305-573B Mechanics of Robotic Systems

Solution of Assignment 6

1 Dynamics of Complex Robotic Mechanical Systems

10.1

The condition for a symmetric matrix to be isotropic is that the matrix be proportional to
the identity matrix, with a nonzero proportionality factor. Hence, it is apparent that for I(0)
of Subsection 10.5.2 to be isotropic, all we need is 8 = 0, i.e.,!

H + 3J = 3my,r? + 2myr? (1)

which yields an equality constraint at the design stage among the set of parameters H, J,
My, Mp, and r. If I(0) is isotropic, then we have

I(6) = al (2)
where 1 is the 3 x 3 identity matrix. Now, under condition (1), @ becomes

a = T+ X (3my + 2my + 15my, + 4my,) 7
I+ X2 (18my, + 6my) 7% > 0 (3)

In order to gain more insight into the dynamics of the isotropic robot, let

1 0 0
u; = 0 , U = 1 , Uz = 0
0 0 1

whose cross-product matrices are denoted by U;, Uy and Ujs, respectively, and need not
displayed here. We thus have, now

I = ol
3
C0,) = 2V3(\*(3my 4+ my)r’w (Z Ui> 6,
N ~ _ -
where . .
3 _ —01 + 03
(Z Uz-) 0= | 61063
1 —01+ 69

The mathematical model in component form, thus reduces to

afy +yw(—by + 03) = 7 — & (4)
aly + yw(f — b3) = 19 — b9 (5)
afs + 'yw(—01 + 02) =73 — 03 (6)

'Notice typos in a and 8 in the book



10.2

Upon adding all three ODEs, we obtain an equation for w:

0= 3~ 30 = [ ritw) — s(w)a
aw =Y T; — i —> w=— [ [(u) — é(u)ldu
1 1 3aJo

where u is a dummy variable of integration. Upon substitution of the above integral into the
three odes,a system of three linear, time-varying ODEs are derived for three joint rates. The
system, then, in state-variable from becomes

x = A(t)x + Bv

where
01 T1 — 61
X = 92 , V= T — (52
03 73 — 0303
And
0 -1 1
Ap=-2D1 1 ¢ 4|, B=11
11 1 0 @

or alternatively,

éazLu

where
-1 -1

And so the generalized inertia matrix under pure translation is

!

I = L'IL

(10 <1
o1 -1

- (a—ﬁ)[f ;]

S\ o)



10.4 The system mass and angular velocity matrices M and W are, in this case, of 6r x 67.
Moreover, T is of 67 x n. We can thus express the 6r-dimensional twist vector t of the whole

system as ) ) o
t=T8,, t=T6,+ To, (7)
and hence, the 6r Newton-Euler equations of the whole set of bodies takes the form
M(T6, + T8,) + WMTO, = w? + w& + w’ — w? (8)
with the usual definitions for w4, w&, wC, and w”. Now, t and wC are reciprocal, in the
sense that
tTwl =0 (9)

and, if we replace t in the above equation for its expression in eq.(7),
- T
0, T'w¢ =0

which holds for any éa, and hence,
T'wC® =0 (10)

i.e., wC lies in the nullspace of T7. Thus, upon multiplying both sides of eq.(8) from the left
by T, w¢ disappears, and we obtain

T'M(T8, + T8,) + T"WMTE, = T"w* + TTw® — TTw?

or

1(0)8, + C(0,0,)0, =4 +~—6 (11)

with I(8) and C(0,80,) defined as in the holonomic case, except that now we distinguish
between 0 and @,. Thus,

1) = T'MT (12)
C(,0,) = T'MT+T'WMT (13)

Moreover, T = T(6), T = T(8,0,), and W = W(O,éa). For brevity, we shall omit the
arguments in the derivations below. Let us now calculate 1(8,8,):

1(6,0,) = T"MT + TTMT + T'MT (14)

Furthermore, we recall the expression for M given in Exercise 3.15 for one single body. For
r bodies, M takes on an identical form, except that, now, M W, and M are 67 x 67 block-
diagonal, i.e.,

M = diag(M1,---,M,), W =diag(Wy,---,W,), M = diag(My,---,M,)
eq.(14) thus yielding
1(6,6,) = T"TMT + T"MT + TT (WM — MW)T (15)
Upon substituting eq.(13) into eq.(15), we obtain
1(6,0,) = C(6,0,) + TTMT — TTMWT



10.6

(b)

with

Hence,

Cc(0,0,) = 1(0,0,) — T"MT + T"MWT
1. .
51(0,%) +P

where
1(6,0,) - TTMT + T"TMWT

[TTMT +TTMT + T (WM — MW)T] ~T"TMT + T"TMWT

NSRS ORI NN

[T"MT — T"MT + T7(WM + MW)T]|

thereby obtaining the derived expression for C(8, 8,).

Because the robot undergoes pure translation, the kinematic constraint can be written in the
from

w=§(él—0‘2):0

which yields . )
6, =L6;

where the matrix L is
T
L=[11]
The inertia matrix with pure translation is, then, a scalar I,, namely,

I =L"IL=1,+1I,+1,+1,

where
I, = 2(I+myr?)
I; _ 3mer?p?
2
I,’, = myd?p?
I;, = mpr2

Now, for the case in which the midpoint of segment 0,09 is stationary, the kinematic con-
straint can be written as

0-14-0.2:0:}0,1 =.U0-1



10.8

Uu=[1 -1]
The expression of the inertia matrix in this case is

L=UTU=1,+1,+1,+1,

where
I, = 2(I+myr?+4(pb)2H)
I, = mer?a?(6cos® ¢+ p>(1 — cos® )
I, = o?p?(4Iysin® o + mpd?(1 + 3cos? b))
I, = 4I,(pé)? + 4 2myr?
The Coriolis and centrifugal forces matrix C(o, 8, éa)éa can be expressed as

C(0,04,00)8, = TTMT8, = [vect(TTMT)| x 8, (16)

where from eq.(10.88), we notice that TTMT is skew symmetric, its vector being

1
vect(TTMT) = V3A2(3my, + my)rw ll] (17)
1

By recalling eq.(10.74),

vect(TTMT) = 3A2(3m,, + mp)r2(—\) (i 01> e

V3eld,

with
3
e=

“[%

1 1)

Hence, o . .
C(0,0,,0,)8, = —3V3X3(3m,, + my)ri(eT8,)e x 8,

Now, C(,84,0,)8, vanishes under the following nontrivial conditions :

i) The mean value of {6;}? vanishes, i.e., 8, is normal to e. This implies that the platform
undergoes pure translation;

ii) All three wheel rates are identical, i.e., 0, is parallel to e. This implies that the platform
undergoes pure rotation.



