8.12

8.13

Finally, the minimum-magnitude moment is obtained as

Lf
ng = ﬂ;_H?f, fori=1,2or 3

However, n; - f =0, for 4 = 1,2, 3, and hence,

n0:0

We have )
P=QP, R=PP"

Multiplying both sides of eq. (8.6) by PT, we obtain

PP” = QPP” = QR

Recalling Theorem A.1,
. 1
vect(PPT) = iJw

Now, to show that matrix J is frame-invariant, we introduce two different frames, labeled A and B,
in which the representation of J is [J] 4 and [J]s, respectively. From the definition of p, moreover,
[P]a = [Q)a[p]a. Additionally, let [Q].4 denote the rotation of frame A into frame B. Thus,

[3]a = tr([p]lalp”]4)1 — [Plalp”]a
= tr([Qlalp]slp" 18[Q"14)[QAIQ" |4 — [QlalplslP" 151Q"] 4
=[QJ4 (tr([Q"]4[QlalpIs[P"15)1 — [plslP"]5) [Q"]A
= [Qla (tr([p]s[P"15)1 = [P]s[P" ]5) [Q"]A
= [Ql4[3]5[Q"]4

which shows that J is indeed frame-invariant.

[0 ] [0 0 0
pi=1| -3 |, p2=130], 0 0
| 30 | | 30 0 20
[ 120 T [0 ] 0 40
pi=1| -60 |, pa=| —60 0, =>eée=| —40
| —60 | | 60 0 0
0 0 0 ] . —40 —40
=P=| -30 30 0 , P= —20 —20 40
10 10 —20 | —-60 60 O
(a)
o =30 10 80 —40 —40
PTP=|0 30 10 —-20 —20 40
|0 0 -20| | -60 60 0
0 12 —12 ] 0o 1 -1
= -12 0 12 | x100=| -1 0 1 | x1200,
| 12 —12 0 | 1 -1 0

which is apparently skew-symmetric, and hence, estimates are compatible.
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9

9.1

9.3
9.5

(b) Dw = vect(p) where

1 1 10 0 0 ) 1 20
D= i[tr(P)l -P]= 3 30 =20 O , vect(P) = 3 20
-10 -10 30 20
Hence,
1 0 0 1 2
-1 -1 3 2
Matrix is lower-triangular. Use forward substitution: wy = 2, 3w1 — 2wy =2 = —2wy =

—4 = wy=2.Then, —w; —wes+3ws3=2 = 3Bws3=6 = w3=2

2
= w=| 2 | rad/s
2

Geometry of General Serial Robots
A reflection H onto a plane II of a unit normal n can be expressed as
H=1-2nn" (149)

Now, if the reflection plane is normal to f, which is not necessarily of unit magnitude, then vector h is
mapped by H into h’ given by
f-fyh —2(f-h)f

lI£]12

B = (1-2657/||n = |

Notice that ||f]|*h’ is the left-hand side of eq.(8.22f). By the same token, we can write, for i’

(g-g)i-2(g-i)g
llgll?

i'=(1-2gg"/llgl®)i=

Obviously, the right-hand side of eq.(8.22f) is equal to ||g||*1’
See Maple worksheet in Appendix 1.

Assume that we have an orthogonal matrix H chosen as a product of 12 Householder reflections® that
will render the matrix S in an upper triangular form U. That is,

HS=U
Equation (8.51d) can be written as
STHTHx45 = 0, = (HS)THxy5 = 02 (150)
where 015 is the 12-dimensional zero vector. Then, we can write eq.(150) as
UTv = 049

with
vV = H)~(45 (151)

5See Appendix B.
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Since S is singular, the 12th row of U is full of zeros, and so is the 12th column of U7. As a consequence,

the nullspace of U7 is spanned by the unit vector n = [07; 1]7. Consequently, vector v is a multiple

of n, i.e., v = an, where « is a scalar, as yet to be determined, which is done below. From eq.(151),
- T
%5 =H'v=aH"n=0a[ hia1...hi2,12 |

where hy,; denotes, as usual, the ith component of the 12th row of H. Upon comparison of the above

expression of x45 with its definition in eq.(8.27a), we find « as

ah12’12 =l=>a=
hi2,12

9.7 We have four equations according to eq.(9.70a). By selecting any two of them, we end up with a system

10

10.1

of two nonlinear equations f in two unknowns x. The Jacobian matrix F is given by
of
F=—
ox
According to the Newton-Raphson method, we have

xip1 =x; — F7'f, i=0,1,2,...

where F; and f; represent F and f evaluated at x;, respectively.
With an initial guess xq close enough to a root, the Newton-Raphson method may converge to that
root rapidly. Given a tolerance €, the criterion to stop the iteration is

lI%i+1 — Xilloo <€
where || - || denotes the Chebyshev norm. The Maple code implementing this calculation is given in
Appendix 2.

By monitoring the condition number of F based on the Frobenius norm, we observe that the Newton-
Raphson method converges faster when the condition number is smaller. The condition number intro-
duced in Section 5.8, with the Frobenius-norm condition number discussed in egs.(5.79)—(5.82).

Kinematics of Complex Robotic Mechanical Systems

For the parallel manipulator of Fig. 9.7, the matrix mapping joint forces into wrenches acting on the
moving platform can be obtained by relating the power generated by the actuators and the power
consumed by the load. From eq.(9.102a),

b =Kt

where K is the Jacobian of the manipulator given in eq.(9.102b). Under static, conservative conditions,
the power delivered by the actuators equals that developed by the load, i.e., II, = II}, where

II, = b’
HL = tTW

with b being the vector of actuated joint rates, T the vector of actuated joint torques, t the twist of
the moving platform, and w the wrench acting on the moving platform. Then,

blr=tTw
tTKTr =t"w
which is valid for every possible motion, i.e., for every possible twist t, and hence, the above equation

leads to
w=KTr
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