Sol'n No.	$ heta_1$	$ heta_2$	θ_3	$ heta_4$	$ heta_5$	$ heta_6$
1 & 2	90°	90°	0°	180°	-180°	0°
3	75.157°	15.325°	150.851°	15.266°	-103.353°	176.393°
4	90°	16.010°	153.403°	-180°	100.588°	0°

TABLE 8.2. Inverse kinematics solutions of the Fanuc Arc Mate manipulator

FIGURE 8.3. Contours C_1 , C_2 , and C_3 for the Fanuc Arc Mate manipulator.

given below:

$$\mathbf{Q} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{p} = \begin{bmatrix} 130 \\ 850 \\ 1540 \end{bmatrix}$$

in which \mathbf{p} is given in mm and the DH parameters of the manipulator are given in Table 4.2.

Solution: The solutions are obtained from the intersections of the three contours C_1 , C_2 , and C_3 , as shown in Fig. 8.3.

Four intersection points can be detected in this figure, which are numbered 1, 2, 3, and 4. Moreover, at points 1 and 2 the three contours are tangent to each other. Tangency indicates the existence of a multiple root at that point, and hence, a *singularity*, as discussed in Subsection 4.5.2 in connection with decoupled manipulators. The numerical values of the joint angles of the four solutions are given in Table 8.2.

Example 8.2.2 In this example, we discuss the IKP of DIESTRO, the isotropic six-axis orthogonal manipulator shown in Fig. 4.31 (Williams,