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into eq.(65), we obtain, after some algebra, an octic equation in 79, i.e.,
TS 41 + 475 + 473 + 1075 + 1275 — 4715 — 207 +5 =10 (66)
The eight roots of this equation are

(12)1 = —2.798907440, (72)s = —1.663251939, (72)s.4 = —1 =+ j1.111785941,
(72)5.6 = 0.7071067812 + j1.383551070, (72)7 = 0.798907440, (73)s = 0.2490383764

where j is the imaginary unit, i.e., § = v/ —1. The four real solutions correspond to the four intersecting
points in Fig. 13, namely,

(8,)1 = —140.678184°, (65)s = —117.968752°, (6)7 = 77.2432°, (,)s = 27.968752°
Using eqs.(63) and (64), we obtain

(u); = —1.578094854, (v); = 1.975316257
(u), = —1.13224188, (v), = 0.1167964943
(u)7 = 1.025308450, (v); = 0.3663245289
(u)s = 2.132241882, (v)s = 1.468989944

which lead to reach values of
(r); = 2.058171027a, (r)2 = 0.1764350771a, (r)7; = 2.058171027, (r)s = 3.459605564a

for a global maximum reach of
ry = 3.459605564a

which is very close of the approximate value found above graphically.

We can now determine the length a of the manipulator of Fig. 4.15 to attain the maximum reach of
the Puma robot, which was found to be R = 0.8772 m. The value sought is thus obtained from

3.459605564a = 0.8772096591 = a = 0.2535577085 m

Kinetostatics of Serial Robots

The Jacobian matrix will be obtained using the algorithm of Section 5.3. First, we note
Ai =cosay, p; =sinaq;, c¢; =cosl;, s;=sinb;

Then, using the DH parameters of Table 1 of the Exercises, we have

M= ==M=Ax=X%%=0
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and, from eq.(4.3b),

0 0
[ai]1 =[a3]s =[as]5 = [50] , laslo=lagls = [—50] , [asle = l

50

i) Evaluation of submatrix A:
[eri=[0 0 1]7

P, =Q, ie,[ei=[1 0 0]"

P, =P1Q; = [ 8 _01 (1)-| ie, [es]h = |7(1)-|

-1 0 o

-1 0 0 0
P3 = P2Q3 = 0 1 0 s i.e., [e4]1 = 0
| 0 0 -1 | —1]
[0 0 —1] (17
P4 = P3Q4 = -1 0 0 5 i.e., [e5]1 = 0
| 0 1 0 | | 0 |
[0 -1 0] [0
P5 = P4Q5 = 0 0 -1 s i.e., [66]1 = -1
|1 0 0 | 0
Therefore,
010 0 -1 0
[AL=]0 01 0 0 -1
100 -1 0 O

ii) Evaluation of submatrix B:

We have .
[1'6]6:[36]6:[0 0 50}
and
[r;]i = [a; )i + Qi[rit1 |ix1, ©=05,4,3,2,1
Thus,
50 50 0
[r5]s =[50 |, [rala=|-100|, [r3]s= 100 [,
50 0 —50
—-50 -50
[r2]2=|-50|, [riJi=] O
—-50 0
Therefore,
[er xr1]i=[0 —50 0]"
and
[eixr,-]lzPi_1[eiXI‘i]i, 122;56
Thus,

0 0 —100
[82Xr2]1: 50 5 [e3xr3]1: 0 ) [84XI‘4]1:
-50 100

95

|



5.2

0 0
[e5xr5h= 50 ; [eﬁxrﬁ]lz 0
50 0
Hence,
0 0 0 —-100 0 O
[B]s=|-50 50 0 50 50 0
0 —-50 100 0 50 0
Finally
0 1 0 0 -1 0
0 0 1 0 0 -1
1 0 0 -1 0 0
Ohi=106 o o -100 0 o
—-50 50 0 50 50 0
0 —50 100 0 50 0
We have here a decoupled manipulator, and thus,
JLn, = AT, (67a)
JLf=Ar, -3 n, (67b)

with matrices J11, J12 and Jo; given by
J11=[e1 (D) 63], J12=[e4 €ex 86], J21=[e1 XTIy €3 XTIy 63XI‘3]

where r; is defined as the vector directed from O; to C. Referring to Fig. 14, and expressing all

quantities in Frame 1, we have
0 0 0 1
1 , €4 = 0 , €5 = 1 , €6 = 0
0 0 0

0

e = 0 , €3 = €3
{

1 0

rn =ro9 = 0 , Iz = 0

g -

[

Thus,
0 1 1
€ Xr; = 1 y €y XTIy = 0 y €3 X I3 = 0
0 -1 0
Therefore,
0 0O 0 01 0 1 1
Ju=10 1 1], Jio=|(0 1 0|, Jaz=1|1 0 O
1 00 1 00 0 -1 0
Hence,
0 01 01 0
Jo=(01 0|, J,'=]0 0 -1
1 00 1 0 1

From eq.(67a), we have



5.3

Figure 14:

and, from eq.(67b),

) 0 0 1 0 0 0 170
f=0J%) [Ar,-Iin,]J=|1 0 0 21 -10 1 0] |1
0 -1 1 1 010
which yields
0 0 1]7fo 0
f=[1 0 o||1|=]|0
0 -1 1|10 ~1

This last expression represents the weight of the tool, which is directed in the negative Z; direction,
as expected. Hence,
w=1N

Now, n,, is the resultant moment acting on the EE when the load fis applied at the center C' of the
wrist. Therefore, defining
r=[-d 0 0]"

we have
n,=fxr=[0 d 0]"

Comparing this expression with eq.(5), we finally obtain

d=1m

We show here two approaches, the first being geometric, and is what we recommend; the second is
included for verification purposes, and is based on the formulas developed in the book.

Within the geometric approach, we note that the manipulator is at the posture sketched in Fig. 15,
from which

A e AR

57



45°

Figure 15: Manipulator at posture §; = 65 = 63 = 45°

Hence,
[-1-v2 [-1-v2/2 [=Vv2/2
Er1—|: 0 :|, EI‘2—|: _\/5/2 :|, EI‘3—|:_\/§/2
Therefore,
1 1 1 -2
J=|-1-v2 —-1-v2/2 —2/2|, 7=| —V2
0 —2/2 —V/2/2 1-2
If we let the wrench acting at the EE be w = [n, f;, f,]7, then the torque-wrench relation JTw = 1
leads to
1 —-1-v2 0 n -2
1 —1-v2/2 —V2/2| | fe| =| V2

1 =v2/2  =V2/2] | fy 1-v2

We now obtain a reduced system of two equations with two unknowns upon subtracting the first of
the above three scalar equations from the second and the third, which thus yields

1 —1-+2 0 n ] -2
0 \/5/2 _\/5/2 fz = 0
0 1+v2/2 —V2/2] | fy] 1

The 2 x 2 system is, then,

e —) [ 1]

The determinant A of the foregoing matrix turns out to be



and hence,

VAR Bae el g Wer

whence,

n=-vV2+1+vV2)f,=-V2+14+v2=1Nm

In order to verify the foregoing results, we resort to eq.(5.72). To use this equation, the quantities
below must be evaluated:

6 — -0123] _ [—\/5/2]
3 | $123 V2/2
S :-012+C123 _ 0—+v2/2 _ -v2/2
2 | S12 + 5123 1++/2/2 1++/2/2
S _[a+astens] _ [V2/2+0-v2/2] _ 0
1__S1+S12+S123 h \/§/Q+1+\/§/2 T l1+v2
Furthermore, using eq.(5.64) we have
V2
A=—[—vZ _vZ] 0 -1 =7 | _ V2
2 2 1 0 _1_\/75 9

which is rightfully identical to the value obtained above. Therefore, from eq.(5.72),

P= [ = m)lss = s1) = (5 = m)(s2 = )]

_ % (0(53—51)_ [igﬁb - H :

n:Tl—}—STEf:—ﬁ‘F[O 1+\/§] |:§] _01:| |:i:|n:1Nm

Finally,

thereby confirming the correctness of the results.

We have )
J120 =W
Therefore,

[wl? = wTw =0 37,3120

Matrix Jq2 is given by
Jio=[es e5 eg]

We have [O-I [ - _| [§_|
lea]s =10, [esla=|—cosby|, [eslsa= [n
1] [ o] o]
Hence
0 sind, &
Jio=]0 —cosbs 7
1 0 0
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