8

8.1

The innermost do-loop, as pertaining to revolute manipulators, involves one coordinate transformation
between two consecutive coordinate frames, from F;- to F;41-coordinates, plus two vector sums, which
consumes 4(n — i) multiplications and 6(n — ) additions; this loop also consumes one matrix-times-
vector multiplication, with E being the said matrix, which involves zero floating-point operations, as
mentioned above, and one scalar-times-vector multiplication, which requires 2(n — 4) multiplications
and zero additions. Thus, the total numbers of operations required by this algorithm, for a n-revolute
manipulator, are M;, multiplications and A4;, additions, as given below:

M;, :2n+i6(n—i) =n(3n —1)
Aia :iﬁ(n—i) =3n(n-1)

the presence of prismatic pairs reducing the above figures.

Special Topics on Rigid-Body Kinematics

(a) We have, from Fig. 7,

0 1/2 ~1/2 0
pi=|0|, po=|v3/2|, p3=|V3/2|, pa=|V3/3
0 0 0 v6/3

and from the data,
p=[0 v3/3 v6/3]"
Now, let us express ps in the form
po=[d 0 0]"
Then, from the relation
(P2 —P1) (P2 —p1) =0
we obtain 25 = 1. Hence,
po=[1 0 0]"

(b) Now, we must have, for compatibility, with p3 = [#3, 93, 23]T

b

(I"3—I51)'(P3—P1)=—%:t3+§ (Z)3—\/§> =0

which leads to
&3 =V3ys — 1 (130)

If p3 = 0, we will have £3 = y3 = 23 = 0, which does not agree with eq.(130). Thus, ps cannot
be zero.

(c) If ps lies in the P, P, P; plane, then 23 = 0. Again, we must have
(Ps —pP2)-(P3—P2) =—(#33—-1)=0 (131)
From egs.(130) and (131), we have &3 = 1 and g3 = 2v/3/3, i.e.,

ps=[1 2v3/3 0]"
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(d)

Let the angular velocity be
w=[w wy w3 ]T
Then,
P2 —P1 =w X (P2 — p1)

That is
1 1 —V3ws
—\/?;/3 = - w3
—\/6/3 2 \/gwl — W2

from which we obtain

ws = —2v/3/3 (132)
V3w /2 —wy /2 =—V6/3 (133)
We also have
P3 —P1 =w x (p3 — P1)
which yields
V3wi /2 + wa/2 = —V6/3 (134)
The solution of eqs.(132)—(134) is thus

w=[-2v2/3 0 -2v3/3]"

Alternatively, we can apply eq.(8.9) to compute w.

Let p and p be the position and velocity vectors of a point P on the instantaneous screw axis.

We have
1 2v/3
P=pP1+wx(p—p1)= 3 \/3—\%\/333}2\&2'
6 —2v2y
From p X w = 0, we have
1 [ 3—63+2V62 ] [0]
3 2v/3 — 10y =10
| —V6+2v60—4z] |o]
Solving eq.(135) for y and z, we obtain y = v/3/5 and z = v/6 (22 — 1)/4. Thus, the distance
between P and the origin is

(135)

3

25

2 3 3
2 __ .2 2 2 _ 2,2 _ Y —
d=z"+y +z—5x 2w+8+

Now, d? is minimized by setting its derivative with respect to 2 equal to zero, thereby obtaining
xz = 3/10. Hence,

p=[3/10 V3/5 —6/10]" (136)
Moreover, we can readily obtain the unit vector e in the direction of the instant screw axis as
3v5
e= ﬁ = % [-2v32/3 0 -2v3/3]7 (137)

From eqs.(136) and (137), the screw axis is totally determined. Alternatively, we can apply
formulas (3.72) to find the above value of p.
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A

Figure 30: Relative layout of the .4 and F frames.

8.2 (a) We first verify compatibility, which requires computing matrices P and P, and these require, in

turn,
1 1
1
e=,|1], e=|1
1 1
Therefore,
9 1 1 =2 0o 1 -1
P=-(1 -2 1 , P=2]0 0 O
311 1 -2 0 -1 1
whence, )
P'P=0

which is apparently skew-symmetric, the motion thus being possible.

(b) To compute w, we must verify first whether the points are collinear. A quick calculation shows
that
1
(p2—p1)x(Ppa—p1)=4| 0 | #0
-1

112



the points thus being noncollinear. Moreover, tr(P) = —2, while

and hence, tr?(P) = tr(P?), even though the points are noncollinear. Thus, we cannot find w
from eq.(8.9), for matrix D is singular. However, since P is not frame-invariant, it is possible to
render D invertible upon a change of frame. Thus, let A be an auxiliary frame {X,YA, Z 4},
with origin at C' and axes X 4 and Y4 defined as in Fig. 29. Hence,

~2/3 4/3 —2/3
Pila= | —-2v2/3|, [p2u=|—-2v2/3|, Ipsla=|4v2/3]|,
0 0 0

and
-2/3 4/3  —2/3
[Pla=|-2v2/3 -2v2/3 4V2/3
0 0 0
=  tr([P]) = ﬂ = tr’([Pla) = 12+T8ﬁ
Moreover,
4-8/2 —8-8V2 4+16V2
Pra=l|srave sosE 16+4v2| 5 a = 271V L ey
0 0 0

which means that matrix [D] 4 is invertible. In fact,

1 -2 -2 1
[D]4 = 3 V2 -1 —2\/\5[
0 0 —-1-+2

whose determinant is readily calculated as
—2-4/(2
der(pl) = 2=V 2

In order to find w, then, all we need is the right-hand side of eq.(8.9), which requires calculating
the given velocities in A. We show in Fig. 30 the relative layout between the original frame F
and the auxiliary frame A.

Let i4, ja, ka be the unit vectors parallel to X 4,Y4, Z 4, respectively, while i, j, k are their
counterparts associated with F. From Fig. 30, it is apparent that

iadr = | 1|, [ulr = BT
0 I1Pi5 7|

where
—2
[PP]r=[ps—p1]=| 0
-2
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Hence,
: Ve |t o Ve |l
lialF = 0 | = [kalr=[iaxjalr= 0
2 2
-1 -1
Now, from Definition 2.2.1, the matrix Q rotating F into A is given by

{0 —V2/2 \/5/2]
-1 0 0

Qlr =[ia ja kalz=
F A JA AlFx L() _\/5/2 _\/i/QJ
Therefore, ) )
[Bila = [QT]#[Pi]r = [Pla = [Q"]#[P]F
where
0 1 -1 0 0 O
[Plr=2[0 0 0 |=[Plu=2vV2[0 0 0
0 -1 1 01 -1
Thus,
1
vect([P]a) = V2 |0
0

and hence, eq.(8.9) leads to )
w =D 'vect([P]4)

with D~ calculated, using computer algebra, as

—1-v2 20+V2) —-1-4/2
2-V2\ 55 Caivh -

2 0 0 ~3v2
whence,
) \/Q
2—+/2
W4 = V2 —2-2V/2
2
0
Therefore,
1
[w]r = [Qlrlwla= |1
1

8.3 If the three points are collinear, all three vectors p; — c, for i = 1,2, 3, are linearly dependent, and
matrix P is of rank 1, its nullspace being a plane passing through the origin and normal to line P, P, Ps.
Matrix P being of rank 1, its three eigenvalues are {m1,0,0}, with m; # 0. Hence, tr*(P) = n7 =tr(P?).
Notice that the foregoing relation holds regardless of whether the origin is collinear with the three points
or not.

8.4 From the compatibility condition, ) )
P'P+PP" =0

Taking the trace of both sides, we obtain
tr(PTP + PP7) = 0 = tr(P"P) + tr(PPT) =0
Now, because tr(AB) = tr(AB) for all square matrices A and B, then

2tr(PPT) = 0 = tr(PPT) =0
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Alternatively, one can write

(p1—c¢)” 3
PP =[pi—c pr—c ps—c]|(p2—c)' | =) (pi—c)(pi—c)”
(P3—C)T 1

Upon differentiation of both sides with respect to time, we have

3

PTP +PP" = Z [(Bi —&)(Pi — )" + (pi — c)(pi — €)"]

Taking the trace of both sides, while considering tr(AB) = tr(BA),
. 3
2tr(PPT) = 22(1')1- -¢)(pi—c¢) =
1

and hence, tr(PPT) = 0.

8.7 (a) The data satisfy the relation tr?(P) = tr(P?) with P as defined in eq.(8.4), and hence, a change of
frame is required. We will consider a frame JF; with its origin at P; and its Z;-axis perpendicular
to the plane defined by P;, P, and P;. Moreover, its X;-axis is aligned with a vector going from
P to P;. In the new frame F; we have

0 —2 0
Pili= 0], [pP2i=]0 |, [psh=]|-2v2
0 0 0
Moreover,
3 -1
1 2
[C]l = 3 Z[pi]l = 3 —\/§
1 0
The rotation matrix that brings J; into an orientation coincident with the original frame F is
given by
0 1 0
Q=|v2/2 0 Vv2/2
V2/2 0 —/2/2

The accelerations of the three given points in J; are thus

[pz]l = Q[Pz]]—'; for i = 17273

ie.,
1 1 1
Bili= | V2], [Bli=| V2|, [Bsh=]| V2
0 2¢/2 —-2V2
Moreover,
o[ 1 -2 0 4 1-2v2 —2-2V2 42
[Ph =3 V2 V2 —2v2 ], [P2]1:§ 2442 2-2V/2 -4
0 0 0 0 0 0
Furthermore,

afPli = 20+ v2), P = S(3+2v3), ([P’ = 5(3-4v2) # [P,
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