| Sol'n
No. | $ heta_1$ | $ heta_2$ | θ_3 | $ heta_4$ | $ heta_5$ | $ heta_6$ | |--------------|------------------|------------------|-------------|------------------|--------------------|-------------------| | 1 & 2 | 90° | 90° | 0° | 180° | -180° | 0° | | 3 | 75.157° | 15.325° | 150.851° | 15.266° | -103.353° | 176.393° | | 4 | 90° | 16.010° | 153.403° | -180° | 100.588° | 0° | TABLE 8.2. Inverse kinematics solutions of the Fanuc Arc Mate manipulator FIGURE 8.3. Contours C_1 , C_2 , and C_3 for the Fanuc Arc Mate manipulator. given below: $$\mathbf{Q} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{p} = \begin{bmatrix} 130 \\ 850 \\ 1540 \end{bmatrix}$$ in which \mathbf{p} is given in mm and the DH parameters of the manipulator are given in Table 4.2. Solution: The solutions are obtained from the intersections of the three contours C_1 , C_2 , and C_3 , as shown in Fig. 8.3. Four intersection points can be detected in this figure, which are numbered 1, 2, 3, and 4. Moreover, at points 1 and 2 the three contours are tangent to each other. Tangency indicates the existence of a multiple root at that point, and hence, a *singularity*, as discussed in Subsection 4.5.2 in connection with decoupled manipulators. The numerical values of the joint angles of the four solutions are given in Table 8.2. **Example 8.2.2** In this example, we discuss the IKP of DIESTRO, the isotropic six-axis orthogonal manipulator shown in Fig. 4.31 (Williams,