5.9

(b) With f available, n,, is readily computed as

0 -05 0 0 —25
n,=P-C)f=105 0 0 50 = 0 Nm
0 0 0 125/bs3 0
Now we calculate 7, from eq.(71), where we need J12. From Problem 4.19,
[0 1 0
Ji2o=[1 0 0
10 0 1
Thus,
01 0 [-25 0
To=|(1 0 0 0 [=[-25| Nm
0 0 1] 0 0
Therefore, the readings of the wrist joints are 74 = 0, 75 = —25 Nm, and 75 = 0.
(a) Since we have here a decoupled manipulator, its Jacobian matrix at point C can be written as
_ | Jun Ji2
=[5 )
with
J11:[e1 € 0], J12:[e4 es 96], J21:[e1 XTIy €z XTIy e3]

where r; is the vector directed from O; to the
in F1, we have

0 0 -1 -1 0
e = 0 , €9 = -1 , €3 = 0 , €34 = 0 , €5 = 0
1 0 0 0 -1

center of the wrist, C. With all quantities expressed

i

and
—(bs + bs)
r'n =TIy = 0
0
Thus,
0 0
€] Xr; = —(b3+b4) y €9 XTIy = 0
0 — (b3 + b4)
Therefore,
0 0 O -1 0 0 0 0 -1
J11 = 0 -1 O 5 J12: 0 0 -1 s J21 = —b34 0 O
1 0 O 0 -1 0 0 —b3a 0
with b4 defined as bz + by, and
0 0 0 -1 0 0
0 -1 0 0 0 -1
J= 1 0 0 0O -1 0
- 0 0 -1 0 0 0
—(bg + b4) 0 0 0 0 0
0 —(b3 + b4) 0 0 0 0



(b) The twist tp of the EE at point P is given. However, we found in (a) the Jacobian for the
decoupled manipulator with its EE twist defined at the center C of the wrist. Thus, the twist at
the center of the wrist, t¢, is required. This is obtained using the twist-transfer formula given by
eqs.(3.84a & b), as

1 0
to = [P e 1} tr
where C and P are the cross-product matrices of the position vectors ¢ and p, respectively. Here,

c=[—(bs+bs) 0 0]"
p=[—(b3+b4) —bg O}T

Thus
[0 0 0
C=10 0 (bs + bs)
10 —(b3 + ba) 0
[0 0 —bg
P=1|0 0 (b3 + bs)
bg  —(bs + bs) 0
and
0 0 —bg
P-C=]0 0 O
b¢ 0 O
Therefore,

For a decoupled manipulator, we have

Jnga +J129w = Ww

J20, =¢
Thus,
, 0 —1/(bs+ bs) 0 v — bew
0,=3'¢=1|0 0 —1/(b3 + bs) v
-1 0 0 v+b6w
1 v
= — v + bgw
304 | by 4 by) (v — bew)
and
‘ _ -1 0 0 w 0
0w :Jl_zl(w—JnBa) = 0 0 -1 - v+b6w
0 -1 0 w| betbal
—1 w(b3 +b4)
=i v+ (b3 + ba)w

—v + (b3 + by — bg)w
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(c) We have, for a decoupled manipulator,

Jin, +J35,f=1,

T
Jiony = Ty

where n,, is the resultant moment acting on the EE when f is applied at the center C of the wrist.

Therefore,
1 0 1 T — b F
ng=n+Pp-c)xf=T|[1|+|-bs| xF|1]| = T
1 0 1 T+ bg F
Thus,
-1 0 0 T — bgF T — bgF
Tw :Jﬂnw = 0 0 -1 T =— | T+ bgF
0 -1 0 T+ bg F T
and
7o =Jnf+JI1in,
[ 0 —(b3+bs) 0 F 0 0 1] [T—bF
=10 0 —(bs + ba) Fl+]0 -1 0 T
| -1 0 0 F 0 0 0] [T+bF
[T — (b3 + by — ba)F
= =T — (bs+by)F
| -F

whose first two components are torques, its third component being, consistently, a force.

5.10 The procedure outlined in the problem statement was followed using computer algebra. The charac-
teristic equation, resulting from det(M) = 0, is thus obtained as

(- C*F? -2C*G? -2 A’H*? - 2H*B* +2C*GF + 2CAFH + ACGBH
—2CFBH)cos’0s + (24> +2B* - 2D?G* — D*F? +4IDGB - 2IDFB
+ 2IADF +2D*GF)sin® 63 + (2ICAF +4ICGB +4CGFD + 4DGBH
—2DFBH +2ADFH —2ICFB —4CG*D —4IHB* —2CDF? — 4TA?H) cos 5 sin 63
+ (-4CG’E - CBF? -2 A’FH —4A’HJ - 2HB*F + ACF* —4HB?] — 2CEF”?
+2CGBF —2CFBJ + 2CAFJ +4CGBJ +4CGFE + 2 AEFH + 4EGBH
—2EFBH)cos3 + (-4 DG’E —2DEF* — DBF? + ADF? — 4IA%] —4IB*J
—2IEFB-2IB*F +2IAEF +2DGBF + ADGBJ — 2DFBJ + 4DGFE
+2ADFJ +4IEGB —2IA’F)sinf; — 2A’FJ — 2GFA? + 2GFE® + AEF?
+ABF? + 2 AEFJ — 2 AGBF —2EFBJ +2EGBF +4EGBJ — 2 A2 J?
+2G?A? - F’F? - 2G?E? - 2B%*J? —EBF? -2JB’F =0
This equation is obviously quadratic in cosf3; and sin 63, as expected. Moreover, using the identities
cosbz = ié, sin @3 = 12+t3t§, t3 = tan (923>

a quartic equation in t3 is obtained, namely,

a4t§ =+ agtg =+ Gth =+ a1t1 =+ ag = 0
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5.12

5.13

where

—2A°FJ —-2GFA? +2GFE? + AEF? + ABF? + 2 AEFJ — 2 AGBF

—2FEFBJ+ 2EGBF +4EGBJ +2C?GF —2A%2J? + 2G?A%? — E?F? —4ACG*E

—CBF? -2C°G? - 2A>FH - 4A’HJ - 2HB?F + ACF? —-4HB?J — 2CEF*

—C?F? —2A%H%* - 2H?B*+ 2CAFH +4CGBH —2CFBH — 2G*E? —-2B%J?

—EBF? -2 JB*F +2CGBF — 2CFBJ +2CAFJ +4CGBJ +4CGFE

+2AEFH +4EGBH — 2 EFBH

a1 = —8IA%] —4IA’F —4IEFB+8IEGB — 4IB*>F —8 DG?E —4DEF? — 2 DBF?
+2ADF? +4DGBF +8DGBJ —4DFBJ +8DGFE +4ADFJ —8IB%J
—4ICFB+ 4IACF +8ICGB +4IAEF + 8CGFD + 8 DGBH —4DFBH
+4 ADFH — 8IHB? - 8IA’H —8CG*D — 4CDF?

ay = —4A’FJ —AGFA? + AGFE? + 2 AEF? + 2ABF?> + AAEFJ —4AGBF —4AEFBJ
+4EGBF +8EGBJ +8A? +8IADF + 16 IDGB — 4C*>GF —8IDFB — 4 A% J?
+4G?A% — 2FE?F? +8B2 +8D?GF —8D?G? —4D*F? + 2C?F? + 4C*G* + 4 A2H?
+4H?B? — 4CAFH — 8 CGBH + 4CFBH —4G?E* —4B?>J> -2 EBF? — 4JB*F

as = —8TA%] —4ATA’F +8IA’H +8IHB? —4IEFB+8IEGB —4ITACF
—8ICGB—4IB?F —8DG?E —4DEF? —2DBF? + 2 ADF? + 4 DGBF
+8DGBJ —4DFBJ +8DGFE +4ADFJ —8IB?>J +4ICFB +4IAEF
—8CGFD —8DGBH +4DFBH —4ADFH +8CG?*D + 4CDF*

as = —2A’FJ —2GFA? +2GFE? + AEF? + ABF? + 2AEFJ —2AGBF —2EFBJ

+2EGBF +4EGBJ +2C*GF -2 A%*J? + 2G*A*> — E?F? + ACG?E + CBF*

+2A%FH +4A*>HJ +2HB?F — ACF? +4HB?J +2CEF? — C*F? — 2C*G?

—2A?H? ~2H?B? + 2CAFH +4CGBH —2CFBH — 2G*E? — 2B?J* — EBF?

—2B?J? - EBF? -2 JB?’F —2CGBF +2CFBJ —2CAFJ —4CGBJ —4CGFE

—2AEFH —4EGBH +2EFBH

ao

Apparently, the workspace is generated by the sector of a circle of radius R and angle 2a = 2sin™'(r/R)
from which a triangle of height b3 and base 2r has been removed, upon rotating it about its diameter,
as shown schematically in Fig. 16. Now we use the additivity relation of first moments, i.e., the moment
of a composed figure about an axis equals the algebraic sum of the moments of the individual figures
about the same azis. Hence, for o in radian,

2Rsin 2b3 2 2 2 2
g = R’a 3a TbgT = grR2 — grbg = gT(R2 —b3) = 51"3
Therefore,
473
V = 2 =
Tq 3

and hence, the value of the workspace volume of the Puma robot is that of a sphere of radius r =
vV R? — b
We have

J = [el €9 €3 ]

which is a square matrix, and hence,

= 4/det(JIT) = |det(T)|
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Figure 16: Planar region generating the workspace of the Puma manipulator, decomposed into two parts

ie.,
p=les xe3-e1| =|ez X e;-es] =|e; x ey - ey

Since {e;}? are unit vectors, we have
lex X e3 - e1] = [le1][|[e2 X es]|| cos ¢| = [|e2 x es]|| cos |
where ¢ is the angle between e; and es x e3. Furthermore, if as denotes the angle between es and eg,
llez x es|| = [[ez][les|l| sin(ez, e3)| = |sin as|

Then,
u = |sin ay cos ¢|

which attains a maximum value of 1 when both |sinas| = 1 and |cos@| = 1. The foregoing values of
| sin 2| and | cos @| correspond to az = £90° and ¢ = 0°. Thus, p attains its maximum when e, eq, e3
are mutually orthogonal, the maximum value of y being 1.

5.14 We have
J = [e4 €5 86]

where, expressing all vectors in Fj,

0
leal; = QFf [ea]y, [esls; = [0, [ee]; = Qs [es]s
1
Thus,
0 0 M5 S5
leals = | pa |, [es]s= |0, [es]s=|—uscs
)\4 1 )\5



5.15

the Jacobian thus becoming

0 0 jpsss
J &« [Js=|ps 0 —pscs
Ao 1 A5
In the sequel, we will need an expression for J~1:
1 H5Cs 585 0
It = . —(pads + psAscs)  —psAaS5  papisSs
M4 b5 S5 4 0 0

Now, we compute ||J|| and ||[J~!||, using the weighted Frobenius norm

13l = /e GWIT), W = (;) 1
3 # = \/g\/ tr(JI7), 37 r = \/g\/tr(JlJT)

and —T denotes the transpose of the inverse or, equivalently, the inverse of the transpose. We thus
have

Hence,

2 _ u + p2 + (madses + psha)? + pis?
kr = 302252
Ml Sy

which is, apparently, a function of a4, as and 65 only.

The above expression can be minimized over a4, as and 65 upon solving a system of three equations
in three unknowns, derived from

Ok? Ok? Ok?
f4(a47a5565) = ﬂ = 07 f5(a47a5705) = % = 07 fﬁ(a47a5565) = 6705 =0

A simpler approach follows, based on the hint, which suggests that J can be rendered isotropic.
For isotropy, the three columns of J must be of identical Euclidean norm and mutually orthogonal.
Orthogonality of the second with the first and the third columns readily leads to

™ ™
A4=A5=0 = 014=:|:§, a5=:|:§

i.e., the wrist must be orthogonal. Furthermore, orthogonality of the first and third rows leads to

=0 = 95::&%

and hence, isotropy is reached when three unit vectors e4, es and eg form an orthogonal triad, a result
that should have been expected.

First and foremost, we recall the formulas for the determinant of a block matrix (CRC Standard
Mathematical Tables, 1987) A, given as

g

The formulas are

det(A) = det(E) det(B — CE"'D) = det(B) det(E — DB 'C)
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5.16

On the other hand, the Jacobian can be written as

J— [Ju J12 ]
Jo1 Osyxs

where O3x3 is the 3 x 3 zero matrix. Hence, applying the second of the above formulas,

det ([Ju Jio ]) = det(J11) det(O3x3 — leJfllle)
Jo1 Osxs

and hence,
det(J) = —det(lele)

Now, since Jo; and Ji2 are of 3 x 3, we have
pa = |det(Jo1)|,  pro = |det(J12)]
and
Papw = |det(J21)] - |det(J12)| = |det(Ja1T12)| = | — det(J21J12)|

Therefore,
p = |det(Ja1)| - [det(J12)]

and hence, p = pg iy, q-€.d.

The Jacobian for a 2R planar manipulator is

—81 —TS12 —TS812

J= ai
C1 + TrC12 TC12

where
S1 = sin 01, 810 = sin(01 =+ 02)
¢1 = cosby, c12 = cos(f; + 62)
as
r=—
ai

The inverse of J is, hence,

J1o 1 ) TS89
Cairsy | —(1+7rca) —rsy

and the condition number is computed using the Frobenius norm:

\/—1 377 12 1
13| = /tr(AWIT) = rartre  wo (1)1

2
Therefore,
V14 2r2 + 2rcy
1371 = /@1 wa-r) = YT
\/§a1r82
Then,
1+ 2r2 4 2rcy
Kkp= ———
2rsq
We now solve
KFp — min
7,02
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5.17

which we do upon zeroing the partial derivatives of k with respect to r and 65, namely,

alﬁ]F

— = 2r? —1 = 4

or 0 = =z 0 (74)
OF _ 0 = or4 (2% +1)ep =0 (75)
96,

From eq.(74), r = £1/2/2, where we reject the negative sign, which has no geometrical meaning. With
this value of r, eq.(75) leads to ¢, = —v/2/2 and sy = +1/2/2. Hence,

(’iF)min =1
which is attained with r = v/2/2 and 6, = +3n7/4.

Shown in Fig.17 is a cross-section of the workspace of the manipulator at hand, which is a hollow
sphere, its volume V4 and reach R4 being

Va = %ﬂ”m +1)° - (V2= 1)) = Znl® (76)
Ry = (\/5—}- 1)1 (77)

For a similar orthogonal manipulator, with identical link lengths A, the corresponding volume Vg and
reach Rp are

4 32
VB = §7T(2A3) = ET[’As

Rp =2\
Now, since the two manipulators have the same reach,

V2+1 Va
{ = — =0.9949
2 Vi

22=(V2+1) = A=

The Jacobian matrix of the second manipulator takes the form

J=[e1xr1 €9 X T9 63XI'3]

where
0 S1
e = 0 , €2 =e3= —C1
1 0
and
(c2 +c23)cy C23C1
ri=XA| (c24c)s1 |, To=r1, r3=X| C2351
S + Sa3 S23

Since 6; does not affect the condition number of the Jacobian, we can fix 6; to any value, and so, we
set 81 = 0, the Jacobian thus becoming

0 —(s2 + s23) —s23
J=2A Co + Ca3 0 0
0 Co + €23 C23

In order to determine #2 and 63 that minimize the condition number kr(J)of the Jacobian, based on
the Frobenius norm, we can use the Matlab built-in function fminsearch. The results reported by
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3

N
=

isotropy
circle

Figure 17: A cross-section of the workspace of the isotropic manipulator, with r; = (vV/2—1)I, ro = (vV2+1)I

Matlab are
0> = —65.3393°, 65 = 130.6760°

Furthermore, the minimum condition number attained at the optimum posture is
Kkm = 1.0798
Therefore, the KCI of the manipulator at hand is
KCI =92.6097%

Apparently, this robot is not far from being kinematically isotropic. However, its workspace is only
slightly bigger than that of its isotropic counterpart, for the same reach. The smaller volume of the
isotropic robot is due to the void in its workspace.

6 Trajectory Planning: Pick-and-Place Operations

6.1 (a) The area A of the trapezoidal profile is

1 1 1
A= §Tlsinax + (T2 — 71) Smax + 5(1 — T2)Smax = 5(1 —T1 4 T2)Stmax

We need then A =1, and thus

1
5(1 — T+ T2)8ha = 1

from which we obtain 5
g = ————— 78
Sma,x 1 _ Tl + 7_2 ( )

(b) Using eq.(78), we have

( T2
_ 0<r<mn
T1(].—T1+T2)
21 — 1
=-d — <7<
s(r) = < [ M<ST<T

?+72 -2r—1(re = 1)
(T2 — 1)(1 —T1 +T2)

\

73



The plot of s(7) vs. 7 appears in Fig. 18(a). The decomposition of s(7) into a linear part and a

(a) Position profile s(tau)

0 I I I

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tau

(b) Periodic part of the position profile
0.05 T T T

p(tau)

-0.1 | | | | | | . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tau

Figure 18:

periodic part, is, then,

si(t) =71, sp(r) =8(1) =7
with s,(7) displayed in Fig. 18(b).
For a periodic cubic spline, we have the conditions

s1 = SN (79a)
s (79b)
sf = sl (79¢)

As explained in Section 6.6, condition (79¢) can be used to eliminate one unknown, namely s,
while condition (79b) leads to an additional equation given by eq.(6.63). Thus, recalling the
definitions of eqs.(6.58d-f), we have now the system

As" = 6Cs (80)
where A and C are (N — 1) x (N — 1) matrices defined as:
201, N o 0 0 an’
[65] 2041’2 Q9 0 e 0
0 a2 2a23 a3 ‘e 0
A=
0 0 . aN/l/ QQNI,IINII aNl/
L On 0 0 QN zaN’IINI
——BI,N’ ,81 0 0 BN’
B1 B2 P 0 e 0
0 B2 —B23 B3 e 0
C = . . . - - .
0 0 .. IBN”’ _6NI7IINII ﬂNII
L 6NI 0 0 .. ﬂNII _6N’IINI
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and

S:[Sla"'astl]T7 S”:[Sllla"'asxl'—l]T
Moreover,
1
Az, = —— k=1 N -1
Tk N — 1; ) ’
Thus, for i,5,k=1,...,N — 1,
1 2
%EN T TN (8D
Br=N—1, Bi; =2(N —1) (82)
and matrices A and C reduce to
41 0 0 1
14 1 0 0
1 01 4 1 0
A= —— . . .
N-1 . S
00 1 4 1
1 0 1 4
-2 1 0 o0 1
1 -2 1 0 0
0 1 -2 1 0
C=N-1)| . : .o ) :
o o --- 1 -2 1
1 o o --- 1 =2
Now, vector s = [s1, -+, SN_1 ]T is readily known from the N equally spaced points, while the
vector s” of eq.(80) is obtained as
s" =6A7'Cs

Then, the coefficient Ay, By, Cr and Dy of each cubic spline, for kK =1,..., N — 1, are obtained
directly using egs.(6.55a-d). The Matlab code implementing the foregoing calculations is displayed
below:

clear
N=10;
taul=0.2;
tau2=0.9;

delta=1/(N-1);
for i=1:N-1,
if i==
A(i,:)=[4,1,zeros(1,N-4),1]/(N-1);
C@i,:)=[-2,1,zeros(1,N-4),1]*(N-1);
elseif i==N-1
A(i,:)=[1,zeros(1,N-4),1,4]1/(N-1);
C@i,:)=[1,zeros(1,N-4),1,-2]*(N-1);
else
A(i,:)=[zeros(1,i-2),1,4,1,zeros(1,N-2-i)]1/(N-1);
C(i,:)=[zeros(1,i-2),1,-2,1,zeros(1,N-2-1)]*(N-1);
end
end
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t=(0:delta:1-delta);

for i=1:length(t),
if t(i)<=taul
s(i)=t (i) "2/ (taul*(1-taul+taul));
elseif t(i)>=tau2
s(1)=(t (i) "2+tau2"2-2*xt (i) -taul*(tau2-1))/((tau2-1)*(1-taul+tau2));
else
s(i)=(2*t (i) -taul)/(1-taul+tau2);
end
end

sl=t;
sp=s-t;

spp=6*inv (A) *C*sp’ ;

t(N)=1;
sp(N)=sp(1);
spp(N)=spp(1);

step=delta/10;

for i=1:N-1,
Ak (i) =(spp(i+1)-spp(i))/(6*delta);
Bk (i)=spp(i)/2;
Ck(i)=(sp(i+1)-sp(i))/delta-deltax*(spp(i+1)+2*spp(i))/6;
Dk(i)=sp(i);

if i==N-1
tk=((i-1)*delta:step:i*delta);

else
tk=((i-1)*delta:step:i*delta-step);

end

sk=Ak (i) *(tk-t (i)) . 3+Bk (i) *(tk-t(i)) . "2+Ck (i) * (tk-t (1)) +Dk (i) ;

sppk=6*Ak (i) * (tk-t (i) )+2*Bk (i) ;

tt=[tt,tk];

spline=[spline,sk];

splinepp=[splinepp, sppk];

end

The resulting periodic cubic spline and its acceleration profile are displayed in Figs. 19(a) and
(b), respectively, for eight supporting points. This number of supporting points gives a very good
approximation of the original profile s(7), while smoothing its acceleration profile. Moreover, the
maximum acceleration value, about eight, is only slightly higher than the original acceleration
level, which is about six, and thus, seems quite reasonable. Also note that, as a matter of
comparison, the maximum acceleration of the cycloidal motion is slightly over six, namely, 2.

6.2 The acceleration program is obtained by differentiating the trapezoidal joint-rate profile of Fig. 13, as
plotted in Fig. 20. As in Problem 6.1, we consider the system of equations of egs.(6.58a—c). What we
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(a) Periodic cubic spline using 8 supporting points

005 T T T T T T T
0
-0.05+ B
_01 1 1 1 1 1 1 1 1 Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tau
(b) Acceleration profile when using 8 supporting points
10 T T T T T T T

_100 011 012 013 014 015 016 017 018 019 1
tau
Figure 19:
As"(T)
2
’7—1(1 —T1+ Tg)
Ty T
e
(Te-D)A-T1+T)
Figure 20:
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want is to obtain vector s using eq.(6.58a) in the form

1
s = EC*IAS” (83)

where vector s” contains the sampled values of the equally spaced supporting points of the acceleration
profile of Fig. 20. Note that for this profile to be periodic, we must have s”(07) = s”(1") = 0. Here, we
denote by superscripts (—) and (+) the instant “just before” and “just after,” in order to accommodate
the jump discontinuities. Moreover, in order to determine uniquely the displacement program, we must
give the initial displacement of s(7) since the acceleration profile contains no information about it. We
thus set s(0) = 0, and since the acceleration profile s does not contain information on the linear part
of s(7), what we obtain using eq.(83) is just the periodic part s,(7) of s(7), and thus, s(1) = 0. Using
these two conditions, namely s(0) = s(1) = 0, vector s can be chosen as

s = [827"'751\7*1}7’
and matrix C of eq.(6.58¢c) reduces to
B2 P 0 0
B2 —B23 B3 0
C= : :
0 - /BNIII _ﬂNI,NII BNII
0 0 . ﬂN:/ —ﬁNII’NI
which is invertible. Moreover, for N equally spaced supporting points, we have
Axy = . k=1 N -1
T = N — 17 -4 )
Thus, for i,j,k=1,...,N — 1,
1 2
ap = ﬁ, Cki,]' m (84)
Br=N-1, Bij =2(N -1) (85)
matrices A and C reducing to
1 4 1 0 0 -2 1 0 0
1 0 1 4 1 0 1 -2 1 0
A=——1|: ¢ - - - i, C=(N-1)
N-1
O --- 1 4 1 0 0O --- 1 =2 1
o o --- 1 4 1 o o --- 1 =2

Using eq.(83), s is readily obtained and the coefficients Ay, B, Cy and Dy, of the cubic spline, for
k=1,...,N — 1, are computed directly using eqs.(6.55a-d). The Matlab code implementing the
foregoing calculations is shown below:

clear
N=25;
taul=0.2;
tau2=0.9;

delta=1/(N-1);
for i=1:N-2,
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if i==
A(i,:)=[zeros(1,i-1),1,4,1,zeros(1,N-2-1)]/(N-1);
C(i,:)=[-2,1,zeros(1,N-4)]*(N-1);

elseif i==N-2

A(i,:)=[zeros(1,i-1),1,4,1,zeros(1,N-2-1)]/(N-1);
C(i,:)=[zeros(1,N-4),1,-2]*(N-1);
else
A(i,:)=[zeros(1,i-1),1,4,1,zeros(1,N-2-1)]/(N-1);
C(i,:)=[zeros(1,i-2),1,-2,1,zeros(1,N-3-1)]*(N-1);
end
end
t=(delta:delta:1-delta);

for i=1:length(t),

if t(i)<=taul
spp(1)=2/(taul* (1-taul+tau2));
elseif t(i)>=tau2
spp(i)=2/((tau2-1)*(1-taul+tau2));
else
spp(1)=0;
end

end

t=[
Spp

Sp=
Sp=

ste

for

end

0,t,0];
=[0,spp,0];

inv(C) *A*spp’/6;
[0;sp;0];

p=delta/10;

i=1:N-1,

Ak (1)=(spp(i+1)-spp(i))/(6%*delta) ;

Bk (i)=spp(i)/2;

Ck (i)=(sp(i+1)-sp(i))/delta-delta*(spp(i+1)+2*spp(i))/6;
Dk (i)=sp(i);

if i==N-1
tk=((i-1)*delta:step:i*delta);

else
tk=((i-1)*delta:step:i*delta-step);

end

sk=Ak (i) *(tk-t (1)) . 3+Bk(i)* (tk-t (1)) . 2+Ck (i) * (tk-t (i) )+Dk (i) ;

sppk=6*Ak (1) * (tk-t (i) )+2*Bk (i) ;
tt=[tt,tk];

spline=[spline,sk];
splinepp=[splinepp,sppk];

The resulting periodic cubic spline and its acceleration profile are plotted in Figs. 21(a) and (b),

respectively, for 25 supporting points.

Below this number of points, the deceleration part of the
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6.3

(a) Periodic cubic spline using 25 supporting points
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(b) Acceleration profile when using 25 supporting points
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Figure 21:

acceleration profile (2 < 7 < 1) is not well approximated. Moreover, this number of supporting points
gives a good approximation of the original profile s(7), while smoothing its acceleration profile, as
expected.

Here we want to use cycloidal motions to smooth the joint-rate profile of Fig. 6.7 of the text. To
this end, we define a segment of a cycloidal-motion function between u = 0 and u = w; such that
s (u1) = shax- We have, from eqs.(6.38a & b) of the text,

1
s(u) = A(u — — sin 27u)
27
s'(u) = A(1 — cos 2mru), for 0 <u <1

as depicted in Fig. 22(a). From this figure, it is clear that the slope is horizontal, as required, when
u = 1/2. Since we want to obtain this point at 7 = 71, a change of variable is needed to shrink the
plot in the horizontal direction, as shown in Fig. 22(b). This is done by defining u as u = 7/(271), and
hence

where A is a constant to be determined. We have

A
() = —(1—cosm) = — = 8l

27’1 1
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