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ABSTRACT
The classic Burmester problem aims at finding the geometric parameters of a planar four-bar
linkage whose coupler link attains a prescribed set of finitely separated poses. The solution
proposed is claimed to be comprehensive because it (a) includes all four types of dyads-RR
(revolute-revolute), PR (prismatic-revolute), RP and PP-and (b) gives due consideration to
the numerics behind the solution. A PR dyad is treated as a RR dyad with its fixed joint
centre at infinity, similar interpretations applying to RP and PP dyads. The paper includes
the synthesis of planar four-bar linkages in its full generality, that of dyads with P joints
being given the utmost attention. Finally, the underlying numerics receives the attention
seldom found in the literature on the subj ect, our main concern being numerical robustness.

UNE SOLUTION EXHAUSTIVE AU PROBLEME
CLASSIQUE DE BURMESTER

RESUME
Le probleme classique de Burmester porte sur Ie calcul des parametres geometriques d'un
mecanisme a quatre barres articulees dont la bide atteint un ensemble de situations a
separation finie. La solution proposee est dite exhaustive parce qu'elle (a) inclut les quatre
types de dyades-RR (rotoYde-rotoYde), PR (prismatique-rotoYde), RP et PP-et (b) traite de
fac;on approfondie les aspects numeriques sous-jacents. Vne dyade PR est traitee comme une
dyade RR dont Ie centre de l'articulation fixe se trouve a l'infini, les dyades RP et PP
admettant des interpretations similaires. Dans cette communication, les auteurs traitent la
synthese des mecanismes a quatre barres articulees dans toute sa generalite, tout
particulierement celIe menant a des articulations P. Enfin, les aspects numeriques sous­
jacents de ce probleme, tres rarement traites dans la litterature, rec;oivent ici une attention
particuliere, visant surtout la robustesse des procedures de calcul.
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1 Introduction
The Burmester problem aims at finding the geometric parameters of a four-bar linkage for a prescribed
set of finitely separated posesl

. It is well known that a RR dyad2 can be synthesized exactly for up to
five prescribed poses. The synthesis problem discussed here pertains to both four and five poses. The
case of one PR dyad was outlined in [3].

The four-pose problem is known to admit infinitely many solutions, each solution dyad being given
by a pair of corresponding cubics, the centrepoint and the circlepoint curves3. The five-pose problem, on
the other hand, is known to lead to the solution of a quartic equation, and hence, admits none, two or
four real dyads [1]. Extensive research has been reported on the solution of the Burmester problem with
different approaches. Bottema and Roth [4]' Hunt [5] and McCarthy [6] solved the five-pose problem by
intersecting two centrepoint curves of two four-pose problems for two subsets of four poses out of the
given five-pose set, to obtain the centrepoints. Beyer [7] and Lichtenheldt [8] reported a method based on
projective geometry, while Modler [9, 10, 11, 12J investigated various special cases. Sandor and Erdman
applied complex numbers [13]; Ravani and Roth [14] and Hayes and Zsombor-Murray [15], in turn, solved
the problem via the kinematic mapping. Schriicker et al. [16] applied the kinematic mapping to detect
the branch defect in the synthesis of four-bar linkages. Recently, Brunnthaler et al. [17] provided solutions
to PR and RR dyad-type determination and dimensional synthesis for the five-pose problem, by means
of the kinematic mapping. Furthermore, the Burmester problem is also studied for spatial mechanisms
[18]. Except for the kinematic-mapping approach, all foregoing works rely on the location of the poles of
the various displacements, which lie at infinity in the presence of a pure translation, and hence, is bound
to introduce singularities in this approach. More recently, the authors reported on a formulation that
accounts for dyads with one P joint, and illustrated their procedure with the synthesis of one PR dyad
[3]. Furthermore, to the authors' knowledge, the four-bar linkage synthesis problem with at least one P
dyad is not included in commercial design software, such as LINCAGES [19], which provides for at most
four-pose synthesis [20].

In its full generality, the Burmester problem can be stated, with reference to Fig. 1, as: A rigid body,
attached to the coupler link of a four-bar linkage, is to be guided through a discrete set of m poses, given
by {rj, OJ}O', starting with a reference pose labeled 0, where rj is the position vector of a landmark point
R of the body at the jth pose and OJ is the corresponding angle of a line of the body, as depicted in Fig. 1.
The problem consists in finding the joint centres Ao and B that define the BAoR dyad of the guiding
four-bar linkage, dyad B* ADR being determined likewise. Given that Ao and AD describe circles centred
at Band B*, respectively, the former are termed the circlepoints, the latter the centrepoints of the dyads.

In the balance of this paper we will develop a general synthesis procedure for four and five poses,
applicable to problems admitting either a RR dyad or one dyad with at least one P joint. Such dyads can
always be found for the four-pose problem, the conditions for the occurrence of the same dyads in terms
of the prescribed set of poses being derived for the five-pose case. A synthesis method, for the same case,
is developed by resorting to the geometric conditions for the existence of these dyads. Furthermore, the
approach followed here relies on the notion of poles4 for data-conditioning purposes only, which should
make the derivations more geometrically significant. Data-conditioning is a key issue in the numerics
underlying the solution proposed here. Other related items are redundancy and least-square filtering.
These features aim at producing robust, reliable solutions.

2 Determination of RR Dyads
We start with the synthesis of the four-bar linkage shown in Fig. 1, using Xo-Yo as the reference coordinate
frame throughout the paper. Under the usual rigid-body assumption, the synthesis equation is readily
derived:

II (rj - b) + Qjao 11 2 = Ilao - bl1
2

,
~

aj-b

for j = 1, ... ,m (la)

l Burmester: "Are there any points in a rigid body whose corresponding positions lies on a circle of the fixed plane for the
four arbitrarily prescribed positions?" [1].

2 A dyad is a well-known concept in the realm of kinematic synthesis, namely, the coupling of two links by means of a lower
kinematic pair [2]. .

3These curves are well known in the literature on the Burmester problem [4]; for' completeness they are recalled below.
4The pole of a finite displacement of a rigid body under planar motion is standard knowledge in this context: This is the

point of the body that remains immovable under the above displacement.
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Figure 1: Two finitely separated poses of a rigid body carried by the coupler link of a four-bar linkage

where ao and b are the position vectors of points Ao and B, the design parameters of the RR dyad, while
Qj denotes the rotation matrix carrying the guided body from pose 0 to pose j, i.e.,

Q = [cos<Pj
J sin <pj

- sin <pj]
cos <pj , (lb)

Upon expansion of Eq. (la) and simplifying the expression thus resulting, we obtain

(2)

where 1 is the 2 x 2 identity matrix, thereby obtaining the synthesis equations allowing us to compute
the design parameters.

In order to find the RR dyad, we shall first eliminate b from Eq. (2), which will be achieved by
rewriting this equation as:

Gz=Om (3a)

where Om is the m-dimensional zero vector, G is a m x 3 matrix linear function of ao, and z is the
three-dimensional array of homogeneous coordinates of B, i.e.,

G= [ gi ]
g;;"

j= l, ... ,m (3b)

By the same token, Eq. (2) is rewritten in the form

Hw=Om (4a)

with H defined as a m x 3 matrix linear function of b, while w is the three-dimensional array of homo­
geneous coordinates of Ao, i.e.,
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(4b)j= 1, ... ,mH == [ hi ]

h?,',

Actually, once ao is available, its numerical value can be substituted into Eq. (2), thereby obtaining a
system of m > 2 equations in b. Therefore, b can be computed directly-as opposed to iteratively-from
Eqs. (2) by linear-equation solving. We suggest to compute ao and b independent from each other in
order to avoid roundoff-error propagation, as a cascaded computation would carry the roundoff error in
the computation of one of these vectors into the computation of the other. This approach is essential to
the robustness of the algorithm described herein.

2.1 Four-Pose Case

When m = 3, both G and Hare 3 x 3 matrices. Since z and w cannot vanish, we must have

K.: det(G) = 0, M: det(H) = ° (5)

the two equations (5) yielding the circlepoint curve K. and the centrepoint curve M of ao and b, respec­
tively; there are thus infinitely many solutions for ao and b of the RR dyads in this case. It is noteworthy
that each row of G is linear in ao, each row of H is linear in b, the two determinants in Eq. (5), and
hence, the two curves in question thus being cubic, a well-known result [4].

2.2 Five-Pose Case

When m = 4, G becomes a 4 x 3 matrix. The condition that z be different from zero leads to the
rank-deficiency of G, and hence, to the singularity of every 3 x 3 submatrix of G, i.e.,

K.j : ~j(ao)=~j(x,y)=det(Gj)=O, forj=I, ... ,4 (6)

where G j is formed by deleting the jth row from G. Each of the four equations (6) defines one curve in
the Xo-Yo plane, thereby leading to the four circlepoint curves K. j corresponding to the three synthesis
equations obtained when deleting the jth equation from the given four in Eq. (2). Their common
intersections yield the real circlepoints of the RR dyad. If no such common intersection occurs, the
problem admits no real solution.

Likewise, the centrepoints of a RR dyad can be found from:

Mj: b.j(b) = b.j(U, v) =det(Hj) =0, forj=I, ... ,4 (7)

where H j is formed by deleting the jth row from H. The four equations thus obtained are functions of
b = [u, v]T, and provide four centrepoint curves Mj, for j = 1, ... ,4. The centrepoints are determined
as the intersections of all four curves Mj. Again, if no common intersections occur, then the problem
admits no real solution.

Therefore, every triplet of synthesis equations (2), out of the given m 2: 4, defines both one centrepoint
and one circlepoint curve.

While algebraically any pair of eqs.(6) suffices to determine ao, for numerical robustness we use all four
equations (6). Upon regarding these four equations in the two unknown components of ao-the Cartesian
coordinates of Ao-as an overdetermined system of four equations in two unknowns, we compute the two
unknowns as the least-square approximation of eqs.(6). A similar rationale applies to Eq.(7) in connection
with the centrepoint B. This way of handling the synthesis equations is at the core of the robustness of
our approach.

3 Synthesis of Linkages with One PR Dyad
From the second of Eqs. (5), we obtain a PR dyad for the four-pose case when the centrepoint of M
goes to infinity. Hence, we may simply compute the asymptote of the cubic curve M, and determine the
P joint from the slope of the asymptote. Computing the asymptotes of a planar curve is equivalent to
finding the points at infinity of the given curve. A novel approach to finding a PR dyad is introduced here,
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that obviates the computation of the asymptotes. To simplify the derivation of the synthesis equations
for PR dyads, we divide both sides of Eq. (2) by the Euclidean norm of h, thus obtaining

T h ( T r;rj ) 1
[~] TIbIT + rj Qjao + -2- TIbIT = 0 , j= 1, ... ,m (8)

-Uj

Furthermore, we define a unit vector f3 as

(9)

When Ilbll --+ 00, the centrepoint B goes to infinity, which leads to a PR dyad, the unit vector f3
giving the direction of the asymptote of every centrepoint curve that arises from every triplet of Eqs. (8).
Moreover, f3 also gives the line of sight of B at infinity, the normal direction to f3 indicating the direction
of the translations allowed by the corresponding P joint.

Under the above condition, the second term of Eq. (8) vanishes. Moreover, upon substitution of
Eq. (9) into Eq. (8), we have u; f3 = 0, where Uj == aj - ao is the displacement of the circlepoint Ao at
the jth pose, i.e.,

Uj = rj - (1- Qj)ao, j = 1, ... ,m (10)

Ir;R:;-;----;-- R~o=O111 r;

Figure 2: Relation between the ith and jth poses and the circlepoints

(11)i.j=I •... ,m,

With reference to Fig. 2, Ui (i = 1, ... , m) is the ith displacement vector of the circlepoint. For a
PR dyad, all m vectors Ui must be parallel. In other words, the cross product of any two displacement
vectors must vanish. However, rather than working with cross products, we simplify the analysis by
resorting to the well-known two-dimensional representation of the cross product. This is based on matrix
E rotating vectors in the plane through 90° ccw. Hence, the parallelism condition between Ui and Uj
can be expressed as

which expands to

!::,.ij = aJ (- EQi - QJE + QJEQi)ao

- (Eri - QJEri - Erj + QfErj)Tao + rJEri = 0 (12)

We develop below all quadratic terms of Eq. (12), those in the first line of this equation. by writing
Qi in the form Qi = Ci1 + siE, in which Si == sin¢i and Ci == COS¢i. Hence,

-a6EQiao = -aJE(Ci1 + siE)ao = -CiaJEao - Sia6E2ao = sillaol12 (13a)

-a6QJEao = -a6ETQjao = aJEQjao = -sjllaol1
2

(13b)

a6QJEQiaO = a6 (Cj 1 - sjE)(CiE + si1)aO = an -(CjSi - SjCi)1 + (SjSi + Cjci)E]ao

= (-CjSi + SjCi)llaol12 = - sin(¢i - ¢j)llaoI12 (13c)
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Notice that the foregoing relations could have been obtained by pure geometric reasoning, as EQi is
a rotation through an angle cPi + 7f/2, given that angles of rotation are additive in planar motion. By
the same token, QTE is a rotation through an angle 7f/2 - cPj, while QfEQi is one through an angle
cPi + 7f /2 - cPj. Moreover, terms of the form a6Eao vanish because E is skew-symmetric.

Further, let Vij = -Eri + QfEri +Erj - QtErj, as appearing in the second line of Eqs. (12), which
are now rewritten as

~ij = (Si - Sj - SiJ) II ao 11
2
+v~ao + rfEri = 0, i, j = 1, ... , m, i =J j (14)

and represent the loci of Ao, of position vector ao, namely, a family of circles {Cij }?,'j=l;i#j, where
SiJ == sin (cPi - cPj). A line £ passing through Ao and parallel to the direction of sliding of the P joint
is shown normal to vector {3 in Fig. 2. Given that P joints have a direction, but no position, the slider
implementing this joint can be placed anywhere on the fixed frame, as long as its sliding direction is
parallel to £. It is common practice to represent the P joint of a PR dyad as a line passing through the
centre of the R joint, but this by no means limits the actual implementation of the joint in question.
Remarks:

1. The foregoing relations have been derived from the condition of the vanishing of the product ufEui
in Eq.(ll). This product can be shown to be identical to the determinant of a 2 x 2 matrix D,
namely,

D=[Uj ud (15)

Obviously, the vanishing of det(D) is equivalent to the linear dependence, and hence, the parallelism
of vectors Ui and Uj'

2. The locus of the centrepoints of a PR dyad, for every pair of parallel unit vectors (Ui, Uj), is a
circle Cij . As one of the anonymous reviewers pointed out, this is a classical result, the circle in
question being the "circle of sliders." Indeed, this circle is derived from geometric arguments in
[21]' although no specific name is given in this reference to the circle. In the same reference, Hall
points out that, in the limit, as the three poses defining that circle become infintesimally separated,
the circle becomes the inflection circle of curvature theory.

3.1 Four-Pose Case

Upfront, notice that a PR dyad always exists in this case, as we have one single centrepoint curve, the
corresponding P joint being equivalent to a R joint with its centre at infinity. This location is given by
the single asymptote of the centrepoint curve. Hence, one single P joint is to be expected here.

In this case we have three displacements {uiH, and hence, three parallelism conditions, namely,
u111u2, u211u3 and u311u1, as given by Eq. (14) for (i, j) E {(I, 2), (2,3), (3, I)}. In principle, two of these
conditions imply the third. However, if U2 happens to vanish, then, while the first two conditions still
hold, the third does not necessarily do so. To guarantee the parallelism condition in any event, we use
the three equations (14).

Now, the three equations at hand represent, each, a circle in the Xo-Yo plane. It is apparent that
we can always find a suitable linear combination of two distinct pairs of the three equations (14) that
will yield, correspondingly, two lines. Hence, the parallelism condition leads to one circle C and two
lines £1 and £2. The geometric interpretation of the problem of finding the point Ao then allows a
straightforward geometric interpretation: the circlepoint sought (a) is the intersection of the two lines
and (b) lies on the circle.
Remarks:

1. If the coefficient of lIaol12 in one of Eqs. (14) vanishes, then the resulting equation is already a line.
A second line is then obtained by a suitable linear combination of the two circle equations, which
will then lead us to the general case.

2. If the same coefficient vanishes in two of Eqs. (14), then we need not look for any linear combination
to obtain the two lines of the general case.

3. If the same coefficient vanishes in the three Eqs. (14), then we have three lines that must be
concurrent at a common point.
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4. The above statement on the existence of one single circle point Ao is best explained by noticing that,
from the plot of the centrepoint curve, its asymptote can be estimated by inspection-a precise
value can be obtained from the equation of the asymptote, of course. If this estimate is plugged
into eq.(8), and the second term of the equation is deleted because, as IIbll -+ 00, this term tends
to zero, we obtain three linear equations in ao. In the absence of roundoff error, only two are
independentS, and hence, determine uniquely ao.

Once ao is obtained, solving for f3 is straightforward6
:

3.2 Five-Pose Case

Eu
f3 = IIEull' (16)

Drawing from the case m = 3, we can conclude that a PR dyad is possible in the case at hand if
and only if the asymptotes of the four centrepoint curves lCi are all parallel. Rather than deriving the
parallelism condition for the asymptotes, we resort to an alternative approach, based on that introduced
in Subsection 3.1.

In this case we have four displacements {u;}1, and hence, six possible pairs (Ui,Uj), for j =I i. It
is noteworthy that the parallelism relation is transitive; e.g., u111u2 and u211u3 => u111u3. Hence, the
number of independent relations reduces to three. However, and within the spirit of robustness, we use
the full six parallelism conditions available.

Similar to the four-pose case, we can always find a suitable linear combination of the first equation
with each of the remaining five equations (14) that will yield, correspondingly, five lines. Hence, the
parallelism conditions lead to one circle C and five lines L1, ... , LS. A geometric interpretation: the
circlepoint Ao sought (a) is the intersection of the five lines and (b) lies on the circle.

A similar discussion for the cases in which the coefficient of lIaol12 in Eq. (14) vanishes is straightfor­
ward, and follows the same line of reasoning as in the four-pose case.

If there is one common point to the five lines and the circle, this point is then the solution Ao sought.
Otherwise, there is no solution. After ao is obtained, f3 can be found from Eq. (16).

3.3 Summary of Results

In the case of three-pose synthesis, the centrepoint of a PR dyad is located on a circle, which is its locus.
In the case of four-pose synthesis, the same centrepoint is found in three circles. If the problem admits
a solution, these circles intersect at one common point, thus yielding one unique solution. In the case of
five poses, we end up with six circles. If the poses obey the parallelism condition, the six circles intersect
at one common point, which thus yields one unique solution for the centrepoint.

4 Synthesis of Linkages with One RP Dyad
This case is handled by means of kinematic inversion, i.e., by exchanging the roles of the fixed and the
coupler links. Although the concept of kinematic inversion is straightforward, its algorithmic implemen­
tation warrants a brief discussion, which is included below.

From the first of Eqs. (5), we can obtain a RP dyad for the four-pose case when the circlepoint of lC
goes to infinity. Hence, we may simply compute the asymptote of the cubic curve lC, and determine the
P joint. However, rather than resorting to the asymptote, we proceed as in the case of the PR dyad. To
this end, we divide both sides of Eq. (2) by Ilaoll, thus obtaining

j = 1, ... ,m (17)

Moreover, we define
ao

Q=--

Ilaoll
(18)

5To account for roundoff error, we recommend to regard the three equations as independent, and compute the unique value
of ao as their least-square approximation.

60ne single vector Uj would suffice. We take the mean value here in order to filter out roundoff error.
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When lIaoli -+ 00, A o goes to infinity, which leads to a RP dyad. Under this condition, the second term
of Eq. (17) vanishes. Upon substitution of Eq. (18) into Eq. (17), we obtain sJ0 = 0, j = 1, ... , m,
where Sj == (QJ - l)b - QJrj. Notice that

QjSj = -rj + (1 - Qj)b

Ro=O

hj

Figure 3: Relation between the jth pose and the centrepoints, for the RP dyad

Upon comparison of QjSj with Uj, as given by Eq. (10), it is apparent that Sj represents the dis­
placement of B as seen from a frame with origin at Rj and fixed to the coupler link. We thus define
b j == b + Sj as the position vector of a point B j , which is the displaced centrepoint as seen from the
coupler link and as depicted in Fig. 3; in this figure, OJ == Qjo. Hence, Bj and B == Bo lie on a line L
fixed to the coupler link that is defined by the centrepoint B and the direction of the P joint. At the
jth pose, this line appears as Lj, which is illustrated in Fig. 3. Also notice that the unit vector 0 has a
fixed direction in the coupler link, but becomes OJ in the Xo-Yo frame of Fig. 1. Vector Sj is thus the
jth displacement vector of the centrepoint in the foregoing kinematic inversion. Similar to the PR dyad,
if all Sj (j = 1, ... , m) are mutually parallel, a RP dyad exists, Le.,

which expands to

i,j = 1, ... ,m, (19)

f ij = b T (1 - Qi)E(l - QJ)b + [(1 - Qi)EQJrj - (1 - Qj )EQ;rifb + r;QiEQJrj = 0 (20)

We develop below the first term of Eq. (20) by writing Qi in the form ci1 + siE. Hence,

b
T (1 - Qi)E(l - QJ)b = b

T
E(l - Ci - Cj + CiCj + sisj)b + b

T
(Si - Sj - SiCj + c;sj)b

= (Si - Sj - SiCj + c;sj)lIbIl2
(21)

Further, let tij = (1 - Qi)EQJrj - (1 - Qj )EQ;ri, as appearing in the second term of Eq. (20),
which is now rewritten as

f ij = (Si - Sj - siJ)lIbl12 + tf;b + r;QiEQJrj = 0, i,j = 1, ... , m, i f= j (22)

and hence, Lj = 0 represents a family of circles as well. Note that different design equations obtained
from the geometry of the RP chain can be found in [4].

4.1 Four-Pose Case

In this case we have three displacements {siH, and hence, three parallelism conditions, namely, sll1s2,
s211s3 and s311s1, as given by Eq. (22) for (i,j) E {(I, 2), (2, 3), (3, I)}. In principle, two ofthese conditions
imply the third. However, if S2 happens to vanish, then, while the first two conditions still hold, the
third does not necessarily do so. To guarantee the parallelism conditions in any event, we use the three
equations (22), similar to Subsection 3.1
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Now, the three equations at hand represent, each, a circle in the Xo-Yo plane. It is apparent that we
can always find a suitable linear combination of two distinct pairs of the three equations (22) that will
yield, correspondingly, two lines. Hence, the parallelism condition leads to one circle C and two lines 121

and 122 . The geometric interpretation of the problem of finding the point B then allows a straightforward
geometric interpretation: the circlepoint sought (a) is the intersection of the two lines and (b) lies on the
circle. Similar remarks to those for PR dyads apply in this case, which need not be repeated here.

Once b is found, solving for 0 is straightforward:

Es
0= IIEslI'

with a similar remark to that in footnote 6.

4.2 Five-Pose Case

• 1 ~
s =;;;: LSj

j=l

(23)

Similar to Subsection 3.2, a RP dyad is possible if and only if the asymptotes of all four circlepoint curves
Mi are parallel. Again, rather than deriving the parallelism condition for the four asymptotes, a rather
lengthy derivation, we resort to the alternative approach introduced for the PR dyad.

In this case we have four displacements {Si}i, and hence, six parallelism conditions, as given by
Eq. (22) for (i, j) E {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)}. As pointed out in previous cases, in order to
guarantee the parallelism conditions, we use the six equations (22).

As discussed in Subsection 3.2, we can always find a suitable linear combination of the first equation
with each of the remaining five equations (22) that will yield, correspondingly, five lines. Hence, the
parallelism conditions lead to one circle C and five lines 12 1 , ••• , 125. A geometric interpretation follows:
the circlepoint B sought (a) is the intersection of the five lines and (b) lies on the circle.

If there is one common point to the five lines and the circles, this point is then the solution B sought.
Otherwise, there is no solution. After b is obtained, 0 can be found from Eq. (23).

5 Synthesis of Linkages with One PP Dyad
A PP dyad is a RR dyad with Ao and B at infinity. In order to find the condition for PP dyads to be
solutions to the Burmester problem, we substitute Eqs. (9) and (18) into Eq. (2) and divide its two sides
by llaolillbli. Under the assumption that llaoll-> 00 and IIbll -> 00, we obtain

j= 1, ... ,m (24)

Now, the conditions on the given poses for the problem to admit one PP dyad are derived upon
substituting in the foregoing equation Qj by cjl + sjE, as we did when deriving Eqs.(13). With this
substitution, Eqs.(24) expand to

cos')'-cOS¢jcos')'-sin¢jsin')'=O, j=1, ... ,m (25)

where')' is the angle between 0 and /3-Le., between the directions of the two P joints at the reference
posture of the mechanism, which is defined as that corresponding to the reference pose 0 of the coupler
link-with cos')' = /3T 0 and sin')' = /3TEo. Equation (25) can be simplified to

cos')' = cos(¢j - ')') ,

Hence, the conditions sought are readily derived as

j= 1, ... ,m (26)

¢>j = 0 or ¢>j = 2')' , j = 1, ... ,m (27)

Both solutions verify the synthesis equations (24). The geometric meaning of Eq. (24) is that the
angle between 0 and /3 at the reference pose equals that between QjO and /3, the latter being the
angle between the directions of the two P joints at the jth pose. Moreover, ¢>j = 0 makes Qj the
identity matrix, which means that the jth displacement is a translation. Condition ¢>j = 2')' implies a
transformation of the pair (0, /3) into a pair (0, /3) that includes exactly the same angle ')', but this
pair is a reflection of (0, /3). The second condition is thus discarded, as reflections are impossible with
planar rotations. Therefore, the only feasible condition for the existence of a PP dyad to be possible is
¢>j = 0, for j = 1, ... , m, which implies that the m prescribed rigid-body displacements are translations.
Therefore,
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The condition for the existence of a PP dyad is that the m prescribed displacements be trans­
lations.

6 Numerical Implementation

6.1 Data-Conditioning
Due to roundoff error, the computed solutions of Eqs. (14) and (22) may not be verified within a rea­
sonable tolerance, which then may suggest that a P joint does not exist. Roundoff error in the data is
bound to be amplified because of the presence of dimensions. To reduce the effect of data-dimension on
roundoff error, dimensionless displacement vectors are desirable. To this end, we introduce a suitable
normalization, as described below.

(a) (b)

Figure 4: Illustration of vector normalization: (a) determination of the pole Pi; (b) determination
of the pole centroid

As depicted in Fig. 4a, the displacement from the reference pose to the ith pose can be considered
a pure rotation about the pole Pi. Distances {d;}]" between Pi and the centroid C of {Pi}]" are first
obtained. The rms value drms of these distances is considered as a characteristic length for normalization,
the displacement vectors being normalized as

with

ri
Pi == drms' i = 1, ... ,m (28)

drms = ~~ d2 , di =11 Pi - c II,
m 0 '

i=1

(29)

To find pi, we refer to Fig. 4a, whence,

ri I E­Pi = 2+ i ri, i = 1, ... ,m (30a)

where, again, we have used the well-known expression for the two-dimensional form of the cross product
via matrix E, with Ii defined as

I. = II ri II A. ..J. 0
,- 2tan(<pi/2)' 'f'i-r

(30b)

Remarks:

1. Should the set of given poses involve one pure translation, say at the jth pose, then Pj goes to
infinity, but <Pj = 0 and all the points of the rigid body in question undergo identical translations
tj. In this case, lj -+ 00 and Eqs. (30a & b) would not apply. In order to cope with this case, we
declare dj of Eqs. (29) to be simply
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2. Should all the m displacements be rotations about one and the same point, this pathological case
can be readily detected from the vanishing of drms , to a previously established numerical tolerance.
In this case, a four-bar linkage is simply not needed, the m displacements being reachable by means
of one single R joint centred at the common pole.

3. A characteristic length, to be worth the name, should be an intrinsic property of the physical
phenomenon under study. Other than this, there is no specific criterion to define a characteristic
quantity in physics7

. In our case, the "phenomenon" is simply a set of displacements in the plane.
Our claim that this definition is sound is based on the frame-invariance of the quantities involved:
the poles or a combination of poles and translation norms, as the case may be; the centroid of the
finite poles; and the rms value of the distances from all finite poles to their centroid.

4. The case may be that the magnitude of the translations involved are various orders of magnitude
the distances di in Fig. 4b. The reason why this case arises is an unlucky choice of the point R used
to describe the various poses: this point happens to lie "too far" from the region in which the set
of poles is concentrated. This case may be detected by a small, yet above the working tolerance,
value of drms when compared to the order of magnitude of the IIrj II translation norms. An obvious
solution to this pathological case is to change the given reference point R to a new one, closer to
the said region. How "close" is a matter of engineering judgment. We would recommend to look for
values of Ilrj II of the same order of magnitude as drms . We believe that there must be an optimum
location of the point R within the body under guidance that will yield an optimally conditioned set
of data values. This issue, however, deserves special attention, and is hence left for further study.

6.2 Solution

In the geometric interpretation of the parallelism conditions, we obtain one circle and two or five lines
by manipulating the three or, correspondingly, six circle equations. However, it is not recommended
to numerically solve these equations, because of the nature of the operations involved. Indeed, these
operations require divisions by the leading coefficients of Eq. (14) or, correspondingly, (22). The leading
coefficients are sums and differences of quantities whose absolute values are not greater than unity. The
risk of these coefficients attaining unacceptably small absolute values should not be neglected, divisions
by such numbers being known to lead to numerical catastrophes [22]. A numerically robust solution
should be based on the original circle equations, as illustrated with the examples below.

A key step in the solution procedure proposed here is the computation, in the five-pose case, of the
centrepoint coordinates from the four cubic equations (6) or the circlepoint coordinates from the four
cubic equations (7). Either of these equations represents an overdetermined system of four nonlinear
equations in only two unknowns. The usual approach to solving this system consists in picking up
arbitrarily any two of the four equations and solve them with a nonlinear-equation solver. While this
approach will work in well-conditioned cases, the risk of ill-conditioning should not be overlooked. By
ill-conditioning in the case of nonlinear equations we mean a large condition number of the Jacobian
matrix of the nonlinear system, evaluated at the solution. It is shown in [23] that the condition number
of the Jacobian matrix of a nonlinear system of two equations in two unknowns, which define two curves
in the plane of those unknowns, is given by 1/1 sin fl, where 'Y is the angle made by the tangents to the
two curves at the intersection point. Hence, if at least two cubics out of the four intersect at a small angle
f' and the designer happens to choose the equations associated with those two curves, the computed
solution will be corrupted with an inadmissibly high roundoff error.

Notice that the foregoing discussion applies to cases in which a RR dyad is being sought. In the
presence of a dyad with one P joint, the same arguments hold, but this time as applicable to the solution
of the overdetermined system (14) or, correspondingly, of system (22).

We propose here to cope with ill-conditioning by using all four curves, within a nonlinear least-square
approach. Obviously, in the presence of an intrinsically ill-conditioned problem, all four curves intersect
at small angles. In this case, even a least-square approach will not be able to handle the inadmissibly
large roundoff error in the computed results.

Finally, the process of computing the least-square approximation to an overdetermined nonlinear
system of equations is iterative. If the data are not conditioned as suggested in Subsection 6.1, there is
a risk of computing intermediate results, i.e., intermediate error values to that approximation, that are

7For example, in studying turbulence in ducts of arbitrary cross section, a characteristic length of the duct is usually defined
in terms of the dimensions of the cross section when calculating the Reynolds number. This length can be the equivalent radius
of the circular cross section with the same area as the given one, which amounts to the rms value of the distances of all the
points on the perimeter from the centroid of the cross section.
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Table 1: Five prescribed poses for rigid-body guidance

j rj [mm]

o [O.O,O.O]T

1 [-3.1182,0.3225]T

2 [-8.6373, -0.9378]T

3 [-14.5056, -2.8354]T

4 [-19.4033, -5.1301]T

0.0

-14.523

-21.870

-18.945

-7.097

Table 2: Five dimensionless poses

j Pj </>j [deg]

0 [O.O,O.O]T 0.0

1 [-0.052,0.005]T -14.523

2 [-0.144, -0.015]T -21.870

3 [-0.242, -0.047]T -18.945

4 [-0.323, -0.085]T -7.097

either inadmissibly large or misleadingly small. Data-conditioning is intended to prevent such problematic
situations.

7 Numerical Examples
We provide two examples to illustrate the foregoing synthesis procedure. Prior to embarking on the
numerical solution of the synthesis equations, we normalize the equations to render them dimensionless,
thereby limiting roundoff-error amplification.

7.1 Example 1

The first example consists of the synthesis of a four-bar linkage guiding its coupler link through the five
poses of Table 1. The four cubic centrepoint curves with their asymptotes are shown in Fig. 5; we can
see that these asymptotes are parallel to each other, and hence, the problem admits one PR dyad. The
six circle equations (14) are displayed below:

.6.12 = -0.0061(x2 + y2) - 0.9513x - 0.4069y + 5.7107

.6.13 = -0.0032(x2 + y2) - 2.5173x - 1.1104y + 13.521

.6.14 = -0.0020(x2 + y2) + 4.3143x + 1.9225y - 22.256

.6.23 =0.0032(x2 + l) - 2.4459x - 1.3278y + 10.886

.6.24 =0.0060(x2 + y2) - 5.7985x - 3.1254y + 26.113

.6.34 =0.0042(x2 + y2) - 4.2511x - 2.2551y + 19.397

(32a)

(32b)

(32c)

(32d)

(32e)

(32f)

their corresponding circles having one common point, as shown in Fig. 6, which indicates that a PR dyad
is possible.

Once the poses are data-conditioned by the method reported in Subsection 6.1, we have the set of
dimensionless poses given in Table 2, with the characteristic length drms = 59.92 mm.

Furthermore, the coordinates of the common point of Fig. 6 yield the unique solution ao. With ao
known, (3 is determined from Eq. (16), the results being recorded in the upper part of Table 3.
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Figure 5: Four cubic centrepoint curves with their asymptotes parallel to each other
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Figure 6: Curve plots to determine the circlerpoint of a PR dyad: (a) the big picture; (b) a
zoom-in around the common intersection of all circles
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Figure 7: Curve plots to find the centrepoint of a RR dyad, a zoom-in of Fig. 5

Table 3' Synthesis of the four-bar linkage of Example 1
ao [mm] {3

PR dyad [8.048, -6.372]T [-0.287,0.957]T
ao [mm] b[mm]

RR dyad #1 [-11.729, -9.350jT [-20.921, -17.063]T

#2 [9.175, -1.512]T [-15.694, 42.678]T

#3 [23.799,9.406]T [12.964,9.007]T
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Figure 8: The RRRP linkage synthesized for the five prescribed poses of Table 1

Yo
10

-10

-20

-30 -20 -10 10 20 X o 30

Figure 9: The RRRR four-bar linkage synthesized for the five prescribed poses of Table 1
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Table 4: Five prescribed poses for Example 2

j rj [mm] cPj [deg]

0 [O.O,O.ojT 0.0

1 [-0.4948,0.0209]T 11.0981

2 [-0.9600, -0.2280]T 22.9064

3 [-1.2645, -0.6955]T 34.6220

4 [-1.3178, -1.2750V 45.9544

Table 5: Five dimensionless poses for Example 2

j Pj cPj [deg]

0 [O.O,O.ojT 0.0

1 [-1.0603,0.0449]T 11.0981

2 [-2.0571, -0.4885]T 22.9064

3 [-2.7095, -1.4903V 34.6220

4 [-2.8239, -2.7321jT 45.9544

In determining a RR dyad to complete the linkage, the solution of the set of equations (6) and (7) yields
the values of ao and b, as listed in Table 3. These three solutions correspond to the three intersections
in Fig. 5 and indicated in the zoom-out of Fig. 7. A synthesized mechanism, based on solution # 1, is
depicted in Fig. 8, where A01 and B1 are the circlepoint and centrepoint of the RR dyad, respectively,
while A02 is the circlepoint of the PR dyad. Furthermore, the locations of A02 and B 1 are also displayed
in Figs. 6(b) and 7, respectively. Another mechanism, with two RR dyads, derived from solutions # 1
and # 3, is depicted in Fig. 9.

Apparently, all five prescribed poses are located on one of the two branches of the coupler curve.
Therefore, this mechanism is free of branch-defect, with all five poses visited by the coupler link.

The synthesis error, i.e., the least-square error in solving the overdetermined nonlinear system of
Eqs. (14) in this example, using the dimensionless poses with data-conditioning, is 2.3 x 10-12

, while
the error obtained by the poses without data-conditioning is 2.7 x 10-5 mm. We normalize this error
by dividing it by the characteristic length, thereby obtaining the dimensionless synthesis error without
data-conditioning as 7.5 x 10-9

. The latter is apparently three orders of magnitude higher than the
former, thereby making evident the effect of data-conditioning.

7.2 Example 2

In this example, the synthesis of a four-bar linkage with a RP dyad, guiding its coupler link through the
five poses of Table 4, is pursued. Similar to Example 1, the data are first conditioned by means of the
characteristic length drms = 0.467 mm, as given in Table 5. The results of this example are recorded in
Table 6.

A mechanism was synthesized using solution # 1 for the RR dyad, the RP dyad obtained from the
upper part of Table 6. The linkage is depicted in Fig. 10.

8 Conclusions

In this paper the classic Burmester problem is studied by addressing the determination of all four types
of dyads, namely, RR, PR, RP and PP, of planar four-bar linkages. A general method for the synthesis of
four-bar linkages with four or five prescribed poses is developed. A first contribution of the paper is an
alternative approach to the formulation of the Burmester problem, which is coordinate-free and based
on an independent computation of the circlepoints and the centrepoints, so as to enhance the robustness
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Table 6' Solutions of Example 2
a b[mm]

RP dyad [0.642,0.766]T [1.621,0.34481jT

ao [mm] b [mm]

RR dyad #1 [0.50,OjT [0.029, -0.882jT

#2 [-2.773, -3.054]T [0.933, -2.126]T

#3 [1.991, -7.287]T [-9.654, 12.437]T

1o-1
2 Xo

Figure 10: The linkage synthesized for the five prescribed poses

of the solution. As a second contribution, a method to detect the occurrence of PR, RP and PP dyads,
which obviates the need of asymptote-derivation, as well as the numerical determination of these dyads,
is proposed. A third contribution lies in considering the numerics behind the underlying computations.
We derived a robust procedure to find the unique orientation of the prismatic joint. We proved that
either the circlepoint of a PR dyad or the centrepoint of a RP dyad is located at the common intersection
of six circles in the five-pose case-for the four-pose case, a PR or RP dyad always exists. Moreover, a
data-conditioning method was reported here to enhance the accuracy of results.
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