305-573B Mechanics of Robotic Systems

Solution of Assignment 5

5.1 (a) The area A of the trapezoidal profile is

1
A = —msho + (19— 71)Shax +

2 (1 - T2)S;nax

N | —

= 5(1 -1+ TQ)Sinax

We need then A = 1, and thus
1 !
2 (1 71 72)Smax =1

from which we obtain

2
!
= 1
Smax 1 -7 + Ty ( )
(b) Using eq.(1), we have
2
(=¥ ) 0<7<m
8(7‘) = 137;1;717_2 TM<T< T

’7'2+Té —27—71(12—1)
(r2—1)(1—71+72)

The plot of s(7) vs. T appears in Fig. 1(a). The decomposition of s(7) into a linear part
and a periodic part, is, then,

sp(r) = s(r)—r

with s,(7) displayed in Fig. 1(b).

(c) For a periodic cubic spline, we have the conditions

o = o &)
o= @
o= 0

As explained in Section 5.6, condition (4) can be used to eliminate one unknown, namely
s%;, while condition (3) leads to an additional equation given by eq.(5.63). Thus, recalling
the definitions of eqs.(5.58d—f), we have now the system

As" =6Cs (5)
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where A and C are (N — 1) x (N — 1) matrices defined as:

_2051,]\]1 a1 0 0 s an’ i
(0 74] 20&1’2 a9 0 e 0
0 [eD) 2042’3 a3 ce- 0
A = _
0 0 aNll/ 205Nm ,NII QNII
L QN 0 0 apnn 2C¥NH’NI_
[ BN B 0 BN
B —f1,2 0 0
0 B2~z [ 0
C = ) ] . . . .
0 0 /BN”’ —IBNIII N ﬁNH
L B 0 - B —Bnr N ]
and T
S:[Sla"'asN—l] 5 S”:[SS_I7"'7SI]<]—1]
Moreover,
1
Agy= -\ k=1,--,N—1
T N_1’ J ’
Thus, fori,5,k=1,...,N — 1,
1 2
GEFTD TG (©)
B =N —1, Bij =2(N —1) (7)



and matrices A and C reduce to

4 1 0 0 17
1 4 1 0 0
1 01 4 1 0
A = — , )
N -1 o IR
0 0 1 4 1
L1 0 1 4]
r—2 1 0 0 17
1 -2 1 0 0
1 -2 1 0
C = (N-1) ) . )
0 o .- 1 -2 1
L 1 0 0 1 =2/
Now, vector s = [s1,--+,sy_1]" is readily known from the N equally spaced points,

while vector s” of eq.(5) is obtained as
s" =6A71Cs

Then, the coefficient Ay, By, Cr and Dy of each cubic spline, for £ = 1,...,N — 1,
are obtained directly using eqgs.(5.55a—d). The Matlab code implementing the foregoing
calculations is displayed below:

clear
N=10;
taul=0.2;
tau2=0.9;

delta=1/(N-1);
for i=1:N-1,
if i==
A(i,:)=[4,1,zeros(1,N-4),1]1/(N-1);
C(i,:)=[-2,1,zeros(1,N-4),1]1*(N-1);
elseif i==N-1
A(i,:)=[1,zeros(1,N-4),1,4]/(N-1);
C(i,:)=[1,zeros(1,N-4),1,-2]1*(N-1);
else
A(i,:)=[zeros(1,i-2),1,4,1,zeros(1,N-2-1)]1/(N-1);
C(i,:)=[zeros(1,i-2),1,-2,1,zeros(1,N-2-i)]*(N-1);
end
end

t=(0:delta:1-delta);

for i=1:length(t),



if t(i)<=taul
s(i)=t(i)"2/(taul*(1-taul+tau2));
elseif t(i)>=tau2
s(i)=(t (1) "2+tau2"2-2*t (i)-taul*(tau2-1))/((tau2-1) *(1-taul+tau2)) ;
else
s(i)=(2*t(i)-taul)/(1-taul+tau2);
end
end

sl=t;
sp=s-t;

Spp=6*inv (A) *C*sp’ ;

t(N)=1;
sp(M)=sp(1);
spp(W)=spp(1);

step=delta/10;

for i=1:N-1,
Ak(i)=(spp(i+1)-spp(i))/(6*delta);
Bk(i)=spp(i)/2;
Ck(i)=(sp(i+1)-sp(i))/delta-delta*(spp(i+1)+2*spp(i))/6;
Dk(i)=sp(i);

if i==N-1
tk=((i-1)*delta:step:i*delta);

else
tk=((i-1)*delta:step:i*delta-step);

end

sk=Ak (i) *(tk-t(i)) . 3+Bk (i) * (tk-t(i)) . 2+Ck (i) * (tk-t (1)) +Dk(3i) ;

sppk=6%Ak (i) *(tk-t (i) )+2%Bk (i) ;

tt=[tt,tk];

spline=[spline,sk];

splinepp=[splinepp,sppk];

end

The resulting periodic cubic spline and its acceleration profile are displayed in Figs. 2,
for 8 supporting points. This number of supporting points gives a very good approxima-
tion of the original profile s(7), while smoothing its acceleration profile. Moreover, the
maximum acceleration value, about 8, is only slightly higher the the original acceleration
level, which is about 6, and thus, seems quite reasonable. Also note that the maximum
acceleration of the cycloidal motion is slightly over 6, namely, 2.

5.3 Here we want to use cycloidal motions to smooth the joint-rate profile of Fig. 13 of the
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Exercises. To this end, we define a segment of a cycloidal-motion function between 7 = 0 and

:s,

7 = 71 such that s'(71) = sl .-

s(1) =

s'(r) =

the last function being depicted in Fig.

3(a).

We have, from egs.(5.38a & b) of the text,

1
T — —Sin 27T
27

1 —cos2nt

From that figure, it is clear that the slope is

horizontal, as required, when 7 = 1/2. However, we want to obtain this point at 7 = 7y,
thereby requiring a change of variable to shrink the plot in the horizontal direction, as shown

Figure 3:



in Fig. 3(b). This is done by defining a new variable u as

u=21T
such that
U
T=—
27'1
and hence

s'(u) = Al — cos(m—)]

T1

where A is a constant to be determined. We have

s'(r1) = A(1 —cos) =24 = s,

max
and thus
!
A — Smax
2
Finally, we have
s! U
s'(u) = 221 — cos(m—)] (8)
2 1

Now, integrating this equation, under the condition that s(0) = 0, we obtain

/!

() = 5 lu— sin(m ) 9)
Differentiating eq.(8), we have
!
s"(u) = T Smax sin(wg)
T 2 T

From 7; to 7, the velocity is kept constant and equal to sl ... Therefore, we have

§(1) =8l for 7 <7<m (10)
and thus
8(T) = shpx™ + C1 (11)

where C} is a constant of integration which can be determined by substituting 4 = 71 into
eq.(9) and using this value in eq.(11) as an initial condition, namely,

Ci = —%sinaxﬁ
Hence,
5(7) = Shuan(7 = 571) (12)
Moreover, differentiating eq.(10), we have
s"(r) =0



Finally, for 79 < 7 < 1, we define another cycloidal segment where s'(19) = s/, and s'(1) = 0.
Here, we consider
s'(1) =1 —cos2nT

In this case, we must shrink the plot of this equation, which is displayed in Fig. 3(a), such
that the slope is horizontal at 7 = 7. This is done by defining the variable u as

u=2(1—-7)7

such that
U
2(1 — 1)
Finally, in order to have s’(1) = 0, we must shift this plot to the right by an amount 275 — 1,
which is done by introducing the variable v defined as

T =

v=u+(2m —1)

such that
u=v— (21— 1)

s'(v)=B [1 — cos (ww)]

1—m79

Therefore, we have

where B is a constant that can be determined using

s'(r) = B(1 —cos ) = 2B = s,

maXx

and thus

Hence

! 1-2
o (v) = Smax {1 ~ cos (wu) (13)

2 1—7'2

Now, if we integrate this equation, using eq.(12) evaluated at 7 = 19, to obtain the initial
condition, we have

! 1- 1-2
s(v):sm% |:1]—7'1—|—7'2— WT2 sin (WIU—:_TZ TZ)]

Moreover, differentiating eq.(13), we have

s

s"(v) = =& _sin (7‘(

U—I—l —2’7’2)
2(1 —7'2)

1—7'2

In summary, we have



i) for 0<7<m

s(r) = —8“213" T % sin(ﬂ%)
!
! SmaX T
= — =1 —cos(m—
Sr) = e cos(r )
!
" _ T Smax . T
s(r) = — sm(7rT1)
ii) form; <7< 7y
) 1
S(T) = smax(T - 57-1)
$'(T) = Smax
s"(r) = 0
iii) form, <7 <1
! 1- 1-2
s(r) = 8“;‘"‘ [T — T+ 19— ﬂ_T2 sin (wT-li . T2)]
— T
!
, Smax T+1—27‘2>:|
— Zmax (| _ Lo an
s'(1) 5 [ cos <7r T
!
" _ TSmax - T+1-— 27’2)
s'(r) = =) sin (71'71 -

The plots of the displacement, velocity and acceleration profiles are displayed in Fig. 4(a),
for 1 = 0.2, » = 0.9 and s, ,, = 2/(1 — 71 + 72), as defined in Problem 5.1.

5.4 From the problem, the set of conditions for the initial and final poses are

p(0) = pr, p(0)=0, p(0)=0
Q(0) = Qu, w(0) =0, w(0)=0
Q(T) = Qr, w(T)=0, w(T)=0
In the absence of singularities, these conditions correspond to
6(0) = 6;, 6(0)=0, 6(0)=0 (14)
oT) = 6r, O(T)=0r, O(T)=0 (15)

First, we consider a fifth-degree polynomial, namely,
O(t) = at® + bt* + ct® + dt* + et + f
its two first time-derivative being given by

0(t) = bat* + 4bt + 3¢t + 2dt + ¢
6(t) = 20at® + 126t + 6ct + 2d
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If 6] is the i-th component of 87, with the same notation for 8/ and 0F  we have, from the

7 2
conditions of eq.(14) for joint i,
d=e=0, f=0]

while the conditions of eq.(15) yield three linear equations in a, b, and ¢, namely,

oF — pI

aI?+0T +¢ = ZT3 :
2 oF
_ 1

20aT? + 1267 + 6¢ = 0

Upon solving the three foregoing equations for the three aforementioned unknowns, we obtain

6 3
a = ﬁ(ef—e{)—ﬁef

10 4 .
c = ﬁ(giF 9{)—77291F

and hence, the fifth-degree polynomial sought is

6 3 - 15 7 - 10
0u(t) = 01+ s OF — 01y — mOF | 54 |~ 1268 — 61y + 56F | e+ 507 — o) -



To obtain the seventh-degree polynomial, we impose the condition that the joint jerk vanishes
at the two endpoints, namely,

030)=0, 6®(T)=0 (16)
The polynomial has the form
0(t) = at” + bt + ct® + dt* +et® + ft2 + gt +h

and its three first time-derivatives are given by

0(t) = TatS +6bt> + 5ct* + 4dt® + 3et? + 2ft + g
0(t) = 42at® + 30bt* + 20ct® + 12d¢* + 6et + 2f
03 () = 210at* + 120b> + 60ct? + 24dt + 6e

From the conditions of eq.(14) and the first condition of eq.(16), we have
e=f=g=0, h=6!

while the conditions of eq.(15) and the second condition of eq.(16) yield four linear equations
in a, b, ¢, and d, namely,

3 2 ezF_H{
ol + 01" + T +d =~
3 2 _ ezF
70T + 66T +5¢T +4d = =5

42aT3 + 30672 +20¢T +12d = 0
210aT + 120672 + 60cT + 24d =

Upon solving the four foregoing equations for the four aforementionned unknowns, we obtain

10

a = _F(ei —HZ-I)—I-QTGB.,F
b= (0 — e~ i
¢ = o (0F ~ )+ 2if
d = 2ol odf
and hence, the seventh-degree polynomial sought is
0;(t) = o+ [—%(@F —0) + %éf] T+ [%(@F — 0 - ;—iéf] 6
+ [0 — o+ 22ir| 0+ [320r oy - 0t v

10



9.1 (a) Many solutions are possible for the location of the robot base. Obviously, the path must
lie within the workspace of the robot. Additionally, two alternatives are possible: either
the welding is done from outside or from within the helix. The workspace of the PUMA
560 is displayed in Fig. 5, along with a projection of the path. For an interior weld, we
could have a path T'0:

z = 0.3cos?d
= 0.3sin?d
0.8
z = —
T

Here, the center! Op of the helicoidal path has F, coordinates (0,0, 0). For an exterior
weld, we have a path T'!:

z = 0.3cosd—0.5

= 0.3sind - 0.5
.89
z = &—{—0.33
T

with the center of the helicoidal path located at a point of F, coordinates (—0.5, —0.5,0.33) m.
Now, let us determine the Frenet-Serret vectors, independent of the center Oy. First,
we determine the velocity along the helix:

& = —0.39sind
= 0.3 cos?
) 0.89
z = —
Vis

and the corresponding acceleration:

i = —0.39%cos® — 0.30 sin ¥
= 0.39cos® — 0.392 sin
. 0.89
z = —
T

The constant-speed condition (as in Example 9.3.1) leads to:
i+ 9 + 2% = v

where g is the constant speed along the helix. Upon substitution of numerical values,
the foregoing condition becomes

. 2 -
0.3202+<%) 9?2 = (0.050)
T

9 = 0.1271

!The center of the helix is defined as the intersection of its axis with the X»-Ys plane.

11



(c)

and hence, with ¢ = 0.1271 s~!, we obtain

z = —0.3csin(ct)
= 0.3ccos(ct)
. 0.8¢c
2 = —
s

Following Example 9.3.1, since this part is independent of the robot,

] —asin ct cos ct
dr r c .
e =—=-=—| acosct and e, = — | sinct
ds $ v, b 0

Thus, the binormal vector e is calculated simply as the cross product of the first two
vectors of the Frenet-Serret triad:

—bsinct
c
ep=e Xe,=——| bcosct
Vo
—a
The orientation matrix Q of the electrode tip is given by
Q = [et €, eb]
Hence,

acosct —(v,/c)sinct —bcosct
b 0 a

Now, the center of the wrist is located, with respect to the base, by the following vector:

. —asinct  —(v,/c)cosct  bsinct
Vo
c=og+p+Qcp

with oy denoting the position vector of Op, p that of an arbitrary point P on the helix,
both given in Fj, and cp, the position vector of P in the Frenet-Serret frame.

—0.500 acosV 0
og=|-0500|, p=|asind|, cp=|-0.050

0.330 by 0.0867

Now, once ¢ is available, we proceed with the inverse kinematics of the PUMA 560 as
done in Section 4.4. Once we obtain 8, @ can be found from Section 4.5 as

6=J"t
The joint accelerations can be found from Section 4.6 as

6=J3"1t-Jb)

The joint angle, velocity and acceleration trajectories appear in Figs. 6, 7 and 8, respectively,
for the center of the helix at (0,0,0), and in Figs. 9, 10 and 11, for the center of the helix at
(=0.5,—0.5,0.33) m.

12
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Figure 5: Top view of the workspace of the PUMA 560
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Figure 6: Joint trajectories vs. time (s) for the origin of the helix at (0,0, 0), in degrees.
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Figure 7: Joint velocities vs. time (s) for the origin of the helix at (0,0,0), in rad/s.
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Figure 8: Joint accelerations vs. time (s) for the origin of the helix at (0,0,0), in rad/s2.
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Figure 9: Joint trajectories vs. time (s) for the origin of the helix at (—0.5, —0.5,0.33) m, in degrees.
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Figure 10: Joint velocities vs. time (s) for the origin of the helix at (—0.5,—0.5,0.33) m, in rad/s.
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Figure 11: Joint accelerations vs. time (s) for the origin of the helix at (—0.5,—0.5,0.33) m, in
rad/s?.

9.3 We have

t3

3

Then the position vector r of any point on the curve with its first and second-derivatives are

z=2 y=t>, z=

2t 2 0
r= |t |, ¢|2t]|, 7| 2
g $2 2

Now the Frenet-Serret triad is readily evaluated as

et:L:L 22t e, = i‘X:I:‘ = 1 —tzt e, = ey Xe; = ! e
I~ 2v2| e |0 @ Exel 22| | B2 | gp i
and hence, the orientation matrix Q is given by
Q=[e e e]:L 22t 2_—27;2 —t;
S
Now the vector of matrix Q can be computed as
@=L Qs abn | = | 0|, wmgo @120
Q(2,1) - Q(1,2) 1

16
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The expressions for the curvature and torsion in terms of time are readily evaluated

|l# x| 2 IXF-r 2

FP ~ 2+2 | |Exi2 £2+2

KR =

The angular velocity w and angular acceleration w take the forms

2 |1 4 |1
:'6:— 0 o — —
YT e YT ey
1 1
where
5 1
s= i =t*+2, 6d=—-— |0
$ =[x +2, GRS
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