48

nullspace, 48

numerical conditioning, 144

objective function, 19

objective function, 14

of φ

gradient, 133

operation conditions, 13

operation point, 19

ordered sets, 186

orthogonal complement, 8, 102, 146

orthogonal transformation, 48

orthogonal-decomposition algorithm (ODA),

143

orthogonalization algorithms, 44

output variables, 12

overdetermined system, 58, 70

penalty term, 201

perturbation, 175

plastic failure, 192

polynomial equations, 110

production systems, 9

projection, 52

orthogonal , 52

plane, 52

projector, 52, 146

proper orthogonal matrix, 49

range, 48

rank-one matrix, 53

recursively, 26

reduced

gradient, 102

normality condition, 119

redundant set of equations, 44

reflection, 62

reflections

pure , 52

relative roundoff errors, 55

robust design, 14

saddle point, 79

second-order normality condition (SONC),

103

sequence, 26

monotonically increasing, 26

sequential quadratic programming, 175

slack variables, 198

slave, 145

stabilized feasible Hessian, 178

state variables, 12

stationary point, 72, 100

strategy, 16

synthesis matrix, 200

system

determined, 44

overdetermined, 44

trace, 46

triangular system, 56

unconstrained, 147

unconstrained minimization, 77

underdetermined system, 124

unimodal function, 15

upper-triangular form, 62

upper-triangular matrix, 56, 61

weakly coupled system, 56

227

weighted least squares, 133

weighting matrix, 70

constrained Hessian, 104

differentiation with respect to

vectors, 49, 50

feasible move, 103

Index, 225

reduced Hessian, 105

second variation, 103

unconstrained Hessian, 104

228

