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Chapter 1

Introduction to Kinematic Synthesis

1.1 The Role of Kinematic Synthesis in Mechanical

Design

When designing a mechanical system, whether a structure or a machine, the first step is

to produce a conceptual design that will meet the design specifications. Broadly speaking,

the main function of a structure is to be capable of withstanding the anticipated loads

without exhibiting major deformations that would hamper the integrity of the structure

or the safety of its occupants. Likewise, the main function of a machine is to be able

to perform the intended task, usually involving finite displacements of its parts, without

major deformations that would hamper the integrity of the machine or the safety of its

users.

To be true, mechanical systems exhibit, more often that not, features of both structures

and mechanisms. Such examples occur in transportation machinery, such as landing gears

in aircraft. Figure 1.1 illustrates the structure of the deployed landing gear of the Airbus

A300-600 aircraft. In this posture, the landing gear works as a structure, to withstand

not only the static load of the airplane on the tarmac, but also the dynamic load exerted

by the unavoidable impact upon landing.

Transportation machinery is a domain in which mechanisms, especially linkages—

the focus of this course—plays a major role. Shown in Fig. 1.2 is a depiction of the

powertrain of a Class-C Mercedes Benz. A key subsystem of the system in question—

the powertrain—is the steering linkage, whose main components are visible in the figure.

Again, this mechanism plays the dual role of a structure and a machine, as its function

is not only to properly orient the planes of the front wheels upon turning, but also to

support the wheels and the loads transmitted by the ground onto the vehicle frame.

In the above preamble we have introduced concepts of engineering design as pertaining

to mechanical systems at large. Of these, we have focused on structures and machines. In

fact, design, together with manufacturing, is the raison d’être of engineers, all disciplines
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Figure 1.1: The landing gear of an Airbus A300-600

known as engineering science, namely, mechanics, thermofluids and numerics, to name

but just the major branches, playing a supporting role in the production process. For this

reason it is necessary to dwell on this concept. Because of its importance, the engineering

design process has been the subject of study over the centuries, starting with Marcus

Vitruvius Polio (ca. 75 BCE–ca. 15 CE) and his 10-volume work under the title De

Architectura (Vitruvius, 28 B.C.E.). Modern engineering design theory owes its origins,

to a great extent, to Franz Reuleaux (1829–1905), who first proposed a grammar to

describe the kinematic chain of a machine (Moon, 2003). A modern model of the design

process, due to French (1992), is depicted in Fig. 1.3. In this model, four stages are

distinguished: a) analysis of the problem; b) conceptual design; c) embodiment design;

and d) detailing, or detailed design.

In the first stage, analysis of the problem, the functions required from the object under

design, in our case, a machine, are clearly defined, in general, but precise terms. At this

stage, the task of the design engineer is to produce a) design requirements, in terms as

general as possible, in order to avoid biasing the design team towards a specific layout of

the solution, and b) design specifications, so as to satisfy the rather vaguely spelled-out

needs of the client.

In the second stage, the design team produces a set of design variants, as rich as
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Figure 1.2: A view of the powertrain of a C-Class Mercedes Benz

possible, after several sessions, structured or unstructured, which are part of the creative

aspect of the design process.

In the third stage, the design team focuses on a reduced set of design variants, those

having the highest likelihood of succeeding in satisfying the client’s demands within the

resources—budget, milestones, technology—set at the disposal of the design team. In this

stage, the task of the team is to produce a preliminary model of the design solution, with

a clear identification of the main parameters defining a specific design variant. Further,

a parametric model of each of the short-listed candidate variants is produced, which is

then subject to optimization with the aim of finding the specific fundamental dimensions

that either maximize a profit or minimize a cost of the design solution, or even do both

at the same time, in a process that is known as multiobjective optimization. Design

optimization is thus a key activity in the embodiment stage, which makes this stage

iterative, as optimization requires several rounds of assignment of numerical values to the

parameters of the mathematical model; evaluating the performance of the design solution

thus resulting; improving this performance, when there is still room for improvement; and

stopping when no more improvement is possible.

The final stage involves materials selection, manufacturing issues, and production-cost

analysis. As a result of this stage, a set of manufacturing drawings is produced that is

then sent out for prototype manufacturing, when the design job so requires, or directly

to production.

Kinematic synthesis plays a key role in the first three stages of the foregoing design

process, as pertaining to machine design. In fact, in the first stage, analysis of the prob-

lem, more than kinematic synthesis, what is required is kinematics knowledge, as design

functions and specifications are to be understood by any engineer trained in the discipline.

It is in the second and third stages where kinematic synthesis plays a fundamental role,

as explained below.

As pertaining to machine design or, more specifically, to mechanism design, Hartenberg

and Denavit (1964) proposed three phases of kinematic synthesis: a) type synthesis; b)

number synthesis; and c) dimensional synthesis. Both type and number syntheses pertain
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Figure 1.3: French’s model of the design process

to the conceptual design phase, as the former refers to choosing the type of mechanism to

perform the required function, namely, a linkage, a cam-follower mechanism, a belt-pulley

transmission, or a gear train, for example. Number synthesis refers to the numbers of

links and joints in a linkage, along with the type of joints to be used—kinematic joints,

or lower kinematic pairs, are studied in Ch. 2.

The conceptual phase of the design process is fundamental. Moreover, this phase is

the one that has posed the major challenges to those attempting to automate the design

process. In the realm of kinematic synthesis, we introduce a methodology, termed quali-

tative synthesis, in Ch. 2, in an attempt to provide a structure to the rather unstructured

stage of conceptual mechanism design. Qualitative synthesis focuses on the synthesis of

linkages.

Chapters 3–5 are devoted to what Hartenberg and Denavit call dimensional synthesis,

as the main objective here is to find the dimensions defining the geometry of the various

links and joints of the kinematic chain underlying the mechanism under design. In these

chapters, we assume that a preliminary layout of the conceptual design—obtained as a

result of the type and number syntheses of the kinematic chain at hand—is available, our

main job being to contribute to the production of the embodiment of this design. The

design embodiment is the realization of a kinematic chain as a table of what is known as
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the Denavit-Hartenberg parameters—to be introduced in Ch. 3—that define uniquely the

kinematic chain at hand.

Going back to the more general machine-design process, dimensioning involves two

phases: functional dimensioning and mechanical dimensioning. The former is previous to

the latter, and includes the determination of the fundamental dimensions of the machine,

prior to the shaping of all its parts. It is the functional dimensioning where kinematic

synthesis plays a major role. Mechanical dimensioning pertains to the dimensioning of the

machine elements for stress, strength, heat capacity, and dynamic-response requirements.

Before we embark on the details of the course, a review of the glossary is in order.

1.2 Glossary

Some general definitions are first recalled:

• Kinematics: The branch of mechanics that studies motion, independent of its rela-

tion with forces.

• Statics: The branch of mechanics that studies the equilibrium of forces and moments

acting on particles, rigid bodies, and flexible bodies.

• Kinematic constraint: The physical prevention of relative motion—rotation and

translation—between two bodies in one or more directions. The term also denotes

the algebraic or differential relations representing the physical constraint.

• Kinetostatics: The branch of mechanics that studies the interplay of forces and

moments with motion variables under static, conservative conditions.

The concepts of machine and mechanism are frequently interchanged as if they were

equivalent, but they are not. We give below some definitions from various sources, with

added comments:

Machine

• Here is an account of the definitions of machine, taken from (Dudiţă et al., 1987).

Different definitions of machine have been given by scholars for more than two

millennia, starting with Vitruvius in 28 BCE, namely,

– A machine is a combination (system, assemblage) of moving material bodies

(Vitruvius, 28 B.C.E.; Hachette, 1811; Borgnis, 1818; Beck, 1859; Reuleaux,

1875; Koenigs, 1901).

– A machine is generally composed of three parts: a motor part, a transmission

part, and an execution part (Euler, 1753; Bogolyubov, 1976).
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– A machine produces mechanical work, or performs productive operations, ac-

tions, or effects (Vitruvius, 28 B.C.; Poncelet, 1824; Reuleaux, 1900; Koenigs,

1901; Bogolyubov, 1976).

– A machine transforms or transmits forces (Vitruvius, 28 B.C.; Leupold, 1724;

Euler, 1753; Bogolyubov,1976; Reuleaux, 1900; Koenigs, 1901).

– A machine is characterized by deterministic motions (Hachette, 1811; Leupold,

1724; Reuleaux, 1875; Borgnis, 1818; Reuleaux, 1900).

– A machine is an artifact (Leupold, 1724).

• Some dictionary definitions:

– Webster’s Collegiate Dictionary (2003, on-line):

(archaic): a constructed thing whether material or immaterial;

an assemblage of parts that transmit forces, motion, and energy one to another

in a predetermined manner;

an instrument (as a lever) designed to transmit or modify the application of

power, force, or motion;

a mechanically, electrically, or electronically operated device for performing a

task (a calculating machine, a card-sorting machine.)

Comment: comprehensive definitions when considered as a whole

– The Concise Oxford Dictionary (1995):

An apparatus for applying mechanical power, having several parts, each with

a definite function

Comment: leaves computers out

– The Random House College Dictionary (1979):

An apparatus consisting of interrelated parts with separate functions, used in

the performance of some kind of work.

Comment: ditto

– Le Petit Robert (Robert, 1994):

Any system in which a specific correspondence exists between an input form

of energy or information and the corresponding ones at the output (loosely

translated from French).

Comment: a comprehensive definition, that includes computers

• An apparatus for transformation of power, materials, and information to substitute

or simplify physical or intellectual work (Frolov, 1987).

Comment: a comprehensive definition, that includes computers
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• Mechanical system that performs a specific task, such as the forming of material,

and the transference and transformation of motion and force (IFToMM PC SoT,

2003).

Comment: leaves computers out

Mechanism

• A piece of machinery (Merriam Webster’s Collegiate Dictionary, 2003, on-line).

Comment: too vague

• Definitions in (IFToMM PC SoT, 2003):

– System of bodies designed to convert motions of, and forces on, one or several

bodies into constrained motions of, and forces on, other bodies.

Comment: Could be much terser and more informative

– Kinematic chain with one of its components (link or joint) connected to the

frame.

Comment: confuses mechanism with its kinematic chain

• Structure, adaptation of parts of machine; system of mutually adapted parts working

together (as) in machine (The Concise Oxford Dictionary, 1995).

• An assembly of moving parts performing a complete functional motion (Stein, 1979).

• A combination layout of pieces or elements, assembled with the goal of (producing)

an operation as a unit (Loosely translated from (Robert, 1994).

Comment: In all above definitions, the concept of goal or task is present

Linkage

• Definitions in Merriam Webster’s Collegiate Dictionary (2003, on-line):

– A system of links.

Comment: concise and comprehensive

– a system of links or bars which are jointed together and more or less constrained

by having a link or links fixed and by means of which straight or nearly straight

lines or other point paths may be traced.

Comment: unnecessarily cumbersome and limited to path-generating linkages

• Kinematic chain whose joints are equivalent to lower pairs only (IFToMM PC on

SoT, 2003).

Comment: confuses linkage with its kinematic chain
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Rigid Body

A continuum whose points remain equidistant under any possible motion.

Rigid-body Pose

The position of one landmark point of the body and the orientation of a coordinate

frame fixed to the body with respect to a reference frame.

Rigid-body Twist

The velocity of one landmark point of the body and the angular velocity of the body.

Mechanical-System Posture

The set of link poses allowed by the kinematic constraints imposed by the various

kinematic pairs. The concept also applies to humans and other living organisms.

Mechanical-System Gesture

The set of link twists allowed by the kinematic constraints imposed by the kinematic

pairs. The concept also applies to humans—e.g., the surgical gesture—and other living

organisms.

1.3 Kinematic Analysis vs. Kinematic Synthesis

The fundamental problems in mechanism kinematics can be broadly classified into:

(a) Analysis: Given a linkage, find the motion of its links, for a prescribed motion of

its input joint(s).

(b) Synthesis: Given a task to be produced by a linkage, find the linkage that best

performs the task.

The task at hand can be one of three, in this context:

(a) Function generation: the motion of the output joint(s) is prescribed as a function

of the motion variable(s) of the input joint(s);

(b) Motion generation (a.k.a. rigid-body guidance): the motion of the output link(s)

is prescribed in terms of the motion variable(s) of the input link(s) or joint(s);

(c) Path generation: the path traced by a point on a floating link—a link not anchored

to the mechanism frame—is prescribed as a curve, possibly timed with the motion

of the input joint(s).

Kinematic synthesis being a quite broad concept, it involves various aspects (Harten-

berg and Denavit, 1964):

• Type synthesis: Given a task to be produced by a mechanism, find the type that will

best perform it, e.g., a linkage, a cam mechanism, a gear train, or a combination

thereof.
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• Number synthesis: Given a task to be produced by a mechanism of a given type,

find the number of links and joints that will best execute the task.

• Dimensional synthesis: Given a task to be produced by a mechanism, find its rele-

vant geometric parameters.

In our case, we treat both type and number synthesis under one single umbrella,

qualitative synthesis ; for consistency, dimensional synthesis will be termed quantitative

synthesis. There are, moreover, two types of dimensional synthesis:

1. Exact synthesis: Number of linkage parameters available is sufficient to pro-

duce exactly the prescribed motion. Problem leads to—linear or, most frequently,

nonlinear—equation solving .

2. Approximate synthesis: Number of linkage parameters available is not sufficient

to produce exactly the prescribed motion. Optimum dimensions are sought that

approximate the prescribed motion with the minimum error. Problem leads to

mathematical programming (optimization)

Furthermore, quantitative synthesis can be achieved, with a variable degree of success,

via one of three types of methods:

• Graphical: Under this type, the geometric relations of the task at hand are manip-

ulated directly as such. In the pre-comouter era this was done by means of drafting

instruments alone. Nowadays, the drafting instruments have been replaced by CAD

software. Although this tool has expanded significantly the capabilities of geomet-

ric methods, these are still limited to the primitives in the menu of CAD software

packages.

• Algebraic: In these methods, the geometric relations in question are manipulated

by algebraic means of computer-algebra software, to produce the desired linkage

parameters as the solutions to the underlying synthesis equations. It is noteworthy

that, by virtue of the Theorems of Kempe (1870) and Koenigs (1897), the geo-

metric relations of any linkage containing any combination of five of the six lower

kinematic pairs1, the screw pair excluded, lead to systems of multivariate polynomial

equations. This is excellent news because most of the computer-algebra software

available caters to systems of multivariate polynomial equations.

• Semigraphical: Purely algebraic methods entail some drawbacks, like algebraic sin-

gularities, which are conditions under which some solutions cannot be found for

reasons other than kinematic. Semigraphical methods reduce the system of alge-

1To be introduced in Ch. 2.
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braic equations to a subsystem of bivariate equations, i.e., equations involving only

two variables. The bivariate equations defining a set of contours in the plane of

those two variables, the real solutions to the problem at hand are found as the

intersections of all those contours.

Caveat: Sometimes algebraic methods are billed as “analytic methods,” which is to

be avoided. Reason: according to common usage—see, for example, the The Random

House College Dictionary—“analytic” is anything “pertaining to or proceeding by analysis

(opposed to synthetic)”. Careless usage of the qualifier leads to awkward phrases like

“analytic synthesis.”

1.3.1 A Summary of Systems of Algebraic Equations

The relevance of systems of algebraic equations is to be highlighted. The synthesis of

linkages, as pointed out above, usually leads to algebraic systems of equations. Non-

algebraic equations are termed transcendental. We expand first on the former.

Systems of algebraic equations are sets of multivariate polynomial equations. That is,

each equation, written in homogeneous form Pk(x) = 0, k = 1, . . . , n, where we have

assumed that the system has as many equations as unknowns, is a linear combination of

products of integer powers of its n unknown variables, e.g., xp11 x
p2
2 · · ·xpnn .

The sum of the exponents of each product,
∑n

1 pj, is known as the degree of the

product; the highest product-degree of the system of the ith equation is termed the

degree di of the same equation. Using a suitable elimination procedure, it is conceptually

possible, although not really possible all the time, to reduce the system of n equations

in n unknowns to one single monovariate polynomial equation. According to a result

due to Bezout (Salmon, 1964), the degree of the resulting monovariate polynomial, the

resolvent or eliminant of the algebraic system at hand, cannot be greater than the product

P = d1d2 · · · dn. The number of possible solutions, thus, can be as high as P .

While some simple kinematic synthesis problems lead to either linear or quadratic

equations, some not so complicated problems can lead to polynomials of a degree of the

order of 10, which in this case means that the degree of the system can be as high as

10n—the case in which all equations of the system are of the 10th degree. For example,

the synthesis of a six-bar function generator—see Ch. 3—for eight accuracy points that

approximates a parabolic function led to a resolvent polynomial of degree 64,858 (Plecnik

and McCarthy, 2013). Some synthesis problems of planar four-bar linkages lead to resol-

vent polynomials of a degree lying in the billions! (Chen and Angeles, 2008). Because of

the above reasons, we stress in this course semigraphical methods of kinematic synthesis.

One major difference between algebraic and transcendental systems of equations is

recalled: an algebraic system admits a finite—predictably bounded by the system Bezout

number—number of roots (solutions); systems of transcendental equations can admit
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infinitely many. Examples of the latter occur in the characteristic equation of continuous

bodies, e.g., a taut string with its ends fixed to an inertial frame. The roots of the

characteristic equation, which involves trigonometric functions associated with a variable

λ that has units of length-inverse, determine the infinitely many vibration modes of the

string, one mode per root.

1.4 Algebraic and Computational Tools

In deriving the kinematic relations that lead to the various synthesis equations, we shall

resort to the two-dimensional representation of the cross product. To do this, we introduce

below a 2× 2 orthogonal matrix E that will prove to be extremely useful. An alternative

to the use of this matrix for the same purpose is the use of complex numbers. The problem

with complex numbers is that they are quite useful to represent two-dimensional vectors,

their application to three and higher dimensions being still unknown. On the contrary,

the two-dimensional representation of the cross product is just a particular case of three-

dimensional vector algebra.

We will also need some quick computations with 2× 2 matrices, which will be revised

in this section. Methods for the numerical solution of linear systems of equations are also

included.

1.4.1 The Two-Dimensional Representation of the Cross

Product

The cross product occurs frequently in planar kinematics and statics, and hence, in pla-

nar kinetostatics. However, planar problems involve only two-dimensional vectors and

2 × 2 matrices, while the cross product is limited to three-dimensional spaces. Here we

describe how to represent in two dimensions the cross product, without resorting to three-

dimensional vectors. Let: r be the position vector of a point of a rigid body under planar

motion; ω be the angular-velocity vector of the rigid body and assumed normal to the

plane of motion.

Without loss of generality, assume that r lies entirely in the plane of motion, which is

normal to ω. Below we compute ω × r using only two-dimensional vectors.

Let E be an orthogonal matrix that rotates vectors in the plane through an angle of

90◦ counterclockwise (ccw):

E ≡
[
0 −1
1 0

]

(1.1a)

Note that

ETE = EET = 1, 1 =

[
1 0

0 1

]

(1.1b)
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with 1 denoting the 2× 2 identity matrix. Also note that E is skew-symmetric:

E = −ET ⇒ E2 = −1, E−1 = −E (1.1c)

Therefore, E rotates vectors r in the plane through an angle of 90◦ ccw, as depicted in

Fig. 1.4, i.e.,

r =

[
x

y

]

⇒ Er =

[−y
x

]

(1.1d)

Figure 1.4: Vector r and its image under E

Now, for the purpose at hand, we start with the usual three-dimensional vectors r

and ω and assume an orthonormal basis for the three-dimensional space, {i, j, k}, with
k defined normal to the plane of motion and pointing toward the viewer. Thus,

ω = ωk =





0

0

ω



 , r =





x

y

0



 (1.2)

where ω > 0 if the angular velocity is ccw; if cw, then ω < 0. Therefore,

ω × r = det





i j k

0 0 ω

x y 0



 = −ωyi+ ωxj

Then, the two-dimensional form of the foregoing product is

[ω × r]2D = ω

[−y
x

]

≡ ωEr (1.3)

As a second use of matrix E, we derive the two-dimensional form of the cross product

r× f yielding the moment of force f about the origin. We assume that r and f both lie in

a plane normal to the unit vector k.

First, we start with the usual three-dimensional representation of vectors r and f, and

hence,

r× f = det





i j k

x y 0

fx fy 0



 = (xfy − yfx)k
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Now, let

xfy − yfx ≡ n (1.4)

which can be readily recognized as the dot product of the two-dimensional vectors Er and

f , i.e.,

n = fTEr ≡ (Er)T f = −rTEf (1.5)

If n > 0, then the moment is ccw; otherwise, cw. We have thus shown that the cross

product of two two-dimensional vectors reduces to a scalar, i.e., n.

Matrix E also appears in the representation of the rotation of a rigid body in planar

motion through an angle θ. This rotation is represented algebraically by means of a proper

orthogonal matrix Q. This matrix is proper orthogonal because it is orthogonal and its

determinant is +1. Matrix Q is given by

Q =

[
cos θ − sin θ

sin θ cos θ

]

≡ (cos θ)1 + (sin θ)E (1.6)

Thus, if a vector r0 is “fixed” to a rigid body rotating about the origin through an angle

θ, after the rotation, r0 becomes r, which is given by

r = Qr0 = (cos θ)r0 + (sin θ)Er0 (1.7)

1.4.2 Algebra of 2× 2 Matrices

A 2× 2 matrix A can be partitioned either columnwise or rowwise:

A ≡ [ a b ] ≡
[
cT

dT

]

where a, b, c, and d are all two-dimensional column vectors. We have

Fact 1.4.1

det(A) = −aTEb = bTEa = −cTEd = dTEc

and

Fact 1.4.2

A−1 =
1

det(A)

[
bT

−aT
]

E =
1

det(A)
E [−d c ] (1.8)

Componentwise, if aij denotes the ith entry of the jth column of A,

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]

That is, the inverse of a 2× 2 nonsingular matrix is obtained upon:
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(a) exchanging the diagonal entries of the given matrix;

(b) reversing the sign of its off-diagonal entries; and

(c) dividing the matrix thus resulting by the determinant of the given matrix.

Notice that the two 2× 2 matrix factors multiplying the reciprocal of det(A) in eq. (1.8)

are both, in fact, nothing but Adj(A), the adjoint of A.

1.4.3 Algebra of 3× 3 Matrices

A 3×3 matrix A can be partitioned columnwise into three columns, each having as entries

the components of a three-dimensional vector, namely,

A = [ a1 a2 a3 ]

its determinant being readily computed as the mixed vector-scalar product of its column

vectors:

det(A) = a1 × a2 · a3

The inverse of A can also be readily computed symbolically if we resort to the concept

of reciprocal bases:

A−1 =
1

∆





(a2 × a3)
T

(a3 × a1)
T

(a1 × a2)
T



 (1.9a)

where

∆ ≡ a1 × a2 · a3 (1.9b)

The reader can verify the validity of the foregoing formula by straightforward com-

putation of the product AA−1 or, equivalently, of A−1A, which should yield the 3 × 3

identity matrix.

1.4.4 Linear-Equation Solving: Determined Systems

Consider solving for x the system below:

Ax = b (1.10)

where A is a n × n matrix of known coefficients; b is the n-dimensional right-hand side

known vector; and x is the n-dimensional vector of unknowns.

Definition: A is said to be singular if

det(A) = 0 (1.11)

Otherwise, A is nonsingular
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Fact 1.4.3 If A is nonsingular, then eq.(1.10) has a unique solution, namely,

x = A−1b (1.12)

Caveat: Never compute—unless instructed to do so!—A−1 explicitly. A matrix inverse

is seldom needed and incurs a waste of precious CPU time! Instead, find a good numerical

approximation to the solution, while taking into account that A and b are usually known

only up to a certain roundoff error.

In computing the solution of system (1.10) for x, we must take into account the

unavoidable roundoff error of the data, A and b. Let:

• δA be the matrix roundoff error in A

• δb be the vector roundoff-error in b

• δx be the vector roundoff-error incurred when solving eq.(1.10) for x, by virtue of

δA and δb

The relative roundoff errors in the data, ǫA and ǫb, and in the computed solution, ǫx, are

defined as

ǫx ≡
‖δx‖
‖x‖ , ǫA ≡

‖δA‖
‖A‖ , ǫb ≡

‖δb‖
‖b‖ (1.13)

where ‖ · ‖ denotes any vector or matrix norm2.

The relative roundoff error in the computed solution is known to be related to the

relative roundoff error in the data via the relation (Golub and Van Loan, 1983)

ǫx ≤ κ(A)(ǫA + ǫb) (1.14)

where κ(A) is the condition number of matrix A of eq.(1.10):

κ(A) ≡ ‖A‖‖A−1‖ (1.15)

Various matrix norms are at our disposal, such as the Euclidean norm, a.k.a. the 2-

norm, the Frobenius norm and the infinity norm, a.k.a. the Chebyshev norm, denoted,

respectively, by ‖A‖2, ‖A‖F and ‖A‖∞. The definitions of these norms are given below:

‖A‖2 ≡ max
i
{
√

λi }n1 (1.16a)

‖A‖F ≡
√

tr(AWAT ) (1.16b)

‖A‖∞ ≡ max
j
{max

i
{ |aij| }ni, j=1} (1.16c)

2The matrix norm is a generalization of the vector norm, the latter being, in turn, a generalization

of the module of complex numbers or the absolute value of real numbers.
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where { λi }n1 denotes the set of eigenvalues of AAT , andW is a weighting positive-definite

matrix, that is defined according to the user’s needs. For example, if W = (1/n)1, with

1 defined as the n× n identity matrix, then the Frobenius norm of the identity matrix is

unity, regardles of the value of n, which is convenient. Not only this; with the foregoing

value ofW, ‖A‖F is the rms value of the singular values3 ofA. Moreover, tr(·) denotes the
trace of its n× n matrix argument (·), i.e., the sum of the diagonal entries of the matrix.

Also notice that the eigenvalues of A can be real or complex, |λi| denoting the module

of λi. Computing the eigenvalues of arbitrary matrices is cumbersome because of the

complex nature of the eigenvalues, in general. Computing the eigenvalues of symmetric

matrices, on the contrary, is much simpler, because these are known to be real. In fact,

the set { λi }n1 is most conveniently computed as the eigenvalues of AAT , which is not

only symmetric, but also positive-definite, and hence, its eigenvalues are all positive. In

fact, if A is singular, then AAT is only positive-semidefinite, meaning that some of its

eignevalues vanish, but none is negative. We thus have

λi ≥ 0, i = 1, . . . , n (1.17)

Whenever we have chosen one specific norm to define the condition number, we indicate

the condition number as κ2, κF or κ∞. In particular,

κ2 =

√
λl√
λs

(1.18)

where λl and λs denote the largest and the smallest eigenvalues of AAT , respectively. In

fact, {√λi }n1 is known as the set of singular values of matrix A. Moreover,

κF =

√

1

n
tr(AAT )

√

1

n
tr(A−1A−T ) (1.19)

where A−T denotes the inverse of the transpose of A or, equivalently, the transpose of

the inverse of the same matrix.

It is now apparent that κ, regardless of the matrix norm used to compute it, is bounded

from below but unbounded from above:

1 ≤ κ <∞ (1.20)

Remark 1.4.1 The condition number of a singular matrix is infinitely large.

Remark 1.4.2 If a matrix AAT has all its eigenvalues identical, then A is said to be

isotropic. Isotropic matrices have a κ = 1, regardless of the matrix norm used to compute

κ. Isotropic matrices are optimally conditioned.

3The singular values of a m × n matrix A, with m ≤ n are the (nonnegative) eigenvalues of the
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Methods for computing a good numerical approximation to the solution (1.12):

• Gaussian elimination, a.k.a. LU-decomposition: Based on the observation that a

triangular system is readily solved by either backward or forward substituion. A is

decomposed into a lower- and an upper-triangular factors, L and U, respectively.

• Iteratively: Various types of methods, by the names Gauss-Jordan, Gauss-Seidel,

successive-overrelaxation (SOR), etc. Used mainly for “large” systems (hundreds or

thousands of unknowns) that we will not be handling

• Symbolically: Only possible for certain classes of A matrices, like tridiagonal, and

for arbitrary matrices of modest size (n is below 5 or so)

We focus here on Gaussian elimination, or LU-decomposition. We start by decompos-

ing the n× n matrix A in the form

A = LU (1.21)

where L and U take the forms

L =








1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1







, U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn








(1.22)

Now eq.(1.10) is rewritten as

LUx = b ⇒
{

Ly = b

Ux = y
(1.23)

and hence, x is computed in two stages: First, y is computed from a lower-triangular

system; then, x is computed from an upper-triangular system. The lower-triangular

system is solved for y by forward substitution; the upper-triangular system is solved for

x by backward substitution.

Note that

det(A) = det(L)det(U) (1.24a)

But, apparently,

det(L) = 1, det(U) = Πn
1uii (1.24b)

Hence,

det(A) = det(U) = Πn
1uii (1.24c)

Therefore, A is singular if any of the diagonal entries of U vanishes.

product AAT
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The Case of a Positive-Definite Matrix

A n × n matrix A is said to be positive-definite if (i) it is symmetric and (ii) all its

eigenvalues are positive. Under these conditions, the quadratic form xTAx > 0, for

any x ∈ IRn. If the same matrix verifies property (i) but verifies property (ii) in the

alternative form (ii-alt) none of its eigenvalues is negative, then the matrix is said to be

positive-semidefinite and the foregoing quadratic form becomes xTAx ≥ 0.

If A is at least positive-definite, then it admits the Cholesky decomposition:

A = CTC (1.25a)

where C is a real, lower-triangular matrix, namely,

C =








c11 0 · · · 0

c21 c22 · · · 0
...

...
. . .

...

cn1 cn2 · · · cnn








(1.25b)

According to Sylvester’s Theorem4, C is invertible is A is positive-definite; if positive-

semidefinite, C is singular, of the same rank as A.

The solution of system (1.10) proceeds as in the general case, in two steps:

CTy = b (1.26)

Cx = y (1.27)

1.4.5 Linear-Equation Solving: Overdetermined Systems

We are now confronted with solving a system of linear equations formally identical to

that given in eq.(1.10). The difference now is that matrix A is no longer square, but

rectangular, with n columns of dimension m, namely,

Ax = b, A : m× n, m > n (1.28)

where b is, obviously, m-dimensional. Now, given that we have a surplus of equations

over the number of unknowns, it is not possible, in general, to find a vector x that will

verify all m equations, and hence, an error will be incurred, the purpose here being to

find the vector x that renders the error of minimum norm. That is, we cannot actually

solve system (1.28); all we can do is find an acceptable approximation x to the system.

The error vector e in this approximation is defined as

e ≡ b−Ax (1.29)

4See Theorem 1.4.3.
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Again, we have various norms at our disposal that we can choose to minimize. All

norms of e can be expressed as

‖e‖p ≡
(

m∑

1

|ek|p
)1/p

(1.30)

with ek being understood as the kth component of the m-dimensional vector e. When

p = 2, the foregoing norm is known as the Euclidean norm, which is used most frequently

in mechanics. When p → ∞, the infinity norm, also known as the Chebyshev norm, is

obtained. This norm is, in fact, nothing but the largest absolute value of the components

of the vector at hand; finding this norm, thus, incurs no computational cost. It turns

out that upon seeking the value of x that minimizes a norm of e, the simplest is the

Euclidean norm, for the minimization of its square leads to a linear system of equations

whose solution can be obtained directly, as opposed to iteratively. Indeed, let us set up

the minimization problem below:

z(x) ≡ 1

2
‖e‖22 → min

x
(1.31)

The normality condition of the minimization problem at hand is derived upon setting the

gradient of z with respect to x equal to zero, i.e.,

dz

dx
= 0 (1.32a)

which is shorthand notation for

dz

dx1
= 0,

dz

dx2
= 0, , . . . ,

dz

dxn
= 0 (1.32b)

However, z is not an explicit function of x, but of e, while e is an explicit function of x.

Hence, in order to find dz/dx, the “chain rule” has to be applied. As this is to be applied

over vectors, an explanation is in order: first, de is derived upon a differential increment

dxi of the ith component of x, for i = 1, 2, . . . , n:

de =
de

dx1
dx1 +

de

dx2
dx2 + . . .+

de

dxn
dxn

or, in array form,

de =
[ de

dx1

de

dx2
. . .

de

dxn

]

︸ ︷︷ ︸

≡ de
dx








dx1

dx2
...

dxn








︸ ︷︷ ︸

dx
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where de/dx is, apparently, a m× n array, namely,

de

dx
=











de1
dx1

de1
dx2

· · · de1
dxn

de2
dx1

de2
dx2

· · · de2
dxn

...
...

. . .
...

dem
dx1

dem
dx2

· · · dem
dxn











∈ R
m×n (1.33)

On the other hand, upon application of the “chain rule” to z in terms of the compo-

nents of e,

dz

dx
=
de1
dx

dz

de1
+
de2
dx

dz

de2
+ . . .+

dem
dx

dz

dem

or, in array form,

dz

dx
=
[ de1
dx

de2
dx

· · · dem
dx

]











dz

de1
dz

de2
...
dz

dem











If the first factor in the foregoing product is expressed in component form, then

dz

dx
=











de1
dx1

de2
dx1

· · · dem
dx1

de1
dx2

de2
dx2

· · · dem
dx2

...
...

. . .
...

de1
dxn

de2
dxn

· · · dem
dxn





















dz

de1
dz

de2
...
dz

dem











(1.34)

whose first factor can be readily identified, in light of eq. (1.33), as (de/dx)T , and hence,

dz

dx
=

(
de

dx

)T
dz

de
(1.35)

an expression that can be fairly termed the chain rule for vector arrays.

Now, from eq.(1.29),

de

dx
= −A (1.36)

Hence, the final expression for the gradient of z, dz/dx, is

dz

dx
= −ATe (1.37)

Therefore, the error vector of minimum Euclidean norm, or least-square error for

brevity, represented henceforth by e0, satisfies the normality condition

ATe0 = 0n (1.38)

with 0n denoting the n-dimensional zero vector. Now we have the first result:
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Theorem 1.4.1 The least-square error e0 of the overdetermined system of linear equa-

tions (1.10) lies in the null space of the transpose of the full-rank m× n matrix A, with

m > n.

In order to gain insight into the above result, let { ai }n1 represent the n m-dimensional

columns of matrix A. Hence, AT can be expressed as a column array of vectors aTi , for

i = 1, . . . , n, eq.(1.38) thus leading to

aTi e0 = 0n (1.39)

Furthermore, if eq.(1.29) is substituted into eq.(1.37), and the product thus resulting

is substituted, in turn, into the normality condition (1.32a), we obtain

ATAx = ATb (1.40)

which is known as the normal equations of the minimization problem at hand. By virtue

of the assumption on the rank of A, the product ATA is positive-definite and hence,

invertible. As a consequence, the value x0 of x that minimizes the Euclidean norm of the

approximation error of the given system is

x0 = (ATA)−1ATb (1.41)

the matrix coefficient of b being known as a generalized inverse of A; we shall refer to

this generalized inverse here as AI , i.e.,

AI ≡ (ATA)−1AT (1.42)

More specifically, AI is known as the left Moore-Penrose generalized inverse ofA, because,

when A is multiplied by AI from the left, the product becomes

AIA = 1n (1.43)

in which 1n denotes the n × n identity matrix. The error obtained with this value is

known as the least-square error of the approximation, i.e.,

e0 ≡ b−Ax0 (1.44)

Now we have one more result:

Theorem 1.4.2 (Projection Theorem) The least-square error is orthogonal to Ax0,

i.e.,

eT0Ax0 ≡ xT0A
Te0 = 0 (1.45)
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ATx0 ∈ R
n B′

e0

B

Π
O

b ∈ R
m

Figure 1.5: The Projection Theorem

Proof : Readily follows from eq.(1.38), and hence, from Theorem 1.4.1.

The Projection Theorem is illustrated in Fig. 1.5.

While the formula yielding the foregoing generalized inverse is quite simple to imple-

ment, the number of floating-point operations (flops) it takes to evaluate, along with

the ever-present roundoff errors in both the data and the results, renders it not only in-

efficient, but also unreliable, if applied verbatim. What is at stake here is the concept

of condition number, introduced in Subsection 1.4.4 for square matrices. The same con-

cept can be applied to rectangular matrices, if the matrix inverse is replaced by its left

Moore-Penrose generalized inverse. In fact, the singular values of rectangular A are the

non-negative square roots of the non-negative eigenvalues of the n×n positive-semidefinite

matrix ATA, exactly as in the case of square matrices. If A is of full rank, i.e., if its n

m-dimensional columns are lineraly independent, then ATA is positive-definite. However,

note that AAT is singular, regardless of whether A is of full rank or not. The foregoing

statement is a result of Sylvester’s Theorem (Strang, 1988):

Theorem 1.4.3 (Sylvester’s Theorem) Let p × q A and q × r B be two arbitrary

matrices, which are thus compatible under multiplication. Then,

rank(AB) ≤ min{rank(A), rank(B)} (1.46)

Therefore, if A is of full rank, then rank(A) = n, and hence, rank(AAT ) = n < m,

which means that the product AAT ∈ IRm×m is rank-deficient, i.e., singular in this case.

Remark 1.4.3 If the working condition number is either κ2 or κF , then the condition

number of ATA is exactly the square of the condition number of A.

As a consequence, then, even if A is only slightly ill-conditioned, the product ATA

can be catastrophically ill-conditioned, the moral being that the normal equations (1.40)

are much more sensitive to data roundoff error than the original equations (1.28). There-

fore, the normal equations should be avoided. Below we outline two procedures to
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calculate efficiently the least-square approximation of the overdetermined system (1.10)

that do not resort to the normal equations, and hence, preserve the condition number of

A and do this with a low number of flops.

In figuring out a numerical method suitable to finding the least-square approximation

of the overdetermined system of linear equations (1.28) it is convenient to resort to the

geometric interpretation of the problem at hand: Let us assume that A is of full rank, and

hence, its n m-dimensional columns { ai }n1 , introduced in eq.(1.39), are linearly indepen-

dent. However, notice that this set cannot constitute a basis of the m-dimensional space

of these vectors, or of vector b for that matter, because of a deficit of m − n vectors in

the set. Hence, there is no guarantee that, given an arbitrary m-dimensional vector b, we

can find n real numbers { xk }n1 that will produce b as a linear combination of the given

set of vectors—the columns of A. Now, let us regard b as the position vector of a point

B in m-dimensional space, with l denoting the vector spanned by the linear combination

l ≡ a1x1 + a2x2 + · · ·+ anxn (1.47)

We can also regard l as the position vector of a point L in the same space, the purpose of

the numerical method sought being to find the set { xi }n1 that yields a vector l correspond-

ing to a point L lying a minimum distance from B. If vector ai were represented in a basis

in which only its first i components were nonzero, then A would be upper-triangular, and

the task at hand would be straightforward: it would be obvious then that we would be

able to match the first n components of b with a suitable choice of numbers { xi }n1—these

numbers could be found by backward substitution! However the last m− n components

of b would remain unmatched, and hence, would contain the error in the approximation.

Now, in general, the columns of A most likely will be full. Nevertheless, it is always

possible to find a suitable coordinate system, i.e., a suitable basis, under which the columns

of A will have the special structure described above.

In seeking the new coordinate system, we aim at a transformation of both all columns

of A and b that will render A in upper-triangular form, similar to the effect of the

LU-decomposition applied to the solution of system (1.10). However, in seeking the

suitable transformation in the case at hand, we should preserve the distances between

points in m-dimensional space; else, the Euclidean norm will not be preserved and the

approximation obtained will not yield the minimum distance between points B and L.

A safe numerical procedure should thus preserve the Euclidean norm of the columns of

A and, hence, the inner product between any two columns of this matrix. Therefore,

a triangularization procedure like LU-decomposition would not work, because this does

not preserve inner products. Obviously, the transformations that do preserve these inner

products are orthogonal, either rotations or reflections. Examples of these methods are

(a) the Gram-Schmidt orthogonalization procedure and (b) Householder reflections, which
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are outlined below5.

The Gram-Schmidt Orthogonalization Procedure

This procedure consists in regarding the columns of A as a set of n m-dimensional vectors

{ ak }n1 . From this set, a new set { ek }n1 is obtained that is orthonormal. The first step

consists in defining a normal vector—i.e, of unit norm—e1 as6

e1 =
a1

‖a1‖
(1.48)

Further, we define e2 as the normal component of a2 onto e2, namely,

b2 ≡ (1− e1e
T
1 )a2 (1.49a)

e2 ≡
b2

‖b2‖
(1.49b)

In the next step, we define e3 as the unit vector normal to the plane defined by e1 and e2

and in the direction in which the inner product eT3 a3 is positive, which is possible because

all vectors of the set { ak }m1 have been assumed to be linearly independent—remember

thatA has been assumed to be of full rank. To this end, we subtract from a3 its projection

onto the plane mentioned above, i.e.,

b3 = (1− e1e
T
1 − e2e

T
2 )a3 (1.50a)

e3 ≡
b3

‖b3‖
(1.50b)

and so on, until we obtain en−1, the last unit vector of the orthogonal set, en, being

obtained as

bn = (1− e1e
T
1 − e2e

T
2 − · · · − en−1e

T
n−1)an (1.51a)

Finally,

en ≡
bn
‖bn‖

(1.51b)

In the next stage, we represent all vectors of the set { ak }n1 in orthogonal coordinates, i.e.,

in the base O = { ek }n1 , which are then arranged in a m × n array Ao. By virtue of the

form in which the set { ek }n1 was defined, the last m− k components of vector ak vanish.

5These methods are implemented in Maple, a language for computer algebra, under the command

LeastSquares(A, B, . . .).
6In the balance of this section only the Euclidian norm is used; for the sake of brevity, this norm is

simply referred to as “the norm”.
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We thus have, in the said orthonormal basis,

[ak]O =















α1k

α2k
...

αkk

0
...

0















, [b]O =








β1

β2
...

βm








Therefore, eq.(1.28), when expressed in O, becomes















α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...

0 0 · · · αnn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0






















x1

x2
...

xn







=















β1

β2
...

βn

βn+1
...

βm















(1.52)

whence x can be computed by back-substitution. It is apparent, then, that the last m−n
equations of the foregoing system are incompatible: their left-hand sides are zero, while

their right-hand sides are not necessarily so. What the right-hand sides of these equations

represent, then, is the approximation error in orthogonal coordinates. Its Euclidean norm

is, then,

‖e0‖ ≡
√

β2
n+1 + . . .+ β2

m (1.53)

Householder Reflections

The familiar concept of reflection about a plane—that of a flat mirror, for example—in

3D space can be generalized to n-dimensional spaces. Indeed, a reflection onto a plane

Π of unit normal n is illustrated in Fig. 1.6. In that figure, the projection of point P , of

position vector p, from an origin lying in the plane—this is necessary in order for Π to

be a vector space—onto Π is labelled P ′, of position vector p′. Obviously, point P ′ is the

intersection of the normal to Π from P with Π itself. If now a third point P ′′ is found on

the extension of the normal from P lying exactly the same distance d between P and P ′,

then P ′′ becomes the reflection of P with respect to Π.

Now it is apparent that the position vector p′′ of P ′′ is given by

p′′ = p− 2(pTn)n (1.54)

or

p′′ = (1− 2nnT )p (1.55)
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Figure 1.6: A reflection onto a plane Π of unit normal n

whence the reflection is represented algebraically by a matrix R given by

R = 1− 2nnT (1.56)

The extension of the 3D concept of reflection is now straightforward: vector n in

eq.(1.56) can be thought of as being n-dimensional.

With the above background, the second method discussed here, based on the applica-

tion of a chain of n transformations {Hk }n1 , known as Householder reflections, to both

sides of eq.(1.10), can now be introduced. The purpose of these reflections is, again,

to obtain a representation of matrix A in upper-triangular form (Golub and Van Loan,

1989). The algorithm proceeds as follows: We assume that we have applied reflections

H1, H2, . . ., Hi−1, in this order, to A that have rendered it in upper-trapezoidal form, i.e.,

Ai−1 ≡ Hi−1 . . .H2H1A (1.57)

or

Ai−1 =


















a∗11 a∗12 · · · a∗1,i−1 a∗1i · · · a∗1n
0 a∗22 · · · a∗2,i−1 a∗2i · · · a∗2n
0 0 · · · a∗3,i−1 a∗3i · · · a∗3n
...

...
. . .

...
...

. . .
...

0 0 · · · a∗i−1,i−1 a∗i−1,i · · · a∗i−1,n

0 0 · · · 0 a∗i,i · · · a∗i,n
...

...
. . .

...
...

. . .
...

0 0 · · · 0 a∗m,i · · · a∗mn


















(1.58)

The next Householder reflection, Hi, is determined so as to render the last m − i com-

ponents of the ith column of HiAi−1 equal to zero, while leaving its first i − 1 columns

unchanged. We do this by setting

αi = sgn(a∗ii)
√

(a∗ii)
2 + (a∗i+1,i)

2 + · · ·+ (a∗mi)
2 (1.59a)
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ui = [ 0 0 · · · 0 a∗ii + αi a∗i+1,i · · · a∗mi ]
T (1.59b)

Hi = 1− uiu
T
i

‖ui‖2/2
(1.59c)

where sgn(x), the signum function of x, is defined as +1 if x > 0, as −1 if x < 0, and is

left undefined when x = 0. As the reader can readily verify,

1

2
‖ui‖2 = αi(ui)i = αi(a

∗
ii + αi) ≡ γi (1.60)

and hence, the denominator appearing in the expression forHi is calculated with one single

addition and a single multiplication. Notice that Hi reflects vectors in m-dimensional

space onto a hyperplane of unit normal ui/‖ui‖.
It is important to realize that

(a) αi is defined with the sign of a∗ii because the denominator γi appearing in eq.(1.60) is

proportional to the sum of a∗ii and αi, thereby guaranteeing that the absolute value

of this sum will always be greater than the absolute value of each of its terms. If

this provision were not made, then the resulting sum could be of a negligibly small

absolute value, which would thus render γi a small positive number. Such a small

number would thus introduce unnecessarily an inadmissibly large roundoff-error

amplification upon dividing the product uiu
T
i by γi;

(b) an arbitrary vector v is transformed by Hi with unusually few flops, namely,

Hiv = v − 1

γi
(vTui)ui

Upon application of the n Householder reflections thus defined, the system at hand

becomes

HAx = Hb (1.61)

with H defined as

H ≡ Hn . . .H2H1 (1.62)

Similar to that in equation (1.52), the matrix coefficient of x in eq.(1.61), i.e., HA, is in

upper-triangular form. That is, we have

HA =

[
U

Om′n

]

, Hb =

[
bU

bL

]

(1.63)

with U a n × n upper-triangular matrix identical to that appearing in eq.(1.22), Om′n

denoting the (m − n) × n zero matrix, m′ ≡ m − n, and bU and bL being n- and

m′-dimensional vectors. The unknown x can thus be calculated from eq.(1.61) by back-

substitution.

Note that the last m′ components of the left-hand side of eq.(1.61) are zero, while the

corresponding components of the right-hand side of the same equation are not necessarily
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so. This apparent contradiction can be resolved by recalling that the overdetermined

system at hand, in general, has no solution. The lower part of b, bL, is then nothing but

an m′-dimensional array containing the nonzero components of the approximation error

in the new coordinates. That is, the least-square error, e0, in these coordinates takes the

form

[ e0 ]O =

[
0n

bL

]

(1.64a)

where subscripted brackets are used to denote vector or matrix representation in a co-

ordinate frame labelled with the subscript, usually in caligraphic fonts. In the above

equation, O stands for orthogonal frame, which defines the new coordinates. Hence, the

above expression readily leads to the norm (any norm) of the least-square error, namely,

‖e0‖ = ‖bL‖ (1.64b)

1.5 Nonlinear-equation Solving: the Determined Case

Definition 1.5.1 A system of algebraic equations containing some that are not linear is

termed nonlinear. If the number of equations is identical to the number of unknowns, the

system is determined.

Example: Find the intersection of the circle and the hyperbola depicted in Fig. 1.7.

Solution: The equations of the circle and the hyperbola are

Figure 1.7: Intersection of a circle and a hyperbola

φ1(x, y) ≡ x2 + y2 − 4 = 0

φ2(x, y) ≡ x2 − y2 − 1 = 0

The solution to a nonlinear system of equations, when one exists at all, is usually multiple:

The circle and the hyperbola of Fig. 1.7 intersect at four points {Pi}41, of coordinates
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Pi xi yi

1
√

5/2
√

3/2

2
√

5/2 −
√

3/2

3 −
√

5/2
√

3/2

4 −
√

5/2 −
√

3/2

Table 1.1: The four intersection points of the circle and the hyperbola of Fig. 1.7

(xi, yi), as displayed in Table 1.1. The problem may have no real solution, e.g., the

circle and the hyperbola of Fig. 1.8 do not intersect. The system of equations from which

the coordinates of the intersection points are to be computed is given below:

φ1(x, y)≡ x2 + y2 − 1 = 0

φ2(x, y)≡ x2 − y2 − 16 = 0

This system of equations admits no real solution!

Figure 1.8: A circle and a hyperbola that do not intersect

In general, a determined nonlinear system of equations takes the form

φ(x) = 0 (1.65)

where x and φ are both n-dimensional vectors:

x ≡








x1

x2
...

xn







, φ ≡








φ1(x1, x2, . . . , xn)

φ2(x1, x2, . . . , xn)
...

φn(x1, x2, . . . , xn)








(1.66)
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1.5.1 The Newton-Raphson Method

We outline below the method of solution of determined nonlinear systems using the

Newton-Raphson method. This is an iterative method, whereby a sequence of approx-

imations is obtained that, if converging, it approaches the solution in a finite number of

iterations within a prescribed tolerance.

A value x0 of x is given as an initial guess:

x0 ≡ [ p1 p2 . . . pn ]
T

and φ is evaluated at x0:

φ0 ≡ φ(x0)

If the value x0 was chosen arbitrarily, most likely it will not verify the given system of

equations, i.e.,

φ0 6= 0

Next, we look for a “small” increment ∆x of x (the increment is small if its norm—any

norm—is small):

∆x ≡ [ ∆x1 ∆x2 . . . ∆xn ]
T

Now, φ(x0 + ∆x) is evaluated up to its linear approximation (all quadratic and higher-

order terms are dropped from its series expansion):

φ(x0 +∆x) ≈ φ(x0) +
∂φ

∂x

∣
∣
∣
∣
x=x0

∆x (1.67)

The Jacobian matrix of φ with respect to x is defined as the matrix of partial derivatives7

of the components of φ with respect to all the components of x:

Φ ≡ ∂φ

∂x
=








∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xn

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xn
...

...
. . .

...

∂φn/∂x1 ∂φn/∂x2 · · · ∂φn/∂xn








(1.68)

In the next step, we find ∆x that renders zero the linear approximation of φ(x0+∆x):

φ0 +Φ(x0)∆x = 0

or

Φ(x0)∆x = −φ0 (1.69)

whence ∆x can be found using Gaussian elimination:

7Se Subsection 1.4.5 for a derivation of the (matrix) partial derivative of a vector with respect to

another vector.
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∆x = −Φ−1
0 φ

0, Φ0 ≡ Φ(x0) (1.70)

Next, x is updated:

x ← x0 +∆x (1.71)

the procedure stopping when

‖∆x‖ ≤ ǫx (1.72)

for a prescribed tolerance ǫx.

Remarks:

• Use the maximum norm to test convergence in eq.(1.72), for it costs virtually noth-

ing;

• no guarantee that the Newton-Raphson method will converge at all;

• whether the Newton-Raphson method converges is dependent upon the initial guess,

x0;

• the boundary between regions of convergence and divergence is a fractal (Mandel-

brot, 1983; Gleick, 1988);

• when the Newton-Raphson method converges, it does so quadratically : At every

iteration, two decimal places of accuracy are gained (Dahlquist and Björck, 1974).

1.6 Overdetermined Nonlinear Systems of Equations

A system of nonlinear equations of the form

φ(x) = 0 (1.73)

where x is a n-dimensional vector and φ is a q-dimensional vector, is overdetermined

if q > n. Just as in the linear case, in general, no vector x can be found that verifies

all the q scalar equations of the system. However, approximations can be found that

minimize the least-square error of the approximation, as described in the balance of this

Section. The method of solution adopted here is the overdetermined counterpart of the

Newton-Raphson method.

1.6.1 The Newton-Gauss Method

Problem: Find an approximate solution to system (1.73) that verifies those equations

with the least-square error :

f(x) =
1

2
φTWφ → min

x
(1.74)
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where W is a q × q positive-definite weighting matrix.

Solution: We follow a procedure similar to Newton-Raphson’s, which is known as the

Newton-Gauss method, as described below:

First, an initial guess x0 of x is given; then, we produce the sequence

x1, x2, . . . , (1.75)

such that

xk+1 = xk +∆xk (1.76)

Calculation of ∆xk:

• Factor W into its two Cholesky factors:

W = VTV (1.77)

which is possible because W is assumed positive-definite8.

• Compute ∆xk as the least-square solution of the overdetermined linear system

VΦ(xk)∆xk = −Vφ(xk) (1.78)

with Φ(x) defined as the q × n Jacobian matrix of the vector function φ(x), i.e.,

Φ(x) =
∂φ(x)

∂x
(1.79)

Drop superscripts for the sake of notation-simplicity and recall eq.(1.41):

∆x = −(ΦTWΦ)−1ΦTWφ (1.80)

This procedure is iterative, stopping when a convergence criterion is met.

The Damping Factor

When implementing the Newton-Gauss method, the objective function f may increase

upon correcting xk according to eq.(1.76), i.e.

f(xk+1) > f(xk) (1.81)

This increase gives rise to oscillations and sometimes even leads to divergence. One way to

cope with this situation is by introducing damping. Instead of using the whole increment

∆xk, we use a fraction of it, i.e.

xk+1 = xk + α∆xk, 0 < α < 1 (1.82)

where α is known as the damping factor.

8In fact, the Cholesky decomposition is also possible for positive semi-definite matrices, as stated in
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Convergence Criterion

Calculate first ∇f(x):

∇f(x)≡ ∂f

∂x
=

(
∂φ

∂x

)T
∂f

∂φ
(1.83)

∂φ

∂x
≡Φ,

∂f

∂φ
= Wφ (1.84)

Hence, the condition for a stationary point is

ΦTWφ = 0 (1.85)

which is the normality condition of the problem stated in eq.(1.74).

If now eq.(1.80) is recalled, it is apparent that ∆x vanishes when the normality con-

dition (1.85) has been met.

It is thus apparent that, at a stationary point of f , φ(x) need not vanish, as is the

case in overdetermined systems; however, φ(x) must lie in the null space of ΦTW.

Moreover, from eqs.(1.80) and (1.85) follows that, at a stationary point, ∆x vanishes.

Hence, the convergence criterion is

‖∆x‖ < ǫ (1.86)

where ǫ is a prescribed tolerance.

Remarks:

• The normality condition (1.85) alone does not guarantee a minimum, but only a

stationary point.

• However, as it turns out, if the procedure converges, then it does so, to a second-

order approximation, to a minimum, and neither to a maximum nor a to saddle

point, as we prove below.

The sequence f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequence of x

values, evolves, to a first order, as ∆f(x), given by

∆f =

(
∂f

∂x

)T

∆x (1.87)

i.e.,

∆f = φTWΦ∆x (1.88)

Upon plugging expression (1.80) of ∆x into eq. (1.88), we obtain

∆f =−φT WΦ(ΦTWΦ)−1ΦTW
︸ ︷︷ ︸

M

φ = −φTMφ (1.89)
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where, apparently, M is a q×q positive-definite matrix. As a consequence, φTMφ becomes

a positive-definite quadratic expression of φ; hence, ∆f is negative definite. Thus, the

second-order approximation of f(x) is negative-definite, and hence, the sequence of f

values decreases monotonically. That is, in the neighbourhood of a stationary point the

first-order approximation of φ(x) is good enough, and hence, if the procedure converges,

it does so to a minimum.

The reader may wonder whether the Newton-Raphson method can be used to solve

nonlinear least-square problems. Although the answer is yes, the Newton-Raphson method

is not advisable in this case, as made apparent below.

Recall ∇f from eqs.(1.74) and (1.75):

∇f(x) = ∂f

∂x
= ΦT (x)
︸ ︷︷ ︸

n×q

W
︸︷︷︸

q×q

φ(x)
︸ ︷︷ ︸

q−dim

∇f(x) = 0 ⇒ ΦT (x)Wφ(x)
︸ ︷︷ ︸

≡ψ(x) ∈ IRn

= 0 (NC)

thereby obtaining a determined system of n equations in n unknowns. This system can

be solved using Newton-Raphson method, which requires ∇ψ(x):

∇ψ(x) = ∂ψ

∂x
=

∂

∂x
[ ΦT (x)
︸ ︷︷ ︸

(∂φ/∂x)T

Wφ(x)]

That is, ∇ψ(x) involves second-order derivatives of φ with respect to x:

∂ψi
∂xj
≡ ∂2φi
∂xj∂xi

, i, j = 1, . . . , n

In summary, the Newton-Raphson method is too cumbersome and prone to ill-conditioning,

for it is based on the normality conditions of the least-square problem at hand. It is

strongly recommended to avoid this method when confronted with overdeter-

mined systems of nonlinear equations.

1.7 Software Tools

1.7.1 ODA: Matlab and C code for Optimum Design

ODA is a C library of subroutines for optimization problems, that implements the Orthog-

onal-Decomposition Algorithm (Teng and Angeles, 2001). The source file of this package,

implemented in C, consists of a number of subroutines designed and classified based on

their application. At the beginning of each subroutine a detailed description of the purpose

and usage of the subroutine is included. Moreover, data validation has been considered
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in the software. In order to solve a problem, the user simply calls one corresponding C

subroutine.

Since the solutions for linear problems are direct—as opposed to iterative—the use

of ODA to solve linear problems requires only information on the problem parameters,

such as matrices A, C, and W, as well as vectors b and d, as applicable. For nonlinear

problems, the solution is iterative, and hence, the user is required to provide functions

describing φ(x), h(x), Φ(x), J(x), as needed. These functions are provided via subrou-

tines in forms that can be called by the package. In addition to this information, the user

is also required to provide an initial guess x0 of x, so that the iterative procedure can be

started.

1. Unconstrained linear problems: Subroutine MNSLS is used to find the minimum-

norm solution of an underdetermined linear system, while subroutine LSSLS is used

to find the least-square approximation of an overdetermined linear system. LSSLS

can also handle determined systems, i.e., systems of as many equations as unknowns.

2. Unconstrained nonlinear problems: Subroutine LSSNLS is used to solve this

type of problems. Since the nonlinear functions and their associated gradient ma-

trices are problem-dependent, the user is required to provide two subroutines that

are used to evaluate the foregoing items, namely,

• FUNPHI: This subroutine is used to evaluate the q-dimensional vector function

φ(x) in terms of the given n-dimensional vector x.

• DPHIDX: This subroutine is used to evaluate the q×n gradient matrix Φ of the

vector-function φ(x) with respect to x, at the current value of x.

Moreover, an initial guess of x is required when calling this subroutine.

3. Constrained linear problems: Subroutine LSSCLS is used to solve this type of

problems.

4. Constrained nonlinear problems: Subroutine LSSCNL is used for solving this

type of problems. Before calling LSSCNL, the user is required to provide four

problem-dependent subroutines: Two of these are FUNPHI and DPHIDX, already der-

scribed in item 2 above. The other two are used to evaluate the left-hand sides of

the constraint equations and their gradient matrix, as listed below:

• FUNH: This subroutine is used to evaluate the l-dimensional constraint function

h in terms of the given n-dimensional vector x.

• DHDX: This subroutine is used to evaluate the l × n gradient matrix J of the

Subsection 1.4.4, but these are not of interest in the context of the Newton-Gauss method.
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vector-function h(x) in terms of the given n-dimensional vector x. Moreover,

an initial guess of x is required when calling LSSCNL.

5. Constrained problems with arbitrary objective function: Subroutine AR-

BITRARY is used for solving this type of problems. Before calling ARBITRARY, the

user is required to provide four problem-dependent subroutines: Two of these are

FUNPHI and DPHIDX, as described in item 2 above. The other two subroutines are

used to evaluate the left-hand sides of the constraint equations and their gradient

matrix, as listed below:

• phi: Subroutine used to evaluate the objective function φ(x) in terms of the

given n-dimensional vector x.

• h: Subroutine used to evaluate the l-dimensional constraint function h in terms

of the given n-dimensional vector x.

• J: Subroutine used to evaluate the l×n gradient matrix J of the vector-function

h(x) at the current value of x.

• gradient: Subroutine used to evaluate the n-dimensional gradient ∇f of the

objective function f(x) at the current value of vector x.

• Hessian: Subroutine used to evaluate the n × n Hessian matrix ∇∇f of the

objective function f(x) at the current value of vector x. Moreover, an initial

guess of x is required when calling ARBITRARY.

1.7.2 Packages Relevant to Linkage Synthesis

Several software packages of interest to kinematic synthesis are currently available, either

commercially or semi-commercially. A list, with some features, follows:

• SAM: Package intended not only for kinematics, but also for static analysis. Runs

only on Windows and is commercially available from Artas Engineering Software,

of RJ Neuen, The Netherlands:

www.artas.nl

• PRO/ENGINEER: Comprehensive package for mechanical design and analysis at

large. Its PRO/MECHANICA module provides motion analysis, simulation, and

animation of fairly complex mechanisms. Runs on Windows and Unix. Vendor:

Parametric Technology, Inc. (USA):

http://www.ptc.com/
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• UNIGRAPHICS: High-end, comprehensive package with modules for finite-element

analysis, CAD/CAM, and CAE (Computer-Aided Engineering). Vendor: Siemens

PLM Software

http://www.plm/automation.siemens.com

• CATIA: The most widespread CAE package, in CAD, CAE, CAM. Manufacturer:

Dassault Systèmes

http://www.3ds.com/contact/

• ADAMS, a general tool for mechanism and multibody-system analysis, produced

by MSC.ADAMS Software. No synthesis features are supported.

• AUTOCAD: Comprehensive package for mechanical design and geometric analysis.

To be used as a CAD support for linkage synthesis. No special features for linkage

synthesis available. Runs mostly on Windows. Old versions run also on Unix.

Vendor: Autodesk, Inc. with

www.autodesk.com

• MATLAB: General-purpose numerical analysis package with excellent routines for

equation-solving and optimization. To be used as a support for linkage synthesis. A

few Matlab routines are specifically geared to linkage analysis. Package is produced

by The MathWorks with

www.mathworks.com

• MACSYMA, MAPLE, and MATHEMATICA: commercial packages for symbolic

computations. MAPLE

www.maplesoft.com

and MATHEMATICA

www.wolfram.com/mathematica4/isp

provide for numerical computations

• M a a

a a

BILE : Excellent object-oriented modeller and simulator of mechanical sys-

tems composed mostly of rigid bodies. No synthesis capabilities. Semicommercial.

Available from the University of Duisburg-Essen. For information, contact: Martin

Tändl: m.taendl@uni-duisburg.de
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• BERTINI: Developed by Bates, Hauenstein, Sommese, and Wampler (2013), a C

program for solving polynomial systems. Key features:

– Finds isolated solutions by total degree or multihomogeneous degree homo-

topies.

– Implements the latest method, called “regeneration,” which efficiently finds

isolated solutions by introducing the equations one-by-one.

– Finds positive dimensional solution sets and breaks them into irreducible com-

ponents.

– Has adaptive multiprecision arithmetic for maintaining accuracy in larger prob-

lems.

– Endgames for fast, accurate treatment of singular roots.

– Simple input file format.

– Provides parameter homotopy, useful for efficiently solving multiple examples

in a parameterized family of systems.

– Allows user-defined homotopies.

– Supports parallel computing.

– A detailed users manual is available from SIAM Books. See Charles W.

Wampler’s publications in:

http://www3.nd.edu/ cwample1/Software.htm

• HOMLAB: Developed by Charles Wampler, a suite of MatLab routines for learn-

ing about polynomial continuation. Although created for use with the book by

Sommese and Wampler (2005), HomLab is a general-purpose solver, fast enough for

moderately-sized systems. If you are concerned about speed, numerical accuracy,

and user-friendliness, try Bertini. If you want to learn the techniques of polynomial

continuation from the inside, HomLab is your entry point.

• PHC: A code written in Ada, by Jan Verschelde. Key features:

– Treatment of isolated solutions, including polyhedral homotopy (also known as

the BKK approach, mixed volume, or polytope method).

– Treatment of positive-dimensional solutions includes irreducible decomposition

and diagonal homotopy.

– The PHC pages also include a large collection of interesting examples.

• HOM4PS: Developed by T.-Y. Li, T.-L. Lee, T. Chen and N. Ovenhouse, a piece of

code for polyhedral homotopy (Li and Tsai, 2009). Very fast polyhedral homotopy

method.
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• Ch: C/C++ code for numerical computations, of special interest to solving complex

kinematics problems. It handles dual numbers.
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Chapter 2

The Qualitative Synthesis of

Kinematic Chains

li·ai·son 1: a binding or thickening agent used in cooking

2 a) a close bond or connection : interrelationship

b): an illicit sexual relationship : affair

Merriam Webster’s Collegiate Dictionary,Tenth Edition (C)1997,

1996 Zane Publishing, Inc.

Qui pourrait ne pas frémir en songeant aux malheurs

que peut causer une seule liaison dangereuse!

Lettre CLXXV. Madame de Volanges

à Madame de Rosemonde (de Laclos, 1782).

The fundamental concepts of motion representation and groups of displacements, as

pertaining to rigid bodies, are recalled. These concepts are then applied to: a) the

classification of kinematic chains according to their mobility; b) the determination of the

degree of freedom of kinematic chains; and c) the qualitative synthesis of multiloop chains

occurring in various types of machines, including parallel robots.

2.1 Notation

In following the notation introduced in Ch. 1, we will denote with lower-case boldfaces all

vectors; with upper-case boldfaces all matrices. Additionally, sets will be denoted with

calligraphic fonts, e.g., A, B, etc., while lower kinematic pairs (LKP), to be introduced

in Section 2.3, are denoted with sans-serif upper cases: R, P, H, C, F, and S.
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2.2 Background

The notion of rigid body is fundamental in the study of kinematic chains. A rigid body is

a geometric concept that stems from the more general concept of continuum: A rigid body

B is an unbounded continuum of points such that, under any possible transformation, two

arbitrary points of B remain equidistant.

A rigid body B is thus a set of points that fills continuously the three-dimensional

Euclidean space E . That is, between any two distinct points of B we can always find an

infinite, nondenumerable set of points of B. A rigid body, as any set of points, is capable

of undergoing transformations. In the case at hand, these transformations preserve the

distance between any two points of B; as a consequence, the same transformation pre-

serves the angle between any two lines of the body. Any such transformation is called

an isometry—from Greek isos for “equal” and metron for “measure.” We must, however,

distinguish between two kinds of isometries, as described below: Choose any four points

O, A, B, and C of the body, not lying in a plane. If, when the last three points, as

viewed from O, lie in the ccw order A, B, C, the trihedron defined by segments OA,

OB and OC is said to be right-handed; otherwise, it is left-handed. If a “hand” can be

attributed to a set, we refer to this feature as the chirality—Greek: chéir = hand. It

is apparent that under any physically possible motion of B, a right-handed (left-handed)

trihedron remains right-handed (left-handed). Isometries that do not preserve the hand

of the trihedron are reflections, examples of which are the two shoes, or the two gloves,

or the two eyes, etc., of the same individual. One is a reflection, or a mirror-image, of the

other. A hand-preserving isometry of B is implicit in a displacement of B from a reference

pose—both position and orientation— to its current pose. To simplify matters, we will

denote body and pose with the same calligraphic letter, while distinguishing among vari-

ous poses of the same body by subscripts, whenever needed. Thus, B0 denotes a reference

pose of B, while its current pose can be represented by B, as long as no confusion arises.

Chirality-preserving isometries are involved in rigid-body motions.

Rigid-body pose and displacement are thus two abstract concepts. To quantify the

pose we resort to coordinate frames. A coordinate frame is attached to a rigid body B.
The orientation of B with respect to a reference frame is thus given by the orientation of

the body-frame with respect to that of the reference frame. The position of B, in turn,

is given by that of the origin of the body-frame in the reference frame. The body-pose

thus comprises both body-position and body-orientation. Body-position is thus defined

by the position vector oB of the origin OB of the body-frame, while body-orientation by

the rotation matrix Q carrying the reference frame into an attitude coincident with that

of the body-frame.

According to Euler’s Theorem (Angeles, 2014), the displacement of a rigid body about

a fixed point O, called a pure rotation, is fully characterized by an axis passing through
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O and parallel to the unit vector e, and an angle φ, as depicted in Fig. 2.1. Prior to

introducing the rotation matrix, some preliminaries are invoked in the paragraphs below.

Figure 2.1: Rotation of a rigid body about a line

Given two vectors u,v ∈ R
n, the product uvT is termed a rank-one matrix because

any w ∈ R
n normal to v is mapped by uvT into 0n ∈ R

n. As there are n− 1 linearly

independent vectors normal to v, the nullity of uvT , i.e., the dimension of its null space,

is n− 1. As a consequence, rank(uvT ) = 1, hence the name.

The foregoing motion is represented algebraically by a rotation matrix, i.e., a 3 × 3

proper orthogonal matrix Q—a matrix is said to be proper-orthogonal if and only if its

inverse equals its transpose and its determinant is +1; if the said determinant is −1, the
matrix is said to be improper-orthogonal—that adopts any of the equivalent forms given

below:

Q = eφE (2.1a)

Q = 1 + sinφE+ (1− cosφ)E2 (2.1b)

Q = eeT + cosφ(1− eeT ) + sinφE (2.1c)

In the above expressions we have resorted to the matrix exponential in the first rep-

resentation of Q. Moreover, we introduced matrices 1, eeT , and E, that will be described

presently. Matrix 1 denotes the 3× 3 identity matrix, while eeT is a symmetric, rank-one

matrix; finally, E denotes the cross-product matrix (CPM) of the unit vector e, the CPM

being defined as: Given any three-dimensional vector a, the cross-product matrix A of a

is given by

A ≡ ∂(a× v)

∂v
= CPM(a) (2.1d)
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for any three-dimensional vector v. More concretely, if a has components [a1 a2 a3]
T in a

given coordinate frame, then, in the same frame,

aaT =





a21 a1a2 a1a3

a1a2 a22 a2a3

a1a3 a2a3 a23



 , A =





0 −a3 a2

a3 0 −a1
−a2 a1 0



 (2.2a)

An identity that the reader is invited to verify follows: if A = CPM(a), for any

three-dimensional vector a, then

A2 = −‖a‖21+ aaT (2.3)

In particular, if ‖a‖ = 1, then A2 = −1+aaT . Now it should be apparent that expression

(2.1c) follows from expression (2.1b) upon application of the foregoing identity.

Now, given a rigid body in two poses, B1 and B2, characterized by the position vectors

o1 and o2, and the rotation matrices Q1 and Q2, the displacement of the body from B1
to B2 is represented by a) the vector difference u = o2 − o1 and b) the matrix product

Q = Q2Q1. Special cases of displacements are the pure rotation, as introduced above, for

which u = 0, and the pure translation, for which Q = 1.

The concept inverse to the CPM of a 3D vector is the axial vector of a 3 × 3 matrix.

The Cartesian decomposition of a n× n matrix A is

A = AS +ASS (2.4)

where AS is symmetric and ASS is skew-symmetric.

The reader can readily prove that

AS ≡
1

2
(A+AT ), ASS ≡

1

2
(A−AT ) (2.5)

Definition 2.2.1 For n = 3, let v be any 3D vector. Then there exists a vector a such

that

ASSv ≡ a× v (2.6)

Vector a is called the axial vector of ASS:

a = vect(ASS) = vect(A) (2.7)

Theorem 2.2.1

ASS = CPM(a) (2.8)

Proof: trivial. DIY.
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Theorem 2.2.2 Operations CPM(·) and vect(·) are linear, i.e., if A and B are 3 × 3

matrices and a and b are 3D vectors, while α and β are real numbers, then

CPM(αa+ βb) = αCPM(a) + βCPM(b) (2.9a)

while

vect(αA+ βB) = αvect(A) + βvect(B) (2.9b)

Proof: follows directly from the definitions of CPM(·) and vect(·) plus that of the cross

product.

If aij is the (i, j) entry of A, below we find the entries of a:

AS =





a11 (a12 + a21)/2 (a13 + a31)/2

a22 (a23 + a32)/2

sym a33



 (2.10a)

ASS =





0 (a12 − a21)/2 (a13 − a31)/2
0 (a23 − a32)/2

skew-sym 0



 (2.10b)

Further, if ai denotes the i
th component of a with a similar definition for vi,

a× v = det









i j k

a1 a2 a3

v1 v2 v3







 =





a2v3 − a3v2
a3v1 − a1v3
a1v2 − a2v1



 (2.11)

As well,

ASSv =
1

2





(a12 − a21)v2 + (a13 − a31)v3
−(a12 − a21)v1 + (a23 − a32)v3
−(a13 − a31)v1 − (a23 − a32)v2



 (2.12)

As per eq. (2.6), equate eqs. (2.11) and (2.12):

a2 =
1

2
(a13 − a31), a3 = −

1

2
(a12 − a21), a1 = −

1

2
(a23 − a32) (2.13)

or

a =
1

2





a32 − a23
a13 − a31
a21 − a12



 (2.14)

Facts: for any n× n matrix M and any n-dimensional vectors a and b,

Fact 2.2.1

tr(M) = m11 +m22 + · · ·+mnn
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Fact 2.2.2

tr(abT ) = a1b1 + a2b2 + · · ·+ anbn = aTb

Fact 2.2.3 If M = −MT , then all its diagonal entries vanish, and hence, tr(M) = 0

Theorem 2.2.3 If A = AT , then vect(A) = 0

Proof: follows from eq. (2.14).

Theorem 2.2.4 the trace(·) operation is linear, i.e.,

tr(αA+ βB) = αtr(A) + βtr(B)

Proof: follows from its definition.

The foregoing concepts are now applied to find the natural invariants of Q, i.e., the

unit vector e, its cross-product matrix E, and angle φ, as per eqs. (2.1a–2.1c).

tr(Q) = tr(eeT ) + tr[cos φ(1− eeT )] + tr(sinφE)
︸ ︷︷ ︸

Theorem 2.2.4

(2.15)

= eTe
︸︷︷︸

Fact 2.2.2

+ cosφ[tr(1)
︸ ︷︷ ︸

3

− eTe
︸︷︷︸

1

]

︸ ︷︷ ︸

Theorem 2.2.4

+ sinφ tr(E)
︸ ︷︷ ︸

0
︸︷︷︸

Fact 2.2.3
= 1 + 2 cosφ

vect(Q) = vect(eeT ) + vect[cosφ(1− eeT )] + vect(sinφE)
︸ ︷︷ ︸

Theorem 2.2.2

(2.16)

= 0
︸︷︷︸

Theorem 2.2.3

+ 0
︸︷︷︸

Theorem 2.2.3

+ sinφvect(E)
︸ ︷︷ ︸

Theorem 2.2.2
= sinφe
︸ ︷︷ ︸

eq. (2.7)

which leads to an uncertainty, as φ can be associated to one of two possible quadrants.

Moreover, a reversal in the sign of φ, which does not change the direction of the axis

of rotation, can be compensated with a reversal of the sign of the components of e, to

leave Q immutable. For concreteness, and without loss of generality, we shall assume
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henceforth that sin φ ≥ 0, and hence, that φ lies either in the first or the second quadrant.

The quadrant ambiguity is resolved by the sign of cosφ:

if cosφ =
tr(Q)− 1

2
> 0, then φ in 1st quadrant

if cosφ =
tr(Q)− 1

2
< 0, then φ in 2nd quadrant

Example 2.2.1 For Q1 of eq. (2.21a), find e and φ.

vect(Q1) =
1

2





3/2√
3/2√
3/2



 =
1

4





3√
3√
3



⇒ sin φ = ||vect(Q1)|| =
√
15/4

⇒ φ = 75.52◦ or 104.48◦

e = vect(Q1)/||vect(Q1)|| =
√
15

15





3√
3√
3





tr(Q1) =
1

2
⇒ cosφ = −1

4
⇒ φ = 104.48◦

2.3 Kinematic Pairs

The concepts, and to a great extent the notation and nomenclature that follow, are taken

from (Hervé, 1978; 1999).

The kinematics of machines is studied via their underlying kinematic chains. A kine-

matic chain is the result of the coupling of rigid bodies, called links. Upon coupling two

links, a kinematic pair is obtained. When the coupling takes place in such a way that

the two links share a common surface, a lower kinematic pair results; when the coupling

takes place along a common line or a common point of the two links, a higher kinematic

pair is obtained.

If every link of a chain is coupled to at most two other links, then the chain is said to

be simple. If all the links of a simple kinematic chain are coupled to two other links, then

a closed kinematic chain is obtained. Moreover, this chain constitutes a single loop. If a

simple chain has a link coupled to only one other link, then it has necessarily a second

link coupled to only one other link, an open chain thus resulting. A multiloop chain

can have open subchains. Single-loop kinematic chains are present in single-degree-of-

freedom mechanisms, but a single-loop chain may have a degree of freedom (dof) greater

than or less than unity. Simple kinematic chains of the open type are present in robotic

manipulators of the serial type. Multiloop kinematic chains occur in both single-degree-of-

freedom machines, e.g., in automobile suspensions, and in multi-dof robotic manipulators

of the parallel type, paradigms of which are flight simulators. We shall elaborate on these

concepts in this course.

51



Lower kinematic pairs deserve special attention for various reasons: One is that they

model fairly well the mechanical couplings in a variety of machines; one more is that they

are known to occur in exactly six types, to be described presently. Higher kinematic pairs

occur in cam-follower mechanisms and in gears, in which contact occurs along common

lines or common points of the coupled bodies.

The six lower kinematic pairs, displayed in Fig. 2.2, are listed below:

φ

(a)

u

(b)

φ

u = pφ

(c)

φ

u

(d)

φ

tu
tv

(e)

φx

φy

φz

(f)

Figure 2.2: The six lower kinematic pairs: (a) revolute (R); (b) prismatic (P); (c) screw

(H); (d) cylindrical (C); (e) planar (F); and (f) spherical (S)

(i) The revolute pair R allows a relative rotation through an angle φ about one axis A
passing through a point A of position vector a and parallel to the unit vector e;

(ii) The prismatic pair P allows a relative translation u in the direction of a unit vector

e;

(iii) The screw pair H allows both a relative rotation through an angle φ about an axis

A passing through a point A of position vector a and parallel to the unit vector

e, and a relative translation u in the direction of e. However, the rotation and
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the translation are not independent, for they are related by the pitch p of the pair:

u = pφ;

(iv) The cylindrical pair C allows both a relative rotation through an angle φ about an

axis A passing through a point A of position vector a and parallel to the unit vector

e, and a relative translation u in the direction of e, rotation and translation being

independent;

(v) The planar pair F allows two independent translations tu and tv in the directions

of the distinct unit vectors u and v, respectively, and a rotation φ about an axis

normal to the plane of these two vectors; and

(vi) The spherical pair S, allowing one independent rotation about each of three non-

coplanar axes concurrent at a point O. The relative motion allowed by S is thus

characterized by point O, and is associated with an axis parallel to the unit vector

e and with the angle of rotation φ about this axis, as per Euler’s Theorem.

Remark 2.3.1 While the R, H, and C pairs are characterized by an axis, the P pair is

characterized by a direction alone; not by an axis!

The Π Kinematic Pair

Besides the six LKPs, the Π pair will be introduced in this chapter. This joint is a

parallelogram four-bar linkage, as depicted in Fig. 2.3, which couples two links, 1, that is

considered fixed, and 3. The latter moves under pure translation, all its points describing

circles of variable location and radius identical to the common length of links 2 and 4.

1

2

3

4

R1

R2 R3

R4

Figure 2.3: The Π joint, a four-bar parallelogram coupling links 1 and 3

In the standard terminology, link 3 is termed the coupler. The linkage thus provides

a kinematic pair of the coupler link with respect to the fixed link. Hervé and Sparacino
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(1992) termed this coupling a Π kinematic pair, a.k.a. a Π-joint. At about the same time,

Wohlhart (1991, 1992) and Dietmaier (1992) reported work on the use of the same type

of joints in mechanisms.

Note that the Π joint does not belong to the class of lower kinematic pairs. The Π pair

can be shown to be equivalent to a P pair of continuously variable direction. Indeed, the

instant centre (Uicker, Jr. et al., 2011) of the coupler link 3 with respect to link 1 of the

parallelogram linkage lies at infinity, in the direction of the axes of the parallel links 2 and

4 of Fig. 2.31. This point thus changes continuously its location, depending on the angle

of inclination of the axes of links 2 and 3 with respect to line R1R4. The same point is thus

common to both links 1 and 3, but it is the only common point. If the linkage is regarded

as a three-dimensional object, then the instant centre is, in fact, a line, the instant screw

axis—see Theorem A.3.5—and hence, contact between the two coupled links takes place

not along a surface, but along a line, which disqualifies the Π pair from being a LKP. The

interest of this pair lies in its ability to generate pure translations when combined with

other Π-joints or with lower kinematic pairs, as discussed below.

2.4 Graph Representation of Kinematic Chains

Figure 2.3 depicts a planar four-bar linkage in the most common way: its R joints are

represented as small circles—with smaller circles inside that most often are replaced by

dots or even left empty—their centre denoting the projection of the R axis onto the plane

of the figure. The joints are coupled by means of straight lines representing the mechanism

links. These lines convey geometric information, as their lengths are the distances between

neighbouring-joint axes. An alternative representation of linkages, particularly useful in

the preliminary stages of mechanism design, in which dimensions are yet to be found,

is in terms of graphs. A graph is a two-dimensional sketch that is composed of nodes

and edges (Harary, 1972). The nodes are objects—e.g., pieces of land in the famous

Königsberg/Kaliningrad—related by the edges—e.g., the seven Königsberg/Kaliningrad

bridges that so much attracted Leonhard Euler’s attention. In kinematic synthesis, the

objects are the mechanism links, the edges the joints that couple them. The graph

representation of the four-bar linkage of Fig. 2.3, or of any four-bar linkage for that

matter, as dimensions become immaterial in a graph, is depicted in Fig. 2.4

Apparently, a mechanism graph encapsulates non-dimensional, relational information

on the architecture of a linkage. This information includes connectivity—which link is

coupled to which—and layout—whether the chain is closed, as in the above case, or open,

as in the case of an industrial robot of the serial type, e.g., the one shown in Fig. 2.5. In

the graph representation, link 1 is the base, link 7 the end-effector.

The architecture of some machines is more complex in that it contains several loops.

1Remember the Aronhold-Kennedy Theorem of elementary mechanisms courses!
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Figure 2.4: Two alternative graphs of a four-bar linkage

(a)

RRRRRR1 2 3 4 5 6 7

(b)

Figure 2.5: A six-axis industrial robot of the serial type: (a) its photograph and (b) its

graph (Permission to reproduce from Adept Technology, Inc. is pending)

For example, the flight simulator of Fig. 2.6(a) comprises one base platform (B), the

ground, one moving platform (M), the one carrying the aircraft cockpit, both coupled

by means of six extensible limbs. Its graph, in two versions, being shown in Figs. 2.6(b)

and (c). As a matter of fact, each limb is itself a serial kinematic chain of the serial type,

its architecture being depicted in Fig. 2.7, which is, again, a six-joint open chain, similar

to the one of Fig. 2.5(a), with one difference: its third joint from the base (1) is of the P

type, instead of the R type of Fig. 2.5(b). One more difference, not affecting its topology

but worth pointing out, is that, of all six joints of the chain shown in Fig. 2.7, only the P

joint is actuated, all R joints being passive.
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(a)

M

B

(b)

M

M M

M

MM B

(c)

Figure 2.6: A flight simulator: (a) its photograph; and (b) & (c) two alternatives of its

graph representation (Permission to reproduce from CAE Electronics Ltd. is pending)

2.5 Groups of Displacements

In the sequel, we shall resort to the algebraic concept of group. A group is a set G of

elements related by a binary operation ⋆ with four properties:
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Figure 2.7: The kinematic chain of a flight-simulator limb

P1 if a and b ∈ G, then a ⋆ b ∈ G;

P2 if a, b, and c ∈ G, then a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c;

P3 G contains an element ι2 called the identity of G under ⋆, such that a ⋆ ι = ι ⋆ a = a;

and

P4 for every a ∈ G, there exists an element a−1, called the inverse of a under ⋆ such

that a ⋆ a−1 = a−1 ⋆ a = ι.

Two types of groups are found, discrete and continuous. The former have a discrete

set of elements, the later a continuum. An example of a discrete group is the symmetry

group of a regular polygon, defined as the set of rotations about the centre of the polygon

that leaves the figure unchanged. Continuous groups, or Lie groups, named after the

Norwegian mathematician Sophus Lie (1842–1899), are of interest to this chapter.

If the elements of a set D are the displacements undergone by a rigid body, then we

can define a binary operation ⊙—read “o-dot”—of displacements as the composition of

displacements: As the body undergoes first a displacement da and then a displacement

db, taking the body, successively, from pose B0 to pose Ba, and then to pose Bb, it is

intuitively apparent that the composition of the two displacements, da ⊙ db, is in turn a

rigid-body displacement.

More concretely, a rigid-body displacement, illustrated in Fig. 2.8, is defined by a

translation b of a landmark point, say O in the figure, and a rotation Q about the same

2ι is the Greek letter iota.
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point. Point P in the displaced posture is assumed to be the displaced counterpart of a

point P0—not shown in the figure—of position vector π0 in the reference posture. Under

these conditions, the position vector p of P in the reference frame A can be expressed as

Figure 2.8: Coordinate frames with different origins

p = b+ π
︸︷︷︸

Qπ0

= b+Qπ0 (2.17)

which gives the displaced position of P as a sum of vectors, the second being, in turn, the

product of a matrix by a vector. A terser representation can be obtained, involving only

a product of a matrix by a vector, if homogeneous coordinates are introduced. The homo-

geneous coordinates of a finite point, i.e., a point whose Cartesian coordinates are finite

real numbers, are grouped in a four-dimensional array {p }, whose first three components

are the Cartesian coordinates of P , the fourth being the real unity, i.e.,

{p } ≡
[
p

1

]

, {p0 } ≡
[
π0

1

]

(2.18)

where {p0 } are the homogeneous coordinates of P0. Now, with the aid of the above

definitions and relation (2.17), the same relation can be expressed as a product of a

matrix by a vector array in the form

{p } = {T }{p0 }, {T } ≡
[
Q b

0T 1

]

(2.19)

where {T } is termed a homogeneous-transformation matrix. Notice that homogeneous

transformations, as defined above, are represented by 4 × 4 matrices that involve four

blocks: the upper left block is a proper orthogonal matrix, accounting for the rigid-body

rotation; the upper-right three-dimensional vector block b, accounting for the translation
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of the landmark point O, the designated origin of frameA; the lower-left three-dimensional

row block 0T ; and the lower-right 1× 1 “block” that is the real unity.

It is left as an exercise to the reader to prove that homogeneous transformations form

a continuous group under the operation of matrix multiplication.

Hence, with the notation introduced above, for the rigid-body displacements da and

db:

(a) da ⊙ db ∈ D;

(b) a third displacement dc is introduced, carrying B from pose Bb to pose Bc. Then,

da ⊙ (db ⊙ dc) = (da ⊙ db)⊙ dc;

(c) under no motion, any pose B of a rigid body is preserved, the motion undergone

by the body then being represented by a displacement ι—read “iota”—that can be

defined as the identity element of D, such that, for any displacement d, d ⊙ ι =

ι⊙ d = d; and

(d) for any displacement d carrying the body from pose B0 to pose B, the inverse

displacement d−1 is defined as that bringing back the body from B to B0, and hence,

d⊙ d−1 = d−1 ⊙ d = ι.

From the foregoing discussion it is apparent that the set of rigid-body displacements D
has the algebraic structure of a group. Henceforth, we refer to the set of displacements of

a rigid body as group D. The interest in studying rigid-body displacements as algebraic

groups lies in that, on the one hand, D includes interesting and practical subgroups

that find relevant applications in the design of production-automation and prosthetic

devices. On the other hand, the same subgroups can be combined to produce novel

mechanical layouts that would be insurmountably difficult to produce by sheer intuition.

The combination of subgroups, in general, can take place via the standard set operations

of union and intersection. As we shall see, however, the set defined as that comprising

the elements of two displacement subgroups is not necessarily a subgroup, and hence, one

cannot speak of the union of displacement subgroups. On the contrary, the intersection

of two displacement subgroups is always a subgroup itself, and hence, the intersection of

displacement subgroups is a valid group operation.

Rather than the union of groups, what we have is the product of groups. Let G1 and

G2 be two groups defined over the same binary operation ⋆; if g1 ∈ G1 and g2 ∈ G2, then
the product of these two groups, represented by G1 • G2, is the set of elements of the form

g1 ⋆ g2, where the order is important, for commutativity is not to be taken for granted in

group theory.

The intersection of the two foregoing groups, represented by the usual set-theoretic

symbol ∩, i.e., G1∩G2, is the group of elements g belonging to both G1 and G2, and hence,

the order is not important.
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2.5.1 Displacement Subgroups

A subgroup Gs of a given group G is a set of objects such that: (a) they all belong to G,
although some objects, or elements, of G may not belong to Gs, and (b) Gs has the algebraic
structure of a group. Therefore, a subgroup Ds of the group of rigid-body displacements

D is itself a group of displacements, but may lack some rigid-body displacements. If D
includes elements not included in Ds, then the latter is said to be a proper subset of the

former.

The six lower kinematic pairs can be regarded as generators of displacement subgroups.

We thus have:

(i) The revolute pair R of axis A generates the subgroup R(A) of rotations about A.
Each element of this subgroup is characterized by the angle φ of the corresponding

rotation;

(ii) the prismatic pair in the direction e generates the subgroup P(e) of translations

along e. Each element of P(e) is characterized by the translation u along e;

(iii) the screw pair of axis A and pitch p generates the subgroup H(A, p) of rotations φ
about A and translations u along the direction of the same axis, translations and

rotations being related by the pitch p in the form u = pφ, as described when the

screw pair was introduced. Each element ofH(A, p) can thus be characterized either

by u or by φ;

(iv) the cylindrical pair of axis A generates the subgroup C(A) of independent rotations
about and translations along A. Each element of C(A) is thus characterized by both

the displacement u and the rotation φ;

(v) the planar pair generates the subgroup F(u,v) of two independent translations in

the directions of the distinct unit vectors u and v, and one rotation about an axis

normal to both u and v. Each element of F(u,v) is thus characterized by the two

translations tu, tv and the rotation φ;

(vi) the spherical pair generates the subgroup S(O) of rotations about point O. Each

element of S(O), a rotation about O, is characterized by the axis of rotation passing

through O in the direction of a unit vector e and through an angle φ. Alternatively,

each rotation about O can be characterized by the independent rotations about

three designated axes, e.g., the well-known Euler angles.

Besides the six foregoing subgroups, we can define six more, namely,

(vii) The identity subgroup I, whose single element is the identity displacement ι intro-

duced above;
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(viii) the planar-translation subgroup T2(u,v) of translations in the directions of the two

distinct unit vectors u and v. Each element of this group is thus characterized by

two translations, tu and tv;

(ix) the translation subgroup T3 of translations in E , each element of which is character-

ized by three independent translations tu, tv, and tw;

(x) the subgroup Y(e, p) = T2(u, v) • H(A, p), with u× v = e ‖ A of motions allowed

by a screw of pitch p and axis parallel to e undergoing arbitrary translations in a

direction normal to e. Each element of this subgroup is thus characterized by the

two independent translations tu, tv of the axis, and either the rotation φ about this

axis or the translation tw along the axis. Faute-de-mieux, we shall call this subgroup

the translating-screw group;

(xi) the subgroup X (e) = F(e) • P(e), resulting of the product of the planar subgroup

of plane normal to e and the prismatic subgroup of direction e. Each element of

this subgroup is thus characterized by the two translations tu, tv and and the angle

φ of the planar subgroup plus the translation tw in the direction of e. Moreover,

note that F(e) • P(e) = P(e) • F(e). This subgroup, named after the German

mathematician and minerologist Arthur Moritz Schönflies (1853–1928), is known

as the Schönflies subgroup, and is generated most commonly by what is known as

SCARA systems, for Selective-Compliance Assembly Robot Arm;

(xii) the group D itself. Each element of this subgroup is characterized by three inde-

pendent translations and three independent rotations.

It is thus apparent that each subgroup includes a set of displacements with a specific

degree of freedom. We shall need below an extension of the concept of dof, for which

reason we term the dof of each subgroup its dimension, and denote the dimension of any

subgroup Gs by dim[Gs]. Thus,

dim[I] = 0 (2.20a)

dim[R(A)] = dim[P(e)] = dim[H(A, p)] = 1 (2.20b)

dim[T2(u,v)] = dim[C(A)] = 2 (2.20c)

dim[T3] = dim[F(e)] = dim[S(O)] = dim[Y(e, p)] = 3 (2.20d)

dim[X (e)] = 4 (2.20e)

dim[D] = 6 (2.20f)

The foregoing list of twelve displacement subgroups is exhaustive, none of which is of

dimension five. The reader may wonder whether displacement products are missing from

the list that might be subgroups. However, any displacement product not appearing in
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the above list is not a subgroup. As a matter of fact, any set of displacements including

rotations about two axes, and no more than two, fails to have a group structure. Consider,

for example, the set of rotations W produced by a (two-dof) pitch-roll wrist (PRW), as

depicted in Fig. 2.9. With reference to this figure, frame F0, serving as the reference

P

Figure 2.9: A pitch-roll wrist producing a first rotation

frame, is defined with X0 along the roll axis, passing through the operation point P , while

Z0 is defined along the pitch axis.

Now we introduce a first rotation Q1 (not a coordinate transformation!): Define F1

with X1 along the displaced roll axis, passing through P in the displaced pose of the

end-effector (EE), and making an angle of 60◦ with X0, Z1 lying in the X0-Y0 plane,

and making an angle of −30◦ with X0, when measured in the direction of Z0. Matrix

Q1, rotating F0 into F1 as illustrated in Fig. 2.9, is obtained, in F0-coordinates, upon

assigning to its first column the F0-components of the unit vector i1, parallel to X1, its

second column being given by the F0-components of the unit vector j1, parallel to Y1; its

third column follows the same patern3. The rotation Q1 carrying F0 into F1 as depicted

in Fig. 2.9 is, hence,

Q1 =





1/2 0
√
3/2√

3/2 0 −1/2
0 1 0



 (2.21a)

Next, we introduce a second rotation Q2: Define a new frame F2 with X2 along the

displaced roll axis, passing through P in the displaced pose of the EE, and making an

angle of 30◦ with X0, when measured in the direction of Z0, Z2 coinciding with Z0. Hence,

in F0-coordinates as well,

3The matrix transforming F0-coordinates into F1-coordinates is Q
T
1
.
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P

Figure 2.10: A pitch-roll wrist producing a second rotation

Q2 =





√
3/2 −1/2 0

1/2
√
3/2 0

0 0 1



 (2.21b)

Moreover, let Q3 = Q1Q2, a third rotation obtained as the product of the first two,

namely,

Q3 =





√
3/4 −1/4

√
3/2

3/4 −
√
3/4 −1/2

1/2
√
3/2 0



 (2.21c)

which yields a third attitude of the EE, as depicted in Fig. 2.11.

We note that, in an arbitrary configuration, the roll axis remains normal to Z0. Hence,

any rotation produced by the PRW takes the EE to a pose in which the roll axis is normal

to Z0, i.e., the set of possible displaced configurations of the roll axis is a pencil of lines

passing through the origin and normal to Z0. The roll axis in the displaced pose of the

EE thus lies in the X0-Y0 plane. Any EE pose whereby the roll axis lies outside of the

X0-Y0 plane is attained by a rotation outside of W.

As it turns out, the roll axis is carried by Q3 into a configuration parallel to i3, the

image of i0 under Q3, as depicted in Fig. 2.11, i.e.,

i3 = Q3i0 = [
√
3/4 3/4 1/2 ]T (2.22)

which, apparently, is not normal to Z0—its Z0-component is 1/2 6= 0—and, hence, Q3

lies outside of the set W of feasible rotations produced by the PRW. Therefore, the set of

rotations produced by a PRW does not have the algebraic structure of a group.
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P

Figure 2.11: The EE of a pitch-roll wrist undergoing a third, unfeasible, rotation

2.6 Kinematic Bonds

Displacement subgroups can be combined to produce new sets of displacements that may

or may not be displacement subgroups themselves. To combine subgroups, we resort to

the group operations of product (•) and intersection (∩).
Now we introduce the concept of kinematic bond, which is a generalization of kinematic

pair, as first proposed by Hervé (1978), who called this concept liaison cinématique in

French. This concept has been termed kinematic liaison (Angeles, 1982) or mechanical

connection (Hervé, 1999) in English. Since “liaison” in English is usually applied to

human relations, the term “bond” seems more appropriate, and is thus adopted here.

We illustrate the concept with an example: Let us assume three links, numbered from

1 to 3, and coupled by two kinematic pairs generating the two subgroups G1 and G2, where
these two subgroups are instanced by specific displacement subgroups below. We then

have

G1 • G2 =R(A) • P(e) = C(A), for e ‖ A (2.23a)

G1 • G2 =R(A) • T2(u,v) = F(e), for e, A ⊥ u, v (2.23b)

G1 • G2 =R(A) • R(B) = L(1, 3) (2.23c)

G1 ∩ G2 =R(A) ∩ C(A) = R(A) (2.23d)

G1 ∩ G2 =R(A) ∩ S(O) = R(A), for O ∈ A (2.23e)

G1 ∩ G2 =R(A) ∩ P(e) = I, for any A, e (2.23f)

All of the above examples, except for the third one, amount to a displacement sub-

group. This is why no subgroup symbol is attached to that set. Instead, we have used

the symbol L(1, 3) to denote the kinematic bond between the first and third links of the
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chain. In general, a kinematic bond between links i and n of a kinematic chain, when

no ambiguity is possible, is denoted by L(i, n). When the chain connecting these two

links is not unique, such as in a closed chain, where these two links can be regarded as

connected by two possible paths, a subscript will be used, e.g., LI(i, j), LII(i, j), etc. A

kinematic bond is, thus, a set of displacements, as stemming from a binary operation of

displacement subgroups, although the bond itself need not be a subgroup. Obviously, the

12 subgroups described above are themselves special cases of kinematic bonds.

The kinematic bond between links i and n can be conceptualized as the product of

the various subgroups associated with the kinematic pairs between the ith and the nth

links. To keep the discussion general enough, we shall denote the subgroup associated

with the kinematic pair coupling links i and i + 1 as L(i, i+ 1), with a similar notation

for all other kinematic-pair subgroups. Thus,

L(i, n) = L(i, i+ 1) • L(i+ 1, i+ 2) • · · · • L(n− 1, n) (2.24)

For example, in a six-axis serial manipulator, like the one shown in Fig. 2.5, we can

set i = 1, n = 7, all six kinematic pairs in-between being revolutes of independent axes

R(A1), R(A2), . . ., R(A6). Then,

L(1, 7) = D

That is, the manipulator is a generator of the general six-dimensional group of rigid-body

displacements D.
As an example of group-intersection, let us consider the Sarrus mechanism, depicted

in Fig. 2.12.

A less common realization of the Sarrus mechanism is depicted in Fig. 2.13. This

is a ΠΠΠΠ closed kinematic chain, modelled as a compliant mechanism, which bears a

monolithic structure, made of a polymer. The R joints of the mechanism are realized by

removing material at the joint locations, so as to render these areas much more compliant

than the other areas. The mechanism is designed so as to serve as a uniaxial accelerometer.

In the Sarrus mechanism of Fig. 2.12, we have six links, coupled by six revolute pairs.

Moreover, the revolute pairs occur in two triplets, each on one leg of the mechanism. The

axes of the three revolute pairs of each leg are parallel to each other. The bond L(1, 4),
apparently, is not unique, for it can be defined by traversing any of the two legs. Let the

leg of links 1, 2, 3 and 4, coupled by revolutes of axes parallel to the unit vector u, be

labelled I; the other leg, of links 4, 5, 6 and 1, coupled by revolutes of axes parallel to the

unit vector v, is labelled II. It is apparent that, upon traversing leg I, we obtain

LI(1, 4) = F(u)

Moreover, upon traversing leg II,

LII(1, 4) = F(v)
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Figure 2.12: The Sarrus mechanism

That is, leg I is a generator of the planar subgroup F of plane normal to vector u, while

leg II is that of the subgroup F of plane normal to vector v. Therefore, the intersection

LI(1, 4) ∩ LII(1, 4) is the set of displacements common to the two F -subgroups, namely,

the prismatic subgroup of translations in the direction w = v × u, i.e.,

LI(1, 4) ∩ LII(1, 4) = P(w)

The Sarrus mechanism is thus a revolute realization of the prismatic joint.

2.7 The Chebyshev-Grübler-Kutzbach-Hervé Formu-

la

Finding the degree of freedom (dof) f of a given kinematic chain has been an elusive task

for over a century. Here we adopt the methodology proposed by Hervé (1978), based on

the concept of groups of displacements.

Essentially, Hervé considers whether the topology of a kinematic chain suffices to pre-

dict its dof or not. The topology of a kinematic chain pertains to the numbers of links and

joints as well as their layouts, regardless of the values of the geometric parameters of the

chain, such as distances and angles between pair axes and the like. According to Hervé

(1978), kinematic chains can be classified in three categories, based on their mobility:

(a) Trivial, when all the possible kinematic bonds between any pair of links is a subset
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Figure 2.13: An alternative realization of the Sarrus mechanism

of one particular subgroup of D, including D itself, but excluding I. When the

common subgroup of interest is D itself, the chain is trivial if the product of the

subgroups of all the foregoing kinematic pairs yields D. The dof of a trivial kinematic

chain can be determined with the aid of the formula derived below, which takes into

account only the topology of the chain. Caveat: An algorithm to decide, with

knowledge only of the topology of a linkage, whether the linkage is trivial,

is still to be devised.

(b) If the chain (i) is not trivial; (ii) all its possible kinematic bonds between any pair of

its links form a subset Ds of D that does not bear the group property; and (iii) the

bond between two of its links can be expressed as the intersection Dg of a number

of kinematic bonds that is a subgroup of D, then the chain is said to be exceptional.

In this case, the dof of the chain is the dimension of Dg.

(c) paradoxical, when the topology of the kinematic chain alone does not suffice to

determine the chain dof. In this case, special relations among the various geometric

parameters of the chain yield a mobility that would be absent under general values

of those parameters, for the same topology.

2.7.1 Trivial Chains

Regarding trivial chains, let Gm be the subgroup of the least dimension dm, containing

all possible bonds between any pair of links of the chain. Gm can thus be thought of as a

kind of least common multiple of all possible bonds of the chain. Moreover, let di be the
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dimension of the subgroup associated with the ith kinematic pair, and ri ≡ dm− di be its
degree of constraint, termed its restriction for brevity. In determining the dof of a chain,

we are interested in the relative motion capability of the chain, and hence, we consider

arbitrarily one link fixed. It is immaterial which specific link is the designated fixed one.

If the chain is composed of l links and p kinematic pairs, then its dof f is given by the

difference between its total dof before coupling and the sum of its restrictions, i.e.,

f = dm(l − 1)−
p
∑

i=1

ri (2.25)

The above relation can be termed a generalized Chebyshev-Grübler-Kutzbach (CGK) for-

mula in that it generalizes the concept involved in parameter dm above. Conventional

CGK formulas usually consider that dm can attain one of two possible values, 3 for planar

and spherical chains and 6 for spatial chains. In the generalized formula, dm can attain

any of the values 2, 3, 4, or 6. Moreover, rather than considering only three subgroups of

displacements, we consider all 12 described above, none of which is of dimension five.

As an example of the application of the above formula, we consider the vise mechanism,

displayed in Fig. 2.14. In that figure, we distinguish three links and three LKPs. The

links are the frame 1, the crank 2 and the slider 3, which define three bonds, namely,

L(1, 2) = R(A), L(2, 3) = H(A), L(3, 1) = P(a)

in which A is the common axis of the R and the H pairs, while a is the unit vector parallel

to A. In this case, it is apparent that all three bonds lie in the C(A) subgroup, and hence,

dm = 2. Moreover, if we number the three joints in the order R, H, P, and notice that the

dimension di associated with each of the three joints is unity, then ri = 1, for i = 1, 2, 3.

Application of the generalized CGK formula (2.25) yields

f = 2(3− 1)− 3× 1 = 4− 3 = 1

which is indeed the correct value of the vise dof.

While the generalized CGK formula is more broadly applicable and less error-prone

than its conventional counterpart, it is not error-free. Indeed, let us consider the HHHRRH

closed chain of Fig. 2.15, first proposed by Hervé (1978). The four H pairs of this figure

have distinct pitches.

It is apparent that all links move in parallel planes, and that these planes also trans-

late along their common normal direction. The displacement subgroup containing all

possible kinematic bonds of the mechanism under study, of minimum dimension, is thus

the Schönflies subgroup X (u), and hence, dm = 4. Since we have six links and six joints,

each of restriction ri = dm − fi, for fi = 1 and i = 1, . . . , 6, the dof of the mechanism is

obtained from the CGK formula as

f = 4(6− 1)− 6× 3 = 2
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Figure 2.14: The well-known vise mechanism

Figure 2.15: The HHHRRH mechanism

However, the above result is wrong, for it predicts a too large dof. Indeed, the mech-

anism has one idle dof, as can be readily shown by means of a bond analysis: Let us

compute dim[L(1, 5)]:

L(1, 5) = L(1, 2) • L(2, 3)
︸ ︷︷ ︸

C(A1)

•L(3, 4) • L(4, 5)
︸ ︷︷ ︸

C(A2)

where A1 and A2 are axes parallel to vector u and pass through points A and B, respec-

tively, of Fig. 2.15. Now we find the above-mentioned idle dof. To this end, we compute

dim[L(1, 5)], which may appear to be the sum of the dimensions of the two subgroups,

C(A1) and C(A2). However, notice that these two subgroups include one common trans-

lation along u, and hence, in computing the said dimension, care should be taken in not

counting this translation twice. What this means is that the dimension of the intersection
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Figure 2.16: A five-point automotive suspension

of the above two factors must be subtracted from the sum of their dimensions, i.e.,

dim[L(1, 5)] = dim[C(A1)] + dim[C(A2)]− dim[C(A1) ∩ dim[C(A2)] = 2 + 2− 1 = 3

We have thus shown that the chain entails one idle dof. In order to obtain the correct

dof of the chain from the generalized CGK formula, then, the total number m of idle dof

must be subtracted from the dof predicted by that formula, i.e.,

f = dm(n− 1)−
p
∑

i=1

ri −m (2.26)

which can be fairly called the Chebyshev-Grübler-Kutzbach-Hervé formula. In the case at

hand, m = 1, and hence, the dof of the chain of Fig. 2.15 is unity.

Exercise 2.7.1 A model of an automotive five-point suspension is included in Fig. 2.16 4.

This system is used to support and guide the front wheels upon turning and allowing for

relative motion of each wheel with respect to the vehicle chassis. By moving a front wheel

on a suspension of this kind while the vehicle is lifted from ground, it is possible to realize

that the suspension has one single degree of freedom. Moreover, the mechanical system

in question includes one fixed base, the chassis, one mobile platform, the metal frame on

which the wheel is mounted, chassis and frame coupled by five links by means of S joints.

(i) Produce a graph representation of the suspension linkage;

(ii) Determine the degree of freedom of the linkage.

4Taken from (Plecnik and McCarthy, 2013)
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piston
gear train

crankshaft pulley

damper
crankshaft

connecting rod

flywheel

Figure 2.17: The slider-crank mechanism as a key component of an internal combustion

engine: a power-generation system with six cylinders in line (courtesy of MMM Interna-

tional Motores, Campinas, Brazil)

2.7.2 Exceptional Chains

The Sarrus mechanism of Figs. 2.12 and 2.13 is an example of an exceptional chain.

Indeed, all its links undergo motions of either one of two planar subgroups, F(u) and

F(v). Moreover, the product of these two subgroups does not yield the group D—notice

that the linkage has two sets of R pairs, each parallel to a distinct unit vector, u or v.

The dof of this mechanism can still be found, but not with the aid of the CGK formula of

eq.(2.25), for all its kinematic bonds do not belong to the same subgroup of D. This dof
is found, rather, as the dimension of the intersection of the two foregoing subgroups, i.e.,

f = dim[F(u) ∩ F(v)] = dim[P(u× v)] = 1

Another example of exceptional chain is the familiar slider-crank mechanism of internal

combustion engines and compressors, as shown in Fig. 2.17. It is customary to represent

this mechanism as a planar RRRP mechanism. However, a close look at the coupling of

the piston with its chamber reveals that this coupling is not via a prismatic, but rather via

a cylindrical pair. It is thus apparent that the displacements of all the links lie not in one

single subgroup of D, but rather in a subset that can be decomposed into two kinematic

bonds, which happen to be subgroups of D, the F(e) subgroup of motions generated by

the RRR subchain and the C(A) subgroup of the piston-chamber coupling C. Here, A is

the axis of the cylindrical chamber and e is the unit vector parallel to the axes of the

three R pairs. Apparently, the product of these two subgroups does not generate all of D,
for it is short of rotations about an axis normal to both e and A. Nevertheless, the dof of
this chain can be determined as the dimension of the intersection of the two subgroups,
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i.e.,

f = dim[F(e) ∩ C(A)] = dim[P(u)] = 1, u ‖ A
Now, why would such a simple planar mechanism—the slider-crank—as portrayed in

elementary books on mechanisms, be built with a spatial structure? The answer to this

question lies in the assemblability of the mechanism: a planar RRRP mechanism requires

a highly accurate machining of the crankshaft, connecting rod, piston and chamber, in

order to guarantee that the axes of the three R pairs are indeed parallel and that the axis

of the cylindrical chamber is normal to the three R axes, which is by no means a simple

task!

One more example of exceptional chain is the parallel robot of Fig. 2.18, consisting of

four identical limbs that join a base AIAIIAIIIAIV with a moving plate DIDIIDIIIDIV .

Each limb, moreover, is a PRΠRR chain (Altuzarra et al., 2009).

AI ≡ AII

AIII ≡ AIV

BI BII

BIIIBIV

CI CII

CIIICIV

DI DII

DIIIDIV

Figure 2.18: The Schönflies-motion generator developed at the University of the Basque

Country, in Bilbao, Spain

The kinematic chain thus contains five joints per limb and 18 links: the base plate,

the mobile plate and four intermediate links per limb. If the CGK formula is applied for

the general kinematic chain, with dm = 6, l = 18, ri = 5, for i = 1, . . . , 18, the dof f thus

resulting turns out to be

f = 6(18− 1)− 20× 5 = 102− 100 = 2

72



which is not what the authors claim, namely, four. In order to elucidate the apparent

contradiction, we conduct below a group-theoretic analysis of the chain mobility: first,

let R(P, e) denote the subgroup generated by a R joint of axis passing through point P

and parallel to the unit vector e; then, let LJ denote the kinematic bond of the Jth limb,

which is the product of five simple bonds, each with a dimension equal to one, namely,

1. Either the prismatic subgroup P(i) of displacements parallel to i, for J = I, III, or

its counterpart P(j) of displacements parallel to j, for J = II, IV ;

2. the rotation subgroup R(BJ , j), of axis of rotation passing through point BJ and

parallel either to j, for J = I, III, or its counterpart R(BJ , i), for J = II, IV ;

3. the subset of displacements DΠ(nJ) associated with the Π-joint, characterized by

translations along circles of radius BJCJ lying in the plane of the Jth parallelogram,

of normal nJ ;

4. the rotation subgroup R(CJ , j), of axis of rotation passing through point CJ and

parallel either to j, for J = I, III or to i for J = II, IV ;

5. the rotation subgroup R(DJ ,k) of axis of rotation passing through DJ and parallel

to k.

Therefore,

LJ = P(i) • R(BJ , j) • DΠ(nJ) • R(CJ , j)
︸ ︷︷ ︸

X (j)

•R(DJ ,k) = X (j) • R(DJ ,k), J = I, III

Likewise,

LJ = X (i) • R(DJ ,k), J = II, IV

Notice that none of the four bonds derived above is a subgroup of D, which disqualifies

the multiloop kinematic chain from being trivial. However, notice also that

X (j) • R(DJ ,k) = X (k) • R(CJ , j), J = I, III

and

X (i) • R(DJ ,k) = X (k) • R(CJ , i), J = II, IV

Therefore,

LJ ∩ LK = X (k), J, K = I, . . . IV, J 6= K

thereby proving that, indeed, the intersection of all limb bonds is a subgroup of D, namely,

the Schönflies subgroup X (k). The dof f of the robot at hand is, thus,

f = dim[X (k)] = 4

and, according to Hervé’s classification, the multiloop chain can be considered exceptional.
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Figure 2.19: Kinematic chain of the Clavel Delta robot

2.7.3 Paradoxical Chains

Examples of paradoxical chains are well documented in the literature (Bricard, 1927;

Angeles, 1982). These include the Bennett mechanism and the Bricard mechanism, among

others.

2.8 Applications to Robotics

The foregoing concepts are now applied to the qualitative synthesis of parallel robotic

architectures. By qualitative we mean here the determination of the topology of the kine-

matic chain, not including the corresponding dimensions. These dimensions are found at

a later stage, by means of methods of quantitative synthesis, which Hartenberg and De-

navit (1964) term dimensional synthesis, the subject of Chs. 3–5. The full determination

of the kinematic chain, including dimensions, yields what is known as the architecture of

the robotic system at hand.

2.8.1 The Synthesis of Robotic Architectures and Their Drives

The first robotic architecture with Π-joints was proposed by Clavel in what he called the

Delta Robot (Clavel, 1988). The kinematic chain of this robot is displayed in Fig. 2.19.

Delta is a generator of the T3 displacement subgroup; it is thus capable of three-dof

translations.

The kinematic chain of the Delta robot is composed of two triangular plates, the top

(A) and the bottom (B) plates. The top plate supports the three (direct-drive) motors,
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Figure 2.20: The MEL microfinger

the bottom plate the gripper, and hence, constitutes the moving-platform (MP) of the

robot. The MP is capable of translating in 3D space with respect to the upper plate,

which is considered fixed. The two plates are coupled by means of three legs, each with

a RRΠR chain.

To be true, the Π-joints of the actual Delta are not composed of R joints, but rather

of orientable pin joints, equivalent to S joints. The reason is that providing parallelism

between any pair of R axes is physically impossible. To allow for assemblability, then, a

margin of manoeuvre must be provided.

While Clavel did not cite any group-theoretical reasoning behind his ingenious design,

an analysis in this framework will readily explain the principle of operation of the robot.

This analysis is conducted on the ideal kinematic chain displayed in Fig. 2.19.

The ith leg is a generator of the Schönflies X (ei) subgroup, with ei denoting the unit

vector parallel to the axis of the ith motor. That is, the ith leg generates a Schönflies

subgroup of displacements comprising translations in 3D space and one rotation about an

axis parallel to ei. The subset of EE displacements is thus the intersection of the three

subgroups X (ei), for i = 1, 2, 3, i.e., the subgroup T3. Therefore, the EE is capable of

pure translations in 3D space. This kinematic chain is, thus, of the exceptional type.

One second applications example is the microfinger of Japan’s Mechanical Engineering

Laboratory (MEL) at Tsukuba (Arai et al., 1996), as displayed in Fig. 2.20. In the MEL
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Figure 2.21: The ith leg of the MEL microfinger

design, the authors use a structure consisting of two plates that translate with respect to

each other by means of three legs coupling the plates. The ith leg entails a RΠΠR chain,

shown in Fig. 2.21, that generates the Schönflies subgroup in the direction of a unit vector

ei, for i = 1, 2, 3. The three unit vectors, moreover, are coplanar and make angles of 120◦

pairwise. The motion of the moving plate is thus the result of the intersection of these

three subgroups, which is, in turn, the T3 subgroup. Moreover, the kinematic chain of

each leg is made of an elastic material in one single piece, in order to allow for micrometric

displacements.

Another example is the Y-Tristar robot, developed at Ecole Centrale de Paris by Hervé

and Sparacino (1992). One more application of the same concepts is the four-dof SCARA-

motion generator proposed by Angeles et al. (2000), and displayed in Fig. 2.22. This robot

entails a kinematic chain of the RΠRΠ type with two vertical revolutes and two Π-pairs

lying in distinct, vertical planes. The Schönflies subgroup generated by this device is of

vertical axis. While Delta and Y-Tristar are made up of Schönflies motion generators,

the intersection of all these is the translation subgroup T3. A Schönflies motion generator

with parallel architecture is possible, as shown in Fig. 2.23. This architecture is the result

of coupling two identical Schönflies motion generators of the type displayed in Fig. 2.22,

each generating the same Schönflies subgroup. As a result, the two-legged parallel robot

generates the intersection of two identical subgroups, which is the same subgroup. Yet

another application of the Π pair is found in the four-degree-of-freedom parallel robot

patented by Company et al. (2001), and now marketed by Adept Technology, Inc. under

the trade mark Quattro s650. A photograph of this robot is displayed in Fig. 2.24.
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Figure 2.22: A serial Schönflies-motion generator with a RΠRΠ architecture

Figure 2.23: A parallel Schönflies–motion generator composed of two RΠRΠ legs
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Figure 2.24: Adept Technology’s Quattro robot, a parallel Schönflies–motion generator

78



Chapter 3

Function Generation

3.1 Introduction

Linkages are the most common means of producing a large variety of motions of a rigid

body, termed the output link, about an axis fixed to the machine frame. In the best

known applications, motion is produced by a motor, usually running at a constant rpm,

and coupled by means of a speed reducer—gear train, harmonic drive, or similar—to

the input link. Under these conditions, the input link moves at a constant speed as well.

Other applications of linkages involve alternative forms of actuation, such as motors under

computer control, whose motion is all but uniform, and dictated by unpredictable changes

in the environment. In these cases, changes are detected by means of sensors sending their

input signals to the computer generating the output signals, that are fed into the motor.

Such applications fall in the realm of mechatronic systems.

In one more class of applications, the linkage is driven by a human actuator. Examples

of this class are numerous, and sometimes taken for granted, e.g., when cutting a paper

sheet with scissors, when pedalling a bicycle, etc. In the case of scissors, the two blades of

this tool form a two-link open chain coupled by a R pair. When held by a user, this chain

is coupled to a second, similar chain formed by the proximal phalanx of the thumb and the

intermediate phalanx of the index finger, thereby forming a four-bar linkage. Likewise,

in the case of a bicycle, the frame and one of the two pedals form an open chain, which

couples with a second, similar chain, formed by the calf and the thigh of a human user,

coupled by the R pair of the knee, thereby forming, again, a four-bar linkage.

One more application of the concepts studied in this chapter involves parameter iden-

tification, whereby a linkage exists but is not accessible for measurements, and we want

to know its dimensions. Take the case of the subtalar and ankle-joint complex, which

is known to entail a closed kinematic chain, i.e., a linkage, but its joints are not readily

accessible for measurement. We can cite here a case in which a series of experiments

was conducted, measuring input and output angles, from which linkage dimensions were
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estimated by fitting the measurements to a linkage kinematic model (Wright et al, 1964).

3.2 Input-Output Functions

3.2.1 Planar Four-Bar Linkages

The classical problem of function generation was first formulated algebraically by Freuden-

stein in a seminal paper that has been recognized as the origin of modern kinematics

(Freudenstein, 1955). In that paper, Freudenstein set to finding the link lengths { ai }41
of the planar four-bar linkage displayed in Fig. 3.1 so as to obtain a prescribed relation

between the angles ψ and φ.

A

B

C

D
a1

a2

a3
a4

φ
ψ

θ

µ

X

Y

Figure 3.1: A four-bar linkage for function generation

In Fig. 3.1, ψ denotes the input angle of the linkage, φ the output angle, θ the coupler

angle, and µ the transmission angle, which will be studied in Section 3.6. We state below

the function-generation problem associated with the linkage of Fig. 3.1:

Find {ak}41 that will allow the linkage to produce the set of m input-output

pairs {ψk, φk}m1 .

In the foregoing statement an algebraic relation between the two angles, ψ and φ,

known as the input-output (IO) equation, is assumed to be available in the form of an

implicit function, namely,

F (ψ, φ) = 0 (3.1)

In formulating the input-output equation, we introduce four two-dimensional vectors,

all represented in the coordinate frame of Fig. 3.1:

r1 ≡ −→AB = a2

[
cosψ

sinψ

]

, r2 ≡ −−→BC = a3

[
cos θ

sin θ

]

, (3.2a)

r3 ≡ −−→AD = a1

[
1

0

]

, r4 ≡ −−→DC = a4

[
cosφ

sin φ

]

(3.2b)
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From Fig. 3.1 follows that

r1 + r2 = r3 + r4 (3.3)

Obviously, we need a scalar relation between the input and output angles, but we have

derived above a vector equation. Note, however, that the angles of interest appear in r1

and r4; r3 remains constant throughout the linkage motion; and r2 contains an unwanted

unknown, θ. This is eliminated below: From eq.(3.3),

r2 = r3 + r4 − r1 (3.4)

Now, the right-hand side of the above equation is independent of this angle. If we take the

Euclidean norm, a.k.a. the magnitude, of both sides of eq.(3.4), then angle θ is eliminated,

for the magnitude of r2 is independent of this angle; in fact, this magnitude is nothing

but the link length a3. We thus have

‖r2‖2 = ‖r3 + r4 − r1‖2 (3.5)

Upon expansion,

‖r2‖2 = ‖r3‖2 + ‖r4‖2 + ‖r1‖2 + 2rT3 r4 − 2rT3 r1 − 2rT4 r1 (3.6)

where

‖r1‖2 = a22, ‖r2‖2 = a23, ‖r3‖2 = a21, ‖r4‖2 = a24

rT3 r4 = a1a4 cosφ, rT3 r1 = a1a2 cosψ, rT4 r1 = a2a4 cos(φ− ψ)

Plugging the foregoing expressions into eq.(3.6) yields a form of the input-output (IO)

equation:

a23 = a21 + a24 + a22 + 2a1a4 cosφ− 2a1a2 cosψ − 2a2a4 cos(φ− ψ) (3.7)

which is already a scalar relation between the input and the output angles, with the link

lengths as parameters, free of any other linkage variable, like θ and µ. However, this

relation is not yet in the most suitable form for our purposes. Indeed, it is apparent

that a scaling of the link lengths by the same factor does not change the input-output

relation, and hence, the above equation cannot yield all four link lengths. This means

that we can only obtain the relative values of the link lengths for a set of prescribed input-

output angles. One more remark is in order: the link lengths appear as unknowns when

a pair of input-output angles is given; moreover, these unknowns appear quadratically in

that equation. Thus, simply dividing the two sides of the equation by any link length

will still yield a quadratic equation in the link-length ratios. What Freudenstein (1955)

cleverly realized was that by means of a suitable nonlinear mapping from link lengths into

nondimensional parameters, a linear equation in these parameters can be produced. To
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this end, both sides of eq.(3.7) are divided by 2a2a4. Once this is done, the definitions

below are introduced:

k1 ≡
a21 + a22 − a23 + a24

2a2a4
, k2 ≡

a1
a2
, k3 ≡

a1
a4

(3.8)

which are the Freudenstein parameters of the linkage at hand. The inverse relations are

readily derived, if in terms of one of the link lengths, say a1:

a2 =
1

k2
a1, a4 =

1

k3
a1, a3 =

√

a21 + a22 + a24 − 2k1a2a4 (3.9)

The IO equation (3.7) then becomes

k1 + k2 cosφ− k3 cosψ = cos(φ− ψ) (3.10)

thereby obtaining the Freudenstein equation. Notice that, upon writing this equation in

homogeneous form, we obtain F (ψ, φ) of eq.(3.1), namely,

F (ψ, φ) ≡ k1 + k2 cosφ− k3 cosψ − cos(φ− ψ) = 0 (3.11)

If we now write eq.(3.10) for {ψk, φk}m1 , we obtain m linear equations in the three

Freudenstein parameters, arrayed in vector k, namely,

Sk = b (3.12)

where S is the m×3 synthesis matrix; k is the 3-dimensional vector of unknown Freuden-

stein parameters; and b is an m-dimensional vector of known components, i.e.,

S ≡








1 cosφ1 − cosψ1

1 cosφ2 − cosψ2
...

...
...

1 cosφm − cosψm







, k ≡





k1

k2

k3



 , b ≡








cos(φ1 − ψ1)

cos(φ2 − ψ2)
...

cos(φm − ψm)








(3.13)

Three cases arise:

m < 3: Case m = 1 reduces to the synthesis of a quadrilateron with two given angles, which

admits infinitely many solutions. Case m = 2 seldom occurs in practice without

additional conditions, that render the problem more complex, e.g., in the synthesis

of quick-return mechanisms;

m = 3: The number of equations coincides with the number of unknowns, and hence, the

problem admits one unique solution—unless the synthesis matrix is singular. We

are in the case of exact synthesis;

m > 3: The number of equations exceeds the number of unknowns, which leads to an overde-

termined system of equations. Hence, no solution is possible, in general, but an

optimum solution can be found that best approximates the synthesis equations in

the least-square sense. Problem falls in the category of approximate synthesis.
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Figure 3.2: Definition of Xi when Zi−1 and Zi: (a) are skew; (b) intersect; and (c) are

parallel.

3.2.2 The Denavit-Hartenberg Notation

Prior to deriving the IO equations of spherical and spatial linkages, we introduce the

Denavit-Hartenberg (DH) notation, which is extremely useful in the analysis of kinematic

chains in three dimensions.

In order to uniquely describe the architecture of a kinematic chain, i.e., the relative

location and orientation of its neighbouring-pair axes, the Denavit-Hartenberg notation

(Hartenberg and Denavit, 1964) is introduced. To this end, we assume a simple kinematic

chain, open or closed, with links numbered 1, . . . , n, the ith pair being defined as that

coupling the (i− 1)st link with the ith link. Next, a coordinate frame Fi is defined with

origin Oi and axes Xi, Yi, Zi. This frame is attached to the (i− 1)st link—not to the ith

link!—for i = 1, . . . , n. This is done by following the rules given below:

1. Zi is the axis of the ith pair. Notice that there are two possibilities of defining

the positive direction of this axis, since each pair axis is only a line, not a directed

segment. Moreover, the Zi axis of a prismatic pair can be located arbitrarily, since

only its direction is defined by the axis of this pair.

2. Xi is defined as the common perpendicular to Zi−1 and Zi, directed from the former

to the latter, as shown in Fig. 3.2a. Notice that if these two axes intersect, the

positive direction of Xi is undefined and hence, can be freely assigned. Henceforth,

we will follow the right-hand rule in this case. This means that if unit vectors

ii, ki−1, and ki are attached to axes Xi, Zi−1, and Zi, respectively, as indicated in

Fig. 3.2b, then ii is defined as ki−1 × ki. Moreover, if Zi−1 and Zi are parallel, the

location of Xi is undefined. In order to define it uniquely, we will specify Xi as

passing through the origin of the (i− 1)st frame, as shown in Fig. 3.2c.

3. The distance between Zi and Zi+1 is defined as ai, which is thus nonnegative.
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4. The Zi-coordinate of the intersection O
′
i of Zi with Xi+1 is denoted by di. Since this

quantity is a coordinate, it can be either positive or negative. Its absolute value is

the distance between Xi and Xi+1, also called the offset between successive common

perpendiculars.

5. The angle between Zi and Zi+1 is defined as αi and is measured about the positive

direction of Xi+1. This item is known as the twist angle between successive pair

axes.

6. The angle between Xi and Xi+1 is defined as θi and is measured about the positive

direction of Zi.

3.2.3 Spherical Four-Bar-Linkages

e2

Z2

O2

e1

Z1O1

e4

Z4

O4
e3Z3

O3

a1

a2

a3

a4X1

X2

X3

X4

phi

psi O
F1

F2

Figure 3.3: A spherical four-bar linkage for function generation

A spherical four-bar linkage for function generation is depicted in Fig. 3.3. In this case

we are interested, as in the planar case, in deriving a relation between the input angle ψ

and the output angle φ, that should include the linkage dimensions {αi }41 as parameters.

To this end, we introduce the unit vectors { ei }41, directed along the concurrent axes of the

four revolutes, as depicted in Fig. 3.3. Notice that, in order to bring the notation adopted

for planar four-bar linkages, as proposed by Freudenstein and displayed in Fig. 3.1, in line

with the Denavit-Hartenberg notation, we have placed Z1 along the axis of the output

joint and Z2 along that of the input joint.

Deriving the desired relation is now a simple matter, for we have one geometric relation

at our disposal, namely,

e3 · e4 = cosα3 (3.14)
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Now, in order to compute the foregoing dot product, we need its two factors (i) in the

same coordinate frame, and (ii) in terms of the input and output angles. Apparently, if

we choose F2, the coordinate frame fixed to the mechanism frame, to represent the two

unit vectors in question, we will have the desired expressions.

Under the Denavit-Hartenberg notation, the Zi-axis is defined as the axis of the ith

revolute, while Xi is defined as the common perpendicular to Zi−1 and Zi, directed from

the former to the latter, according to the right-hand rule. These axes are illustrated in

Fig. 3.3.

Now, the matrix rotating Fi into Fi+1 is denoted Qi. This matrix is given as (Harten-

berg and Denavit, 1964; Angeles, 2014):

Qi ≡ [Qi ]i ≡





cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi
0 µi λi



 (3.15)

where λi ≡ cosαi and µi ≡ sinαi, while θi was already defined in Subsection 3.2.2.

Apparently, vector ei in Fi, denoted [ ei ]i, is given by

[ ei ]i =





0

0

1



 (3.16)

Moreover, Qi can be regarded as the matrix transforming Fi+1-coordinates into Fi-
coordinates, i.e., for any three-dimensional vector v,

[v ]i = Qi[v ]i+1 (3.17)

Likewise,

[v ]i+1 = [QT
i ]i[v ]i (3.18)

More specifically, we represent the foregoing transformations in the abbreviated form:

Q1: F1 → F2, Q2: F2 → F3, Q3: F3 → F4, Q4: F4 → F1 (3.19a)

Q1: [ · ]2 → [ · ]1, Q2: [ · ]3 → [ · ]2, Q3: [ · ]4 → [ · ]3, Q4: [ · ]1 → [ · ]4 (3.19b)

QT
1 : F2 → F1, QT

2 : F3 → F2, QT
3 : F4 → F3, QT

3 : F1 → F4 (3.19c)

QT
1 : [ · ]1 → [ · ]2, QT

2 : [ · ]2 → [ · ]3, QT
3 : [ · ]3 → [ · ]4, QT

4 : [ · ]4 → [ · ]1 (3.19d)

In particular, given expression (3.16) for [ ei ]i, it is apparent that the third column of

QT
i or, equivalently, the third row of Qi, is [ ei ]i+1. By the same token, the third column

of Qi is [ ei+1 ]i, i.e.,

[ ei ]i+1 =





0

µi

λi



 , [ ei+1 ]i =





µi sin θi

−µi cos θi
λi



 (3.20)
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The vector representations required are derived below. We do this by recalling that

[ e3 ]2 is the third column of Q2, while [ e4 ]1 is the third row of Q4.

[ e3 ]2 =





µ2 sin θ2

−µ2 cos θ2

λ2



 (3.21)

[ e4 ]2 =QT
1 [ e4 ]1 ≡





cos θ1 sin θ1 0

−λ1 sin θ1 λ1 cos θ1 µ1

µ1 sin θ1 −µ1 cos θ1 λ1









0

µ4

λ4



 (3.22)

=





µ4 sin θ1

µ4λ1 cos θ1 + λ4µ1

−µ4µ1 cos θ1 + λ4λ1



 (3.23)

which are the expressions sought. Hence,

[ eT3 ]2[ e4 ]2 = µ2µ4 sin θ1 sin θ2 − µ2 cos θ2(µ4λ1 cos θ1 + λ4µ1) + λ2(−µ4µ1 cos θ1 + λ4λ1)

(3.24)

Upon substituting the above expression into eq.(3.14), we obtain

λ1λ2λ4 − λ3 − λ4µ1µ2 cos θ2 − λ1µ2µ4 cos θ1 cos θ2 − λ2µ1µ4 cos θ1 + µ2µ4 sin θ1 sin θ2 = 0

(3.25)

which is a form of the input-output equation sought. This equation can be simplified

upon realizing that the last coefficient of its left-hand side cannot vanish, least one of the

input and output links, or even both, shrinks to one point on the sphere—a consequence

of at least one of α2 and α4 vanishing or equating π. In this light, we can safely divide

both sides of the above equation by µ2µ4. Moreover, in order to render the same equation

terser, we introduce the Freudenstein parameters for the spherical linkage below:

k1 ≡
λ1λ2λ4 − λ3

µ2µ4

, k2 =
λ4µ1

µ4

, k3 = λ1, k4 =
λ2µ1

µ2

(3.26)

Now the two sides of eq.(3.25) are divided by µ2µ4, and definitions (3.26) are intro-

duced in the equation thus resulting, which leads to

k1 − k2 cos θ2 − k3 cos θ1 cos θ2 − k4 cos θ1 + sin θ1 sin θ2 = 0 (3.27)

This equation, however, involves a relation between angles θ1 and θ2 of the DH nota-

tion, which are different from, although related to, the input and the output angles ψ and

φ. To better understand the relation between the two pairs of angles, we sketch these in

Fig. 3.4. From this figure, it is apparent that

θ2 = ψ + π, θ1 = 2π − φ or θ1 = −φ (3.28)

Hence,

cos θ2 = − cosψ, sin θ2 = − sinψ, cos θ1 = cosφ, sin θ1 = − sin φ (3.29)
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Figure 3.4: Relation between input and output angles with their counterparts in the DH

notation: (a) ψ and θ2; and (b) φ and θ1

Substitution of relations (3.29) into eq.(3.27) leads to

F (ψ, φ) ≡ k1 + k2 cosψ + k3 cosψ cosφ− k4 cosφ+ sinψ sinφ = 0 (3.30)

which is the input-output equation for spherical linkages, written in terms of the input and

output angles ψ and φ, respectively. Either eq.(3.27) or eq.(3.30) can be used to find the

output angle φ for a given linkage and a given value of the input angle ψ, which constitutes

the analysis problem. The same equation is to be used for synthesis, as described below.

In a synthesis problem, we aim to calculate the set of unknown linkage angles {αi }41,
for a given set of pairs { (ψi, φi) }m1 of IO angle values that the linkage is to meet. In

order to obtain the synthesis equations allowing us to compute the set of Freudenstein

parameters leading to the desired linkage, we proceed as in the planar case and write

eq.(3.30) for the given set of pairs of angle values, thus obtaining the synthesis equations

in the form of eq.(3.12), as derived for planar four-bar linkages. Obviously, the synthesis

matrix S and vectors b and k now change to

S ≡








1 cosψ1 cosψ1 cosφ1 − cosφ1

1 cosψ2 cosψ2 cosφ2 − cosφ2
...

...
...

1 cosψm cosψm cosφm − cosφm







, k ≡








k1

k2

k3

k4







, b ≡








− sinψ1 sinφ1

− sinψ2 sinφ2
...

− sinψm sinφm








(3.31)

Similar to the planar case, we have exact synthesis when the number m of given pairs

of input-output angular values equals the number of Freudenstein parameters at hand,

which in this case happens when m = 4. When m > 4, then we have a problem of

approximate synthesis.
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However, eq.(3.30) only provides values for the linkage parameters { ki }41. Hence, we

need a means to convert the latter into the former.

Notice that the relations between the two sets, {αi }41 and { ki }41, are nonlinear, and

hence, solving eqs.(3.26) for the former needs careful planning. For starters, the foregoing

equations are rewritten explicitly in terms of the linkage dimensions {αi }41, and reordered

conveniently:

cα1 − k3 = 0 (3.32a)

cα4sα1 − k2sα4 = 0 (3.32b)

cα2sα1 − k4sα2 = 0 (3.32c)

cα1cα2cα4 − cα3 − k1sα2sα4 = 0 (3.32d)

In many instances, α1 is given—not up to the designer to find it!—and hence, the

problem of finding the remaining DH parameters simplifies tremendously. This can be

done sequentially, from eqs. (3.32b) to (3.32d), in this order.

In a semigraphical method, based on contour-intersection and favored in this course, all

but two of the unknowns are first eliminated from the set of nonlinear equations, thereby

ending up with a reduced number of equations in the two remaining unknowns. Each of

these equations is then plotted in the plane of the two unknowns, which yields one contour

per bivariate equation, in that plane. All real solutions are then found by inspection, at

the intersections of all the contours. Notice that, if the reduced system comprises more

than two bivariate equations, then the system entails algebraic redundancy, which is

convenient, as this adds robustness to the system.

In the particular case at hand, the transformation sought can be most readily found by

noticing the structure of eqs.(3.32a–d): The first equation involves one single unknown,

α1; the second only one new unknown, α4; the third only one new unknown, α2; and the

fourth only one new unknown as well, α3. Hence, we devise the algorithm below:

i) From eq.(3.32a), compute α1 = cos−1(k3) ⇒ two possible values of α1;

ii) From eq.(3.32b), compute α4 = tan−1(sinα1/k2) ⇒ two possible values of α4 for

each value of α1;

iii) From eq.(3.32c), compute α2 = tan−1(sinα1/k4) ⇒ two possible values of α2 for

each value of α1 and its corresponding value of α4, thereby leading to four possible

values of α2;

iv) From eq.(3.32d), compute α3 = cos−1(cosα1 cosα2 cosα4 − k1 sinα2 sinα4) ⇒ two

possible values for α3 for each pair of values of α1, α2 and α4.

In summary, then, we have: two possible values of α1; four possible values of α4;

four possible values of α2, which can be combined in 2 × 4 × 4 = 32 forms. Hence, we
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end up with up to 2 × 32 = 64 values of α3. Therefore, we can expect up to 64 sets of

{αi }41 values for one single set { ki }41. However, some of the 64 sets of linkage dimensions

found above may be complex, and hence, uninteresting. The problem may also not admit

any single real solution, for example, if |k3| > 1. As well, α3 becomes complex when

| cosα1 cosα2 cosα4 − k1 sinα2 sinα4| > 1. That is, for a feasible linkage, two conditions

must be imposed on the Freudenstein parameters { ki }41:

|k3| ≤ 1, | cosα1 cosα2 cosα4 − k1 sinα2 sinα4| ≤ 1 (3.33)

Note that the semigraphical method filters all complex solutions and is guaranteed to

yield all real solutions if the two contours in question are plotted inside a square of side π

centred at the origin of the α2-α3 plane. In order to implement the semigraphical method,

first four pairs of values (α1, α4) are computed from eqs.(3.32a & b). Each of these pairs is

then substituted into eqs.(3.32c & d), thereby obtaining four pairs of contours in the α2-α3

plane. The intersections of each pair of contours, which can be estimated by inspection,

yield one subset of real solutions. Each of these estimates of α3 and α4 values can then

be used as an initial guess for a Newton-Raphson solution of the two equations. Due to

the proximity of each estimate from the pair of real roots, the Newton-Raphson method

should converge in a pair of iterations for a reasonable tolerance. Once all four pairs of

contours have been exhausted, all real roots of the problem have been computed.

Finally, notice that any spherical triangle and, in fact, any spherical polygon defined

on the surface of the unit sphere has an antipodal counterpart. In this light, then, even if

we end up with a full set of feasible linkage dimensions, only 32 four-bar linkages defined

by this set are distinct.

3.2.4 Spatial Four-Bar-Linkages

The analysis of spatial four-bar linkages relies heavily on the algebra of dual numbers,

which is extensively discussed in Appendix A. What we should recall now is (a) the usual

representation of dual quantities, by means of a “hat” (̂ ) on top of the variable in question

and (b) the definition of the dual unit, ǫ, via its two properties

ǫ 6= 0, ǫ2 = 0 (3.34)

A general layout of a spatial four-bar linkage is included in Fig. 3.5, in which we use the

Denavit-Hartenberg notation, introduced in Subsection 3.2.2. Similar to that subsection,

we have laid the ouput axis along Z1, in order to comply both with the DH notation and

with the notation adopted in Figs. 3.1 and 3.3. In this case, ψ and φ denote the input

and the output angles, as in Subsection 3.2.3, their relations with angles θ1 and θ2 of the

DH notation being exactly as in the spherical case, namely,

ψ = θ2 − π, φ = 2π − θ1 (3.35)
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Figure 3.5: A RCCC linkage for function generation

The IO equation of the RCCC linkage is most readily derived by resorting to the

Principle of Transference (Dimentberg, 1965; Rico Mart́ınez and Duffy, 1995), which is

cited below:

The kinematics and statics relations of spatial linkages and cam mechanisms

can be derived upon replacing the real variables occurring in the corresponding

relations for spherical linkages by dual numbers.

Put quite simply, the IO equation of the RCCC linkage can be derived from that of

the spherical RRRR linkage upon “putting hats” on the variables and the (Freudenstein)

parameters occurring in eq.(3.30), thereby obtaining

F̂ (ψ̂, φ̂) ≡ k̂1 + k̂2 cos ψ̂ + k̂3 cos ψ̂ cos φ̂− k̂4 cos φ̂+ sin ψ̂ sin φ̂ = 0 (3.36)

Furthermore, dualization of an angular displacement θ about an axis A is an operation

by which a sliding do is introduced in a direction parallel to the same axis, the dual angle

θ̂ then being represented as

θ̂ = θ + ǫdo (3.37)

The variable θ is referred to as the primal part of θ̂, do as the dual part. Notice that the

latter being a sliding, its units are those of length; the dual unit ǫ can then be thought of

as “having units of length-inverse.” The dualization operation can thus be kinematically

interpreted as the replacement of a R joint of axis A by a C joint of the same axis. Hence,

the RCCC linkage of Fig. 3.5 is obtained by replacing all R joints of the spherical linkage

of Fig. 3.3, but that associated with the input angle ψ, with a C joint. In this light, then,
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the dual quantities appearing in eq.(3.36) are to be interpreted as

F̂ (ψ̂, φ̂) = F (ψ̂, φ̂) + ǫFo(ψ̂, φ̂) (3.38a)

with

ψ̂ = ψ + ǫd2, φ̂ = φ+ ǫd1, k̂i ≡ ki + ǫkoi, i = 1, . . . , 4 (3.38b)

Consistently, then, the ki parameters are dimensionless, while their dual counterparts koi,

for i = 1, . . . , 4, have all units of length. The former are displayed in eq.(3.26) for the

spherical four-bar linkage; they are the same for its spatial counterpart. The latter are

obtained below upon extracting them from the dual version of the expressions displayed in

the above equation. The computations are lengthy and time-consuming, for which reason

the dual expressions were obtained using computer algebra1. In deriving the desired

expressions, the relation that gives the dual version f̂(x̂) of a real function f(x) of a real

variable x, whereby the dual argument is defined as x̂ ≡ x+ ǫxo, is given in eq.(A.3), and

reproduced below for quick reference.

f̂(x̂) = f̂(x+ ǫxo) ≡ f(x) + ǫxo
df(x)

dx

Hence,

cos ψ̂ ≡ cosψ − ǫd2 sinψ, sin ψ̂ ≡ sinψ + ǫd2 cosψ (3.39a)

cos φ̂ ≡ cos φ− ǫd1 sin φ, sin φ̂ ≡ sinφ+ ǫd1 cosφ (3.39b)

in which d2 is constant, while d1 is variable, as per Fig. 3.5.

Likewise, for the dual angles α̂i ≡ αi + ǫai,

cos α̂i ≡ cosαi − ǫai sinαi, sin α̂i ≡ sinαi + ǫai cosαi (3.40)

Further, the primal parts { ki }41 of the dual Freudenstein parameters { k̂i }41 are identi-
cal to those of the spherical linkage, displayed in eq.(3.26). For quick reference, the same

parameters are reproduced below:

k1 ≡
λ4λ1λ2 − λ3

µ2µ4
, k2 =

λ4µ1

µ4
, k3 = λ1, k4 =

µ1λ2
µ2

(3.41)

their dual counterparts being

ko1 = −
a1λ2λ4µ1µ2µ4 + a2(λ1λ4 − λ2λ3)µ4 − a3µ2µ3µ4 + a4(λ1λ2 − λ3λ4)µ2

µ2
2µ

2
4

ko2 =
a1λ1λ4µ4 − a4µ1

µ2
4

, ko3 = −a1µ1, ko4 =
a1λ1λ2µ2 − a2µ1

µ2
2

(3.42)

Moreover, if the angle of rotation θi, associated with the ith R joint of Fig. 3.3 under

1See the Maple 15 worksheet DualRCCC-IO131224.mw.
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the DH notation, for i = 1, 3, 4, is dualized, the dual angles thus resulting become, in the

notation of Fig. 3.5,

θ̂1 = θ1 + ǫd1 = −φ+ ǫd1, θ̂2 = θ2 = ψ + π, θ̂3 = θ3 + ǫd3, θ̂4 = θ4 + ǫd4 (3.43)

where

−∞ < di <∞, i = 1, 3, 4

which is an unbounded real number, with units of length. Notice that di is not a “length,”

properly speaking, because a length is positive, while di can be negative, exactly the same

as a joint angle. Moreover, Fo(ψ, φ, d1) is given below:

Fo(ψ, φ, d1) = ko1 − k2d2 sin (ψ) + ko2 cos (ψ)− k3d1 cos (ψ) sin (φ)
−k3d2 sin (ψ) cos (φ) + ko3 cos (ψ) cos (φ) + k4d1 sin (φ)

−ko4 cos (φ) + d1 sin (ψ) cos (φ) + d2 cos (ψ) sin (φ) = 0

(3.44)

Further, the synthesis equations for the spatial four-bar linkage can be readily set up

by dualizing those derived for the spherical case, with the synthesis matrix S and the

right-hand side b of eq.(3.31) substituted by their “hatted” counterparts, namely,

Ŝk̂ = b̂ (3.45)

where, as usual,

Ŝ = S+ ǫSo, k̂ = k+ ǫko, b̂ = b+ ǫbo (3.46)

the primal part k of vector k̂, it is recalled, being the same as that of the spherical

linkage, and displayed componentwise in eq.(3.26). The dual part is displayed likewise in

eqs.(3.42). The primal and dual parts of S and b are derived below: Upon dualizing S of

eq.(3.31) componentwise, the relation below is obtained:

Ŝ =








1 cψ1 − ǫd2sψ1 cψ1(cφ1 − ǫu1sφ1) −cφ1 + ǫu1sφ1

1 cψ2 − ǫd2sψ2 cψ2(cφ2 − ǫu2sφ2) −cφ2 + ǫu2sφ2
...

...
...

...

1 cψm − ǫd2sψm cψm(cφm − ǫumsφm) −cφm + ǫumsφm








(3.47)

or

Ŝ =








1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2
...

...
...

...

1 cψm cψmcφm −cφm








︸ ︷︷ ︸

S

+ǫ








0 −d2sψ1 −u1cψ1sφ1 u1sφ1

0 −d2sψ2 −u2cψ2sφ2 u2sφ2
...

...
...

...

0 −d2sψm −umcψmsφm umsφm








︸ ︷︷ ︸

So

(3.48)
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where the definition ui ≡ (d1)i has been introduced, to avoid a double subscript. Likewise,

k̂ =








k1

k2

k3

k4








︸ ︷︷ ︸

k

+ǫ








ko1

ko2

ko3

ko4








︸ ︷︷ ︸

ko

, b̂ =








−sψ1sφ1

−sψ2sφ2
...

−sψmsφm








︸ ︷︷ ︸

b

+ǫ








−u1sψ1cφ1 − d2cψ1sφ1

−u2sψ2cφ2 − d2cψ2sφ2
...

−umsψmcφm − d2cψmsφm








︸ ︷︷ ︸

bo

(3.49)

Now, upon equating the primal and the dual parts of eq.(3.45), two real vector equa-

tions are obtained, namely,

Sk = b, Sko + Sok = bo (3.50)

As the reader can readily verify, the first of the two foregoing equations is identical

to that derived for spherical linkages in eq.(3.31). That is, the problem of synthesis of

a spatial function generator has been decoupled into two, the synthesis procedure then

being straightforward:

1. Synthesize first a spherical linkage for the angular input-output data given at the

outset;

2. Substitute vector k, as obtained from step 1, along with the additional data { (d1)i }m1 ,
with ui ← (d1)i, for i = 1, . . . , m, and solve the second vector equation of (3.50)

for ko, thereby completing the synthesis problem.

Remark 3.2.1 Given that the output involves a sliding variable d1, besides the angle φ,

two sets of data-points must be prescribed: {ψi, φi }m1 and {ψi, (d1)i }m1 .

3.3 Exact Synthesis

3.3.1 Planar Linkages

We have m = 3 in this case, and hence, the synthesis equations look like





1 cφ1 −cψ1

1 cφ2 −cψ2

1 cφ3 −cψ3









k1

k2

k3



 =





c(φ1 − ψ1)

c(φ2 − ψ2)

c(φ3 − ψ3)



 (3.51a)

where

c(·) ≡ cos(·) and s(·) ≡ sin(·) (3.51b)

Solving numerically for {ki}31 is straightforward, if Gaussian elimination, or LU-decomposition,

is applied—as, implemented, e.g., in Matlab. Given the simple structure of the system at

hand, however, a solution in closed form is also possible: To this end, subtract the first
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equation from the second and third equations:





1 cφ1 −cψ1

0 cφ2 − cφ1 −cψ2 + cψ1

0 cφ3 − cφ1 −cψ3 + cψ1









k1

k2

k3



 =





c(φ1 − ψ1)

c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)



 (3.52)

Note that the second and third equations are free of k1, and hence, one can solve them

first for k2 and k3:

[
cφ2 − cφ1 −cψ2 + cψ1

cφ3 − cφ1 −cψ3 + cψ1

] [
k2

k3

]

=

[
c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)

]

(3.53)

The above 2× 2 system can be solved for k2 and k3 if we recall Fact 1.4.2:

[
k2

k3

]

=
1

∆

[−cψ3 + cψ1 cψ2 − cψ1

−cφ3 + cφ1 cφ2 − cφ1

] [
c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)

]

(3.54a)

where

∆ ≡ det

[
cφ2 − cφ1 −cψ2 + cψ1

cφ3 − cφ1 −cψ3 + cψ1

]

= (cφ2 − cφ1)(−cψ3 + cψ1) + (cψ2 − cψ1)(cφ3 − cφ1) (3.54b)

With k2 and k3 obtained from eqs.(3.54a & b), k1 is derived from the first of eqs.(3.52).

The final result is

ki =
Ni

∆
, i = 1, 2, 3 (3.55)

with numerators Ni calculated sequentially:

N2 = (−cψ3 + cψ1)[c(φ2 − ψ2)− c(φ1 − ψ1]

+ (cψ2 − cψ1)[c(φ3 − ψ3)− c(φ1 − ψ1] (3.56a)

N3 = (−cφ3 + cφ1)[c(φ2 − ψ2)− c(φ1 − ψ1)]

+ (cφ2 − cφ1)[c(φ3 − ψ3)− c(φ1 − ψ1)] (3.56b)

N1 = c(φ1 − ψ1)∆− cφ2N2 + cψ1N3 (3.56c)

The foregoing problem is therefore quite simple to solve. We just showed how to solve

it in closed form. However, the solution obtained must be correctly interpreted. Indeed,

upon looking at definitions (3.8), it is apparent that, all link lengths being positive, k2 and

k3 should be positive as well, while k1 is capable of taking any finite positive or negative

real values. However, nothing in the above formulation prevents k2 and k3 from turning

out to be negative or zero. Negative values of these parameters are not to be discarded,

for they have a geometric interpretation: Notice that, in eq.(3.10), if φ is changed to φ+π,

then the sign of the second term of the left-hand side of that equation is reversed. Ditto

the third term if ψ is changed to ψ + π. The conclusion then follows:
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Figure 3.6: The conceptual design of the actuation mechanism for a robotic gripper

A negative k2 (k3) indicates that the input (output) angle ψ (φ) should not be

measured as indicated in Fig. 3.1, but all the way down to the extension of

link O1O2 (O4O3).

If the solution to the synthesis problem leads to k2 = 0, then a2 →∞, which means that

the input link is of infinite length. The interpretation now is that the first joint of the

linkage is of the P type, i.e., we end up with a PRRR linkage. Likewise, if k3 = 0, then

a4 → ∞, and we end up with a RRRP linkage.

Finally, even in the presence of nonzero values of the Freudenstein parameters, nothing

guarantees that the link lengths derived from them will yield a feasible linkage. Indeed,

for a linkage to be possible, the link lengths must satisfy the feasibility condition :

Any link length must be smaller than the sum of the three other link lengths.

Example 3.3.1 (Synthesis of a Robotic Gripper) Shown in Fig. 3.6 is a concept

proposed by Dudiţă et al. (1989) to serve as the actuation mechanism of a robotic gripper.

This is a four-bar linkage with a symmetric architecture, a2 = a4, as the two fingers of

the gripper are intended to open and close with symmetric motions—form follows func-

tion!. Determine the link lengths that will produce the pairs of input-output values given

in Table 3.1.

Solution: The 3 × 3 synthesis matrix S and the 3-dimensional vector b of the synthesis

equation are first determined with the data of Table 3.1:

95



Table 3.1: Input-output values for exact function generation with three data points

j ψ [◦] φ [◦]

1 30.0 240.0

2 45.0 225.0

3 60.0 210.0

A

B

C

D
a1

a2

a3

a4

Figure 3.7: The synthesized four-bar linkage for a robotic gripper

S =





1 −0.5000 −.8660
1 −.7071 −.7071
1 −.8660 −.5000



 , b =





−.8660
−1.000
−.8660





The synthesis equation was solved using the LU-decomposition, as implemented by

computer-algebra software2, which yielded, with four digits,

k = [ 2.9319 2.7802 2.7802 ]T

thereby obtaining the link lengths:

a1 = 1.0, a2 = 0.3597, a3 = 0.7072, a4 = 0.3597

which indeed produce a symmetric linkage, as a2 = a4. The linkage thus synthesized is

displayed in Fig. 3.7.

Bloch Synthesis

A special kind of linkage synthesis occurs when input-output relations are not specified

at three distinct values of the input and output angles, but rather at one single value

of these angles, to which velocity and acceleration conditions are adjoined. The problem

thus arising is known as Bloch synthesis. Besides its special nature, this problem becomes

relevant because of its revelation:
2See DuditaXactSynth.mw
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The simultaneous vanishing of velocity and acceleration of the output link,

i.e., second-order rest of the output link, cannot be obtained with a planar

four-bar linkage whose input link turns at a constant angular velocity.

The foregoing claim will be made clear in the sequel. As a matter of fact, second-order

rest cannot be obtained with any linkage, but good approximations can be obtained with

six-bar linkages producing short-duration dwell.

The problem at hand then can be stated as: Synthesize a four-bar linkage that meets

conditions on position, velocity and acceleration at a given position of the input link.

In order to formulate this problem, we differentiate both sides of the Freudenstein

equation, eq.(3.10), with respect to time. After rearrangement of terms and a reversal of

signs, this gives

φ̇sφk2 − ψ̇sψk3 = (φ̇− ψ̇)s(φ− ψ) (3.57a)

(φ̈sφ+ φ̇2cφ)k2 − (ψ̈sψ + ψ̇2cψ)k3 = (φ̈− ψ̈)s(φ− ψ)
+ (φ̇− ψ̇)2c(φ− ψ) (3.57b)

Next, we write eqs.(3.10) and (3.57a & b) at ψ = ψ1, and cast them in vector form:

Ak = b (3.58a)

where A and b are given below:

A ≡





1 cφ1 −cψ1

0 φ̇1sφ1 −ψ̇1sψ1

0 φ̈1sφ1 + φ̇2
1cφ1 −ψ̈1sψ1 − ψ̇2

1cψ1



 (3.58b)

b≡





c(φ1 − ψ1)

(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1) + (φ̇1 − ψ̇1)
2c(φ1 − ψ1)



 (3.58c)

Notice, from eq.(3.58b), that, if both φ̇1 and φ̈1 vanish, then the first and the second

columns of A become linearly dependent, A thus becoming singular.

If A is non-singular, the second and third of equations (3.58a) are free of k1, and

hence, can be decoupled from the first equation to solve for k2 and k3, namely,

[
φ̇1sφ1 −ψ̇1sψ1

φ̈1sφ1 + φ̇2
1cφ1 −(ψ̈1sψ1 + ψ̇2

1cψ1)

] [
k2

k3

]

=





(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)



 (3.59)

In solving the above system, we shall need the determinant ∆ of the above 2 × 2

matrix, which is computed below:

∆ ≡ det

[
φ̇1sφ1 −ψ̇1sψ1

φ̈1sφ1 + φ̇2
1cφ1 −ψ̈1sψ1 − ψ̇2

1cψ1

]

(3.60)
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which, upon expansion, yields

∆ = −φ̇1sφ1(ψ̈1sψ1 + ψ̇2
1cψ1) + ψ̇1sψ1(φ̈1sφ1 + φ̇2

1cφ1) (3.61)

thereby making it apparent that, indeed, if φ̇1 = 0 and φ̈1 = 0, then ∆ = 0, and the above

2 × 2 matrix is singular, and hence, A itself is singular as well, thereby proving that a

four-bar linkage cannot produce zero velocity and zero acceleration concurrently at the

output link when its input link turns at a constant rpm.

Now we recall expression (1.4.2) to invert the 2×2 matrix coefficient of vector [ k2, k3 ]
T ,

thus obtaining

[
k2

k3

]

=
1

∆

[−(ψ̈1sψ1 + ψ̇2
1cψ1) ψ̇1sψ1

−(φ̈1sφ1 + φ̇2
1cφ1) φ̇1sφ1

]




(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)



 (3.62)

Hence,

k2 =
N2

∆
, k3 =

N3

∆
(3.63a)

with

N2 ≡ −(ψ̈1sψ1 + ψ̇2
1cψ1)(φ̇1 − ψ̇1)s(φ1 − ψ1) + ψ̇1sψ1[(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)] (3.63b)

N3 ≡ −(φ̈1sφ1 + φ̇2
1cφ1)(φ̇1 − ψ̇1)s(φ1 − ψ1) + φ̇1sφ1[(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)] (3.63c)

Once k2 and k3 are known, we can calculate k1 from the first of eqs.(3.58a). After simpli-

fications,

k1 =
c(φ1 − ψ1)∆−N2cφ1 +N3cψ1

∆
(3.63d)

thereby completing the solution of the problem at hand.

3.3.2 Spherical Linkages

In this case, the synthesis matrix of eq.(3.31) becomes of 4×4, while vector b of the same

equation becomes four-dimensional, the synthesis equations thus taking the form








1 cosψ1 cosψ1 cos φ1 − cos φ1

1 cosψ2 cosψ2 cos φ2 − cos φ2

1 cosψ3 cosψ3 cos φ3 − cos φ3

1 cosψ4 cosψ4 cos φ4 − cos φ4















k1

k2

k3

k4







=








− sinψ1 sinφ1

− sinψ2 sinφ2

− sinψ3 sinφ3

− sinψ4 sinφ4








(3.64)

The structure of the synthesis matrix is strikingly similar to that of the planar case,

with the entries of its first column being all unity. Hence, similar to the planar case of

Subsection 3.3.1, the equations can be reduced by elementary operations on the synthesis
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matrix to a subsystem of three equations in three unknowns. This is readily done upon

subtracting the first equation from the remaining three, which is equivalent to subtracting

the first row of the synthesis matrix from its remaining three rows, and subtracting the

first component of vector b from its remaining three components, namely,








1 cψ1 cψ1cφ1 −cφ1

0 cψ2 − cψ1 cψ2cφ2 − cψ1cφ1 −cφ2 + cφ1

0 cψ3 − cψ1 cψ3cφ3 − cψ1cφ1 −cφ3 + cφ1

0 cψ4 − cψ1 cψ4cφ4 − cψ1cφ1 −cφ4 + cφ1















k1

k2

k3

k4







=








−sψ1sφ1

−sψ2sφ2 + sψ1sφ1

−sψ3sφ3 + sψ1sφ1

−sψ4sφ4 + sψ1sφ1








(3.65)

The foregoing system can be now cast in a more suitable block-form:

[
1 aT

03 A3

]

k =

[
b1

b3

]

(3.66a)

with blocks defined as

a ≡





cψ1

cψ1cφ1

−cφ1



 , A3 ≡





cψ2 − cψ1 cψ2cφ2 − cψ1cφ1 −cφ2 + cφ1

cψ3 − cψ1 cψ3cφ3 − cψ1cφ1 −cφ3 + cφ1

cψ4 − cψ1 cψ4cφ4 − cψ1cφ1 −cφ4 + cφ1



 , (3.66b)

b1 ≡ −sψ1sφ1, b3 ≡





−sψ2sφ2 + sψ1sφ1

−sψ3sφ3 + sψ1sφ1

−sψ4sφ4 + sψ1sφ1



 (3.66c)

and 03 is the three-dimensional zero vector. We can thus identify in the above system a

reduced system of three equations in three unknowns that has been decoupled from the

original system of four equations, namely,

A3k3 = b3, k3 ≡





k2

k3

k4



 (3.67)

Further, A3 is partitioned columnwise as done in Subsection 1.4.3:

A3 = [ c1 c2 c3 ] (3.68)

Therefore, the inverse of A3 can be computed in this case symbolically, by means of

reciprocal bases, as per eq.(1.9a):

A−1
3 =

1

∆





(c2 × c3)
T

(c3 × c1)
T

(c1 × c2)
T



 (3.69a)

where

∆ ≡ c1 × c2 · c3 (3.69b)
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and hence,

k3 =
1

∆





(c2 × c3)
Tb3

(c3 × c1)
Tb3

(c1 × c2)
Tb3



 (3.69c)

thereby computing k2, k3 and k4. The remaining unknown, k1, is computed from the first

equation of the array (3.65):

k1 + k2cψ1 + k3cψ1cφ1 − k4cφ1 = −sψ1sφ1

Therefore,

k1 = −sψ1sφ1 − k2cψ1 − k3cψ1cφ1 + k4cφ1 (3.69d)

all unknowns having thus been found.

Remark 3.3.1 The foregoing closed-form solution of the exact synthesis problem at hand

is apparently elegant and gives some insight into the relations among the variables involved,

e.g., the problem has no solution when the three columns of A3, or its three rows for that

matter, are coplanar. Moreover, the numerical evaluation of the Freudenstein parameters

is exactly that obtained with Cramer’s rule, which is notorious for being inefficient and

prone to roundoff-error amplifiction. In our case, all four components of k have been

obtained symbolically, and hence, can be safely evaluated using computer algebra.

Remark 3.3.2 Given that k3 = λ1 = cosα1, the computed k3 must be smaller than

unity in absolute value, and hence, any solution with |k3| > 1 must be rejected. By the

same token, cα3 = cα1cα2cα4 − k1sα2sα4, and hence, the absolute value of the foregoing

difference must be smaller than unity.

3.3.3 Spatial Linkages

The two synthesis matrices, S and So, of eq.(3.48) become now of 4 × 4, while vectors

b and bo of eq.(3.49) become four-dimensional. As a matter of fact, S, k and b are

exactly the same as their counterparts in the spherical case, the first synthesis equation

of eq.(3.50) thus being identical to eq.(3.64).

The second synthesis equation of the same eq.(3.50) is rewritten below in the standard

form in which the left-hand side includes only the terms in the unknowns, namely,

Sko = bo − Sok (3.70)

where, now, S and So are 4× 4 instances of the more general matrices of eq.(3.48), while

b and bo are 4-dimensional instances of their counterparts in eq.(3.49).

In the spherical case, the system (3.64) was solved in closed form upon reducing it

to a system of three equations in three unknowns, which was done by subtracting the
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first equation from the other three, thereby ending up with a new, reduced system of

three equations in three unknowns, namely, eq.(3.67). The reader is invited to obtain

the reduced equations that would allow for a closed-form solution of both the primal

Freudenstein-parameter vector k and its dual counterpart ko.

It is noteworthy that the foregoing computations lead to the solution of a system

of three equations in three unknowns, which can be solved symbolically by means of

reciprocal bases. Remarks 3.3.1 and 3.3.2 apply in this case as well.

3.4 Analysis of the Synthesized Linkage

After a linkage is synthesized, its performance should be evaluated, which is done by means

of analysis. The first step in analyzing a linkage synthesized for function generation is to

produce its Denavit-Hartenberg parameters, for all we have is its Freudenstein parameters.

Below we derive analysis algorithms for planar, spherical and spatial four-bar linkages.

3.4.1 Planar Linkages

We start by recalling the inverse relations of eqs.(3.11), which we reproduce below for

quick reference:

a2 =
1

k2
a1, a4 =

1

k3
a1, a3 =

√

a21 + a22 + a24 − 2k1a2a4 (3.71)

Two remarks are in order:

(i) The link lengths are given in terms of a1, which is thus the link length that de-

termines the scale of the linkage, but any other length can be used for the same

purpose; and

(ii) all lengths are positive. However, negative signs for k2 and k3 can occur, that

hence lead to negative values of a2 or, correspondingly, a4. As we saw in Subsec-

tion 3.3.1, negative values of any of these variables, or of both for that matter, bear

a straightforward interpretation.

We now proceed to derive an algorithm for the fast and reliable computation of the

output values of φ corresponding to a) a given linkage of feasible link lengths {ai}41 and

b) a given input value ψ. We can do this in several ways. We start by recalling the IO

equation of the planar four-bar linkage in homogeneous form, eq.(3.11):

k1 + k2 cosφ− k3 cosψ − cos(φ− ψ) = 0

Upon expansion of the fourth term in the left-hand side, the foregoing equation can

be rewritten as

A(ψ) cosφ+B(ψ) sinφ+ C(ψ) = 0 (3.72a)
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with coefficients defined as

A(ψ) = k2 − cosψ, B(ψ) = − sinψ, C(ψ) = k1 − k3 cosψ (3.72b)

One approach to solving this equation for φ consists in transforming it into an algebraic

equation3. This is done by means of the tan-half identities, which are recalled below, as

applied to angle φ:

cosφ ≡ 1− T 2

1 + T 2
, sinφ ≡ 2T

1 + T 2
, T ≡ tan

(
φ

2

)

(3.73)

Upon substitution of the foregoing identities into eq.(3.72a), a quadratic equation in

T is obtained:

D(ψ)T 2 + 2E(ψ)T + F (ψ) = 0 (3.74a)

whose coefficients are given below:

D(ψ)≡ k1 − k2 + (1− k3) cosψ (3.74b)

E(ψ)≡− sinψ (3.74c)

F (ψ)≡ k1 + k2 − (1 + k3) cosψ (3.74d)

Now φ can be readily computed once the two roots of eq.(3.74a) are available. Here, a

caveat is in order: during the linkage motion, the three coefficients D(ψ), E(ψ) and F (ψ)

vary as ψ does. Now, given that the above-mentioned roots are computed automatically

using scientific code, the algorithm implementing the computations must account for

pitfalls brought about by special numerical conditions. Thus, rather than naively using

verbatim the formula for the roots of the quadratic equation, we follow here a robust

approach, as suggested by Forsythe (1970): in order to avoid catastrophic cancelations

when E2 >> DF , that would lead to an erroneous zero root, we first compute the root

with the larger absolute value, namely,

T1 =
−E − sgn(E)

√
E2 −DF

D
, φ1 = 2 tan−1(T1) (3.75)

where sgn(·) is the signum function introduced in Section 1.4 when we studied Householder

reflections.

Now we distinguish two cases:

1. Assume B(ψ) ≡ E(ψ) = − sinψ 6= 0. In this case, T1 is calculated as in eq.(3.75),

while T2 is calculated upon recalling that the independent term is proportional to

the product T1T2, and hence,

T2 =
F

DT1
, φ2 = 2 tan−1(T2) (3.76a)

3That is, a polynomial equation.
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2. Now assume B(ψ) ≡ E(ψ) = − sinψ = 0. Under this condition, the term linear in

T in eq.(3.74a) vanishes, the two roots being symmetric, namely,

T1,2 = ±
√

−F (ψ)
D(ψ)

(3.76b)

Thus, cancellations are avoided upon first computing T1; then, T2 is computed safely

because the denominator appearing in eq.(3.76a) has the largest possible absolute value.

However, notice that the quadratic equation can degenerate into a linear equation under

two cases: (a) F (ψ) = 0 or (b) D(ψ) = 0. The first case simply means that one root, T1,

is zero, T2 being computed from the linear equation derived upon dividing the two sides

of that quadratic by T . The second case is a bit more elusive, but it can be handled as

the limiting case D(ψ)→ 0. To this end, let us divide both sides of eq.(3.74a) by T 2:

D(ψ) +
2E(ψ)

T
+
F (ψ)

T 2
= 0

Now, upon taking the limit of both sides of the above equation when D(ψ)→ 0, we obtain

lim
D(ψ)→0

T →∞

and hence,

lim
D(ψ)→0

φ = π (3.77)

In any event, the two possible solutions of the quadratic equation obtained above lead

to one of three possible cases:

1. The two roots {Ti}21 are real and distinct: the corresponding angles {φi}21 provide

the two conjugate postures of the linkage. As the linkage moves, the two conjugate

postures generate, correspondingly, two conjugate branches of the linkage motion,

as shown in Fig. 3.8(a);

2. The two roots {Ti}21 are real and identical: the corresponding single value of φ1 = φ2

indicates the merging of the two branches. This indicates in turn that the output

link reached one extreme position, which is known as a deadpoint, as illustrated in

Fig. 3.8(b);

3. The two roots are complex conjugate: this indicates two possibilities:

(a) The link lengths are unfeasible: they do not define a quadrilateron; or

(b) The linkage is feasible, but its input link does not move through a full turn,

i.e., it is a rocker, the given value of ψ lying outside of its range of motion.
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Figure 3.8: Postures of a four-bar linkage: (a) two distinct, conjugate postures; (b)

deadpoint, where the two conjugate postures merge

Because of the two conjugate branches of the planar four-bar linkage, the linkage is

said to be bimodal.

It is apparent that the quadratic-equation approach to the input-output analysis of the

four-bar linkage must be handled with care, especially when writing code to implement

it. As an alternative, we can pursue a more geometric, straightforward approach, free of

the singularity T → ∞ of the transformation (3.73), as described below: We go back to

eq.(3.72a), and rewrite it in a slightly different form

L : A(ψ)u+B(ψ)v + C(ψ) = 0 (3.78a)

where

u ≡ cosφ, v ≡ sinφ (3.78b)

and hence, u and v are subject to the constraint

C : u2 + v2 = 1 (3.78c)

The input-output equation thus defines a line L in the u-v plane, while the constraint

(3.78c) defines a unit circle C centred at the origin of the same plane. The circle is fixed,

but the location of the line in the u-v plane depends on both the linkage parameters k1, k2,

k3 and the input angle ψ. Therefore, depending upon the linkage at hand and the position

of its input link, the line may intersect the circle or not. If it does, then, additionally, the

line either intersects the circle at two distinct points or, as a special case, at one single

point, in which case the line is tangent to the circle, the two intersection points thus

merging into a single one. In the absence of intersections, either the linkage is unfeasible

or its input link is a rocker, the given input angle lying outside of its mobility range. In

the case of two distinct intersections, these determine the two conjugate postures of the

linkage. In the case of tangency, the linkage is at a deadpoint. Figure 3.9 depicts the

case of two distinct intersection points.

Let the distance of the line to the origin be denoted by d. Apparently, we have the

three cases below:
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Figure 3.9: Line and circle in the u-v plane

d < 1: L intersects C at two distinct points;

d = 1: L is tangent to C;

d > 1: L does not intersect C.

The distance d can be readily found to be

d =
|C(ψ)|
S(ψ)

(3.79a)

where C(ψ) was defined in eq.(3.72b) and

S(ψ) ≡
√

A(ψ)2 +B(ψ)2 =
√

(k2 − cosψ)2 + sin2 ψ (3.79b)

An interesting singularity occurs whereby the foregoing calculations break down: If

coefficients A(ψ), B(ψ), and C(ψ) in eq.(3.78a) all vanish, then the line L disappears and

any value of φ satisfies the input-output equation for the given value of ψ. The vanishing

of these three coefficients is written below:

k2 − cosψ = 0 (3.80a)

sinψ = 0 (3.80b)

k1 − k3 cosψ = 0 (3.80c)

The second equation leads to ψ = 0 or π. For ψ = 0, the first equation yields k2 = 1 and

the third equation k1 = k3. Now, k2 = 1 means a2 = a1, which, together with k1 = k3,

means a4 = a3, the result being a set of linkage postures whereby joint centres B and D
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Figure 3.10: Pathological case of a four-bar linkage with special link lengths

coincide, the coupler and the output links thus being free to turn about joint centre D as

one single rigid-body.

For ψ = π, the first equation yields k2 = −1, which leads to a2 = −a1, i.e., a

“negative” link length. As we saw in Subsection 3.3.1, a negative a2 means that the input

angle should be measured “all the way down to the extension of the input link,” and we

fall into the case ψ = 0.

Notice that this pathological case, or singularity, is not apparent from the quadratic

equation. It is illustrated in Fig. 3.10.

Furthermore, in order to compute the two conjugate values φ1 and φ2, we calculate

first the intersection of L with its normal N from the origin. The intersection point P

has coordinates (ū, v̄), given below:

ū =
C(ψ)(k2 − cosψ)

S(ψ)2
, v̄ =

−C(ψ) sinψ
S(ψ)2

(3.81a)

Now, the angle σ that N makes with the u axis, when d > 0, and angle θ, half the angle

subtended by the chord defined by the intersections of L with C, are given by

σ = arctan
( v̄

ū

)

(3.81b)

θ = arccos(d) (3.81c)

When d = 0, σ cannot be calculated from the above expression, but rather as arctan(−1/m),

where m is the slope of L. Nevertheless, in this case σ is not needed, for the two conjugate

values of the output angle can be calculated directly. Thus,

φ1 = σ + θ, φ2 = σ − θ, for d > 0 (3.81d)

φ2 = arctan

(
k2 − cosψ

sinψ

)

, φ1 = φ2 + π, for d = 0 (3.81e)

We thus have devised the algorithm below for computing the two conjugate values of

the output angle, in Maple code:

Algorithm pl4bar-io(k,input)

This algorithm computes the intersection of one line L and the unit circle
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centred at the origin of the cos(phi)-sin(phi) plane. The intersection points,

when they exist, are returned in array out, with out[1] and out[2] denoting

the two conjugate values of the output angle phi

read k[1], k[2], k[3], input;

> pl4bar-io:=proc(k,input) #Use this
> procedure only if are sure that your linkage is feasible

> local dpoint,feasible,pathos,D_d,N_d,d,u,v,sigma,theta; global

> out;

> dpoint:=false; #we assume that we are not in the presence of a

> deadpoint
> feasible:=true; #we assume that current psi-value is feasible

> pathos:=false; #we assume that we are not in the presence of

> pathological case whereby linkage becomes a one-dof open chain if

> k[2]=1 and psi=0 then pathos:=true; print(patholo=pathos); return;

> fi;
> #if k[2]=1, then a[1]=a[2]

> D_d:=k[2]*(k[2]-2*cos(input))+1: N_d:=-k[1]+k[3]*cos(input):

> d:=abs(N_d)/sqrt(D_d): #print(dd=d); #distance of line L to origin

> if d>1.0 then feasible:=false; print(feas=feasible); return; fi;

> if d=1.0 then dpoint:=true; print(dead=dpoint); theta=0; fi;
> u:=(N_d/D_d^2)*(k[2]-cos(input)): v:=-(N_d/D_d^2)*sin(input):

> #coordinates of intersection of line L and its normal N

> passing through the origin sigma:=arctan(v,u): #print(sig=sigma);

> #angle that normal makes with u-axis if dpoint=false then
> theta:=arccos(d); fi; #print(th=theta); #(1/2)angle subtended by

> secant to circle out[1]:=sigma-theta: out[2]:=sigma+theta: if v<0

> and u>0 then out[1]:=sigma+theta: out[2]:=sigma-theta: fi: #Note:

> this line does not appear in the Lecture Notes, but it is needed

> #print(out1=out[1]); print(out2=out[2]);
> end proc;

Various issues stem from the foregoing discussion, namely,

(a) Linkage feasibility: For the four link lengths to yield a feasible linkage, they must

define a quadrilateron. The condition on four given side lengths to close a quadri-

lateron, as given in Subsection 3.3.1, is that every length be smaller than the sum

of the remaining three. When four link lengths are given as candidates to define a

planar four-bar linkage, these lengths must first and foremost be capable of defining

a quadrilateron. If they do, the lengths are said to be feasible; otherwise, they are

unfeasible.

(b) Link mobility: A link may or may not be capable of a full turn; if capable, it is

called a crank; otherwise, it is called a rocker. This gives rise to various types of

linkages, depending on the type of its input and output links, namely, double crank,

crank-rocker, rocker-crank, or double rocker. Double-crank linkages are known as
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drag-link mechanisms. This variety of linkage type leads, in turn, to what is known

as Grashof mechanisms.

A major fundamental result in linkage theory is the Grashof classification of planar

four-bar linkages. This classification looks at the mobility of three links with respect to

the remaining one. Obviously, which of the four links is considered the “remaining one”

is immaterial. According to Grashof’s classification, a linkage is termed Grashof if at

least one of its links is capable of a full turn with respect to any other link. Otherwise,

the linkage is termed non-Grashof. Now we have the main result—for a proof, see, e.g.,

(Waldron and Kinzel, 1999)—below:

A planar four-bar linkage is Grashof if and only if the sum of the lengths of

its shortest and longest links is smaller than or equal to the sum of the two

other link lengths.

In linkage synthesis, we are interested in meeting mobility conditions either on the

input or on the output links, or even on both. We derive below these conditions in terms

of the Freudenstein parameters.

Mobility of the Input and Output Links

The condition under which the input link is a crank is quite useful because four-bar

linkages are frequently driven at a constant angular velocity, and hence, the input link

would better be capable of a full turn. To find this condition, we recall eq.(3.74a), whose

discriminant is a function not only of constants k1, k2 and k3, but also of ψ and, hence, it

is not only linkage- but also posture-dependent. In the discussion below, we assume that

the linkage parameters are fixed, and hence, the linkage discriminant ∆(ψ), stemming

from eq.(3.74a), will be regarded as a function of ψ only. This is given by

∆(ψ) ≡ E2(ψ)−D(ψ)F (ψ) (3.82a)

Upon expansion, the above discriminant becomes

∆(ψ) ≡ −k23 cos2 ψ + 2(k1k3 − k2) cosψ + (1− k21 + k22) (3.82b)

which is, clearly, a parabola in cosψ with concavity downward—its second derivative

w.r.t. cosψ is −2k23. Moreover, since ∆(ψ) is a function only of cosψ, which is an even

function of ψ, ∆(ψ) is also an even function of ψ, i.e.,

∆(ψ) = ∆(−ψ)

For the input link to be a crank, then, the discriminant ∆(ψ) should attain nonnegative

values in the range −1 ≤ cosψ ≤ +1. Moreover, by virtue of the parabolic shape of the
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∆(cosψ) vs. cosψ plot, ∆ is nonnegative for any value of ψ if and only if ∆(cosψ) ≥ 0

when cosψ = ±1. It is noteworthy that, even thought ∆(ψ) is an even function, ∆(cosψ)

is not; in general, then, ∆(cosψ) attains distinct values at cosψ = −1 and at cosψ = +1.

Let ∆1 and ∆2 denote the values that ∆ attains when cosψ equals +1 and−1, respectively,
which are given below:

∆1 = −k23 + 2(k1k3 − k2) + 1− k21 + k22, ∆2 = −k23 − 2(k1k3 − k2) + 1− k21 + k22

The necessary and sufficient conditions for a nonnegative linkage discriminant, for any

value of ψ, are now derived. Note first that ∆1 and ∆2 can be expressed as differences of

squares, namely,

∆1 = (1− k2)2 − (k1 − k3)2 , ∆2 = (1 + k2)
2 − (k1 + k3)

2

Apparently, ∆1 and ∆2 are nonnegative if and only if the relations below hold:

(k1 − k3)2 − (1− k2)2 ≤ 0 and (k1 + k3)
2 − (1 + k2)

2 ≤ 0 (3.83)

Upon expressing left-hand sides of the foregoing inequalities as the products of conjugate

binomials, the inequalities become

(k1 − k3 − 1 + k2)(k1 − k3 + 1− k2)≤ 0 (3.84a)

(k1 + k3 − 1− k2)(k1 + k3 + 1 + k2)≤ 0 (3.84b)

Each of the above inequalities holds if its two left-hand side factors have opposite signs,

the first inequality thus leading to

k1 − k3 − 1 + k2 ≥ 0 & k1 − k3 + 1− k2 ≤ 0 (3.84c)
or

k1 − k3 − 1 + k2 ≤ 0 & k1 − k3 + 1− k2 ≥ 0 (3.84d)

The second inequality, likewise, leads to

k1 + k3 − 1− k2 ≥ 0 & k1 + k3 + 1 + k2 ≤ 0 (3.84e)
or

k1 + k3 − 1− k2 ≤ 0 & k1 + k3 + 1 + k2 ≥ 0 (3.84f)

Thus, the region of the k-space K containing input cranks is the intersection of two

subregions, that defined by the four inequalities (3.84c & d) and that defined by their

counterparts (3.84e & f). Moreover, the subregion represented by each quadruplet is the

union of the intersections of the regions defined by each pair of linear inequalities. Let

C1 and C2 be the subregions defined by the first and the second inequalities (3.84c), with

similar definitions for subregions D1, D2, E1, E2, F1 and F2. Let, further, R1 denote the

subregion defined by the four inequalities (3.84c) & (3.84d), and hence,

R1 = (C1 ∩ C2) ∪ (D1 ∩ D2) (3.85a)
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with a similar definition for the subregion R2, stemming from the four inequalities (3.84e)

& (3.84f):

R2 = (E1 ∩ E2) ∪ (F1 ∩ F2) (3.85b)

Therefore, the region RI containing input cranks is

RI = (R1 ∩R2) (3.86)

Each inequality, furthermore, divides K into two halves, one on each side of the plane

obtained when turning the inequality sign of each relation into an equality sign. As the

reader can readily notice, inequalities (3.84c & d) lead to the same pair of planes; likewise

inequalities (3.84e & f) lead to a second pair of planes, namely,

k1 + k2 − k3 − 1 = 0 , k1 − k2 − k3 + 1 = 0

k1 − k2 + k3 − 1 = 0 , k1 + k2 + k3 + 1 = 0

In summary, then, the two original quadratic inequalities of eq.(3.83) represent a region

of K bounded by four planes, as displayed in Fig. 3.11. Hence, the region containing input

cranks comprises a regular tetrahedron with its centroid located at the origin of the above

space, and two open convexes. Thus, all points within that region represent linkages

whose input link is a crank.

It is noteworthy that the k1-axis represents linkages for which a2, a4 → ∞, i.e., the

k1-axis represents, actually, all PRRP linkages. However, as the reader is invited to verify,

the origin does not represent a feasible linkage.

Figure 3.11: Region comprising planar four-bar linkages with an input crank

Now, in order to analyze the mobility of the output link, we simply exchange the roles

of k2 and k3 in the foregoing results, which is apparent from the definitions of the linkage
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parameters {ki}31, as given in eqs.(3.71) and the Freudenstein equation (3.10). Actually,

then, the region containing output cranks can be obtained by mapping that containing

input cranks by means of a linear transformation:
k1 = k1, k2 = −k3, k3 = −k2

The above transformation can be represented in matrix form as a reflection R about

a plane of unit normal [0,
√
2/2,

√
2/2]T , given by (Angeles, 2014)

R =





1 0 0

0 0 −1
0 −1 0





As the reader can readily verify, RRT = 1, with 1 denoting the 3× 3 identity matrix and

det(R) = −1, which shows that R is a reflection.

By means of the foregoing exchange in eqs.(3.84a & b), the inequalities leading to an

output crank are obtained as

(k1 − k2)2 < (1− k3)2 (3.87a)

(k1 + k2)
2 < (1 + k3)

2 (3.87b)

Figure 3.12: Region comprising four-bar linkages with an output crank

The mobility region RO represented by the two foregoing inequalities comprises all

four-bar linkages with an output crank. This region is, then, the mirror image of that of

Fig. 3.11 when reflected about a plane Π passing through the k1-axis and intersecting the

k2-k3 plane along a line passing through the origin and contained in the third and fourth

quadrants of this plane. The foregoing region is represented in Fig. 3.12. Note that this

region comprises a tetrahedron identical to that of Fig. 3.11 and, hence, the tetrahedron
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is common to both mobility regions. Thus, any point within this tetrahedron represents

a double-crank four-bar linkage, except for the origin, of course.

Furthermore, the central tetrahedron of Figs. 3.11 and 3.12 can be shown to have axes

of length 2
√
2.

All linkages outside of the two foregoing regions are either of the rocker-rocker type

or unfeasible.

3.4.2 Spherical Four-Bar Linkages

The analysis of the spherical four-bar linkage parallels that of its planar counterpart.

Indeed, upon introduction of the tan-half identities of eq.(3.73) into the IO equation of

the spherical linkage, eq.(3.27), we obtain, again, a quadratic equation in T of the form

of eq.(3.74a), namely,

D(ψ)T 2 + 2E(ψ)T + F (ψ) = 0 (3.88a)

but now with coefficients that are given below:

D(ψ)≡ k1 + (k2 − k3) cosψ + k4 (3.88b)

E(ψ)≡ sinψ (3.88c)

F (ψ)≡ k1 + (k2 + k3) cosψ − k4 (3.88d)

Similar to the planar case, rather than attempting a solution of the quadratic equation

as such, we cast the input-output equation (3.27) in the same form as we did for the planar

case:

L: A(ψ)u+B(ψ)v + C(ψ) = 0 (3.89a)

with coefficients given below:

A(ψ) = k3 cosψ − k4, B(ψ) = sinψ, C(ψ) = k1 + k2 cosψ (3.89b)

which is, again, the equation of a line L in the u-v plane, with u and v defined, again, as

u ≡ cosφ, v ≡ sinφ (3.89c)

and hence, these variables are subject to the constraint

C: u2 + v2 = 1 (3.89d)

The two conjugate values of φ for a given value of ψ can thus be computed as the

intersection of the line L with the circle C, in exactly the same way as in the planar case.

As in the planar case, an interesting singularity occurs when coefficients A(ψ), B(ψ), and

C(ψ) of the line equation (3.89a) all vanish. In this case, we have the conditions

k3 cosψ − k4 = 0, sinψ = 0, k1 + k2 cosψ = 0 (3.90)
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The second of the foregoing equations leads to ψ = 0 or π. If ψ = 0, then the first

equation implies k3 = k4, and hence,

cosα1 sinα2 − sinα1 cosα2 = 0

i.e.,

α2 = α1 or α2 = α1 + π

If α2 = α1, then the third equation leads to cosα4 = cosα3, and hence, α4 = ±α3. If

ψ = π, a similar reasoning to that introduced for the planar case leads exactly to the

same result as for ψ = 0.

As a consequence, then, the singularity under study leads to a set of postures of the

spherical linkage under which the joint axes OA and OD coincide, the coupler and the

output links then being free to move as a single rigid body.

A procedure written on Maple to produce the input-output analysis of spherical four-

bar linkages is included below.

Input-Output Analysis of Spherical Four-Bar Linkages

The procedure below is based on the graphical solution of the input-output

equation for spherical mechanisms: the intersection of a line L, describing

the underlying linear relation between the cosine and the sine of the output

angle, and the unit circle C centred at the origin of the cos(output)-sin(output)

plane, is determined. Line L depends on the linkage parameters, k[1], k[2], k[3]

and k[4], which are entered into the procedure as array k, as well as on the

input-angle value, which is entered as variable "input." If L does not intersect

C, then either the linkage is unfeasible in that its link lengths do not form

a quadrilateron, or the input link is a rocker and the prescribed value of

the input angle lies outside its range of motion. If L intersects C, then

it does normally so at two points, the procedure returning the two conjugate

values of the output angle as out[1] and out[2]. In case L is tangent to C,
the procedure detects a deadpoint, and returns out[2] = out[1].

> restart:

> with(plots): with(plottools):
> sph4barIO:= proc( k, input )#Computes the intersection of one line L

> and the unit circle centred at the origin of the

> cos(output)-sin(output) plane. The intersection points, when they

> exist, are returned in array out, with out[1] and out[2] denoting

> the two conjugate values of the output angle
> local dpoint, feasible, pathos, D_d, N_d, d, q, u, v, sigma, theta;

> global out;

> dpoint:=false;#we assume that we are not in the presence of a

> deadpoint
> feasible:=true;#we assume that current psi-value is feasible
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> pathos:=false;#we assume that we are not in the presence of

> pathological case whereby linkage becomes a one-dof open chain

> if k[3]=k[4] and input=0 then pathos:=true; print(patholo=pathos);
> return; fi; #Note that, if k[3] = k[4], then alpha[1]= alpha[2]

> D_d:=(k[3]*cos(input)-k[4])^2 + (sin(input))^2: #Maple reserves D

> for differential operator!

> N_d:=-k[1] - k[2]*cos(input): q:= N_d/D_d: print(Num, Den = N_d,

> D_d);
> d:=abs(N_d)/sqrt(D_d): print(distance = d);#distance of line L to

> origin

> if d > 1.0 then feasible:=false; print(feas=feasible); return; fi;

> if d = 1.0 then dpoint:=true; print(dead=dpoint); fi;

> u:=q*(k[3]*cos(input)-k[4]): v:=q*sin(input): print(inters = u,
> v);#coordinates of intersection of line L and its normal N passing

> through the origin

> if d = 0 then sigma:=arctan(-sin(input), k[3]*cos(input)-k[4]) else

> sigma:=arctan(v,u); fi: print(sig=sigma);#angle that normal makes

> with u-axis
> theta:=arccos(d); print(th=theta); #(1/2) angle subtended by secant

> to circle

> if d=0 then out[2]:=sigma; out[1]:=evalf(out[2]+Pi) else

> out[1]:=sigma-theta; out[2]:=sigma+theta end if; print(out1=out[1]);
> print(out2=out[2]);

> end;

Mobility of the Input and Output Links

This analysis is conducted in the space of the four Freudenstein parameters { ki }41, with
results similar to the planar case. Obviously, in this case the visualization is more chal-

lenging.

3.4.3 Spatial Four-Bar Linkages

The analysis of the spatial four-bar linkage parallels that of its planar and spherical

counterparts. There are, however, a few remarkable differences, as described below.

For starters, we cast the input-output equation (3.36) in the form

Âû+ B̂v̂ + Ĉ = 0 (3.91a)

where

û = u− ǫd1v, v̂ = v + ǫd1u, u ≡ cosφ, v ≡ sin φ (3.91b)

with d1 denoting the translation of the output cylindrical pair, while ǫ is the dual unit,

which has the properties ǫ 6= 0 and ǫ2 = 0. Moreover,

Â = A(ψ) + ǫAo(ψ), B̂ = B(ψ) + ǫBo(ψ), Ĉ = C(ψ) + ǫCo(ψ) (3.91c)
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whose primal parts A(ψ), B(ψ) and C(ψ) are identical to those of the spherical linkage,

as displayed in eqs.(3.89b), their dual parts Ao(ψ), Bo(ψ) and Co(ψ) being obtained with

the aid of computer algebra and the rules of operations with dual numbers, namely,

Ao = k3ocψ − k3d2sψ − k4o (3.92a)

Bo = sψ + d2cψ (3.92b)

Co = k1o + k2ocψ − k2d2sψ (3.92c)

in which the Freudenstein parameters are now dual numbers: k̂i = ki + ǫkio, for i =

1, . . . , 4. Moreover, their primal part is identical to that of the spherical four-bar linkages,

their dual parts being displayed in eqs.(3.42) and reproduced below for quick reference.

ko1 =−
a1λ2λ4µ1µ2µ4 + a2(λ1λ4 − λ2λ3)µ4 − a3µ2µ3µ4 + a4(λ1λ2 − λ3λ4)µ2

µ2
2µ

2
4

ko2 =
a1λ1λ4µ4 − a4µ1

µ2
4

, ko3 = −a1µ1, ko4 =
a1λ1λ2µ2 − a2µ1

µ2
2

Once we have obtained the input-output equation in terms of dual angles, it is possible

to analyze the RCCC linkage, which allows us, in turn, to compute all the joint rotations

and translations. The input-output equation above can be generally written as

L̂ : Âû+ B̂v̂ + Ĉ = 0 (3.93a)

and

Ĉ : û2 + v̂2 = 1 (3.93b)

where

û = cos φ̂, v̂ = sin φ̂ (3.93c)

Equations (3.93a–c) represent a dual line L̂ and a dual unit circle Ĉ in the dual û-v̂ plane,

respectively. Now, it is possible to decompose the equation of the “line” L̂ into two real

equations, one for its primal, and one for its dual part, namely,

P : Au+Bv + C = 0 (3.94a)

H : (Ao +Bd1)u−Ad1v + Co = 0 (3.94b)

For the circle Ĉ, the dual part vanishes identically, the primal part leading to a real circle,

namely,

C : u2 + v2 = 1 (3.94c)

Equation (3.94a) represents a plane P parallel to the d1-axis in the (u, v, d1)-space, while

eq.(3.94b) represents a hyperbolic paraboloid H in the same space. Moreover, eq.(3.94c)

represents a cylinder C of unit radius and axis parallel to the d1-axis, all foregoing items

being shown in Figs. 3.13a & b.
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(a) (b)

Figure 3.13: Intersections of (a) P and C; and (b) Li and H, for i = 1, 2

The three-dimensional interpretation of eqs.(3.94a–c) is illustrated in Figs. 3.13(a) and

(b), whereby line Li, for i = 1, 2, is defined by the intersection of the plane of eq.(3.94a)

with the cylinder (3.94c). Moreover, each line Li intersects the paraboloid (3.94b) at one

single point, as illustrated in Fig. 3.13b, and as made apparent below.

The system of equations (3.94a–c) should be solved for u, v and d1 in order to calcu-

late the two conjugate output angles and their corresponding output translations. The

intersections L1 and L2 of the plane P and the cylinder intersect the u-v plane at points

P1 and P2, as shown in Fig. 3.13a, while L1 and L2 intersect the hyperbolic paraboloid H
at points I1 and I2, as depicted in Fig. 3.13b. The intersection points P1 and P2 thus yield

the two conjugate output angles φ1 and φ2. Once the two conjugate solutions u and v are

known, via the coordinates of P1 and P2, the unique value of d1 corresponding to each

solution, and defining the intersection points I1 and I2, is determined from eq.(3.94b),

namely,

d1(ψ) =
Aou+ Co
Av − Bu , Av 6= Bu (3.95)

where we have dispensed with the argument ψ in coefficients A, Ao, B and Co for sim-

plicity.

Note that the denominator of eq.(3.95) vanishes if Av = Bu; then, as can be readily

verified, the numerator of d1 in the above expression vanishes as well, and d1 is indeter-

minate. In this case, the surface H disappears for all values of the output translations

d1 and we are left with the plane P and the cylinder C, which means that d1 is free to

take any value. That is, the motion of this linkage in the plane normal to its joint axes is

independent of the translations along these axes. We are here in the presence of a para-

metric singularity producing a degeneracy of the linkage, similar to those described for

the planar and spherical linkages in Subsections 3.4.1 and 3.4.2. Under this singularity,
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all joint axes are parallel (αi = 0, i = 1, . . . , 4) and, hence, the coupler and the output

links can freely slide along their cylindrical-joint axes.

Canonical Equation of the Hyperbolic Paraboloid H

In order to gain insight into the problem geometry, we derive below the canonical equation

of H. To this end, we let

x ≡ [u v d1 ]
T , Q(x) ≡ Aou+Bd1u−Ad1v + Co = 0

where Q(x) is taken from eq.(3.94b), its Hessian matrix H then being

H ≡ ∂2Q

∂x2
=






0 0 B

0 0 −A
B −A 0




 (3.96)

whose eigenvalues are readily computed as

λ1 = −
√
A2 +B2, λ2 = 0 , λ3 =

√
A2 +B2

The corresponding non-normalized eigenvectors ei, for i = 1, 2, 3, are

e1 =






B

−A√
A2 +B2




 , e2 =






A

B

0




 , e3 =






−B
A√

A2 +B2






and hence, the canonical equation of the surface H is of the form:

ζ =
ξ2

K
− η2

K
, K =

2AoA

A2 +B2

where

ξ =
−
√
2

2
√
A2 +B2

[

Bu+ Av + d1 +
AoB

4AoA

]

η =

√
2

4
√
A2 +B2

(

Bu− Av + d1 +
AoB

AoA

)

ζ =
1√

A2 +B2

[

Au+Bv +
(A2 +B2)CoA

AoA

]

which proves that H is indeed a hyperbolic paraboloid.

The Case of d1 Acting as Input

We include here a case that has been overlooked in the literature. In this case we regard

the translational displacement of the output C joint of a RCCC linkage as input, the

two outputs being angles ψ and φ. This problem can occur when designing an analogue
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temperature sensor in which temperature is measured via the expansion of a rod whose

axis is offset with respect to the axis of a dial, the two axes lying at an arbitrary angle.

The problem no longer leads to a quadratic equation, but rather to a system of one

quartic and one quadratic equation in two variables, as described presently.

Equations (3.94a & b) are both linear in u and v, which allows us to solve for these

variables in terms of d1, namely,

u = u(p, q) =
−BCo − CAd1

BAo + B2d1 + A2d1
(3.97a)

v = v(p, q) =
−CAo − ACo + CBd1
BAo +B2d1 + A2d1

(3.97b)

where, in light of eqs.(3.92a), with p = cosψ and q = sinψ, u and v become functions of

p and q. The latter, moreover, are subject to

p2 + q2 = 1 (3.98)

Substituting the values of u and v given above into eq.(3.94c) produces an equation free

of u and v or, correspondingly, free of φ, namely,

f(p, q) = 0 (3.99)

From eq.(3.72b) and eqs.(3.92a–c), both u and v, as given by eqs.(3.97a & b), are

rational functions in these variables, with both numerator and denominator quadratic in

p and q. Hence, u2 and v2 are rational functions with both numerator and denominator

quartic in p and q. Therefore, f(p, q) = 0 leads, after clearing denominators, to a quartic

equation in p and q.

The system of polynomial equations (3.98) and (3.99) apparently has a Bezout number,

introduced in Section 1.3, of 4× 2 = 8.

Numerical Examples

The foregoing algorithm is validated with two numerical examples. All numerical and

symbolic calculations were completed with the aid of computer algebra.

Example 1: The Yang and Freudenstein Linkage

The first example is taken from (Yang and Freudenstein, 1964), with data as listed in

Table 3.2. The output displacements, which vary with the input angle, are recorded in

Table 3.3. For conciseness, we list only the results for 0 ≤ ψ ≤ π. Our results match

those reported by Yang and Freudenstein, considering the difference of input and output

angles in both works, as explained in Subsections 3.2.4. It is noteworthy that only two

displacement equations need be solved in our method, as compared with the system of

six equations in six unknowns formulated by Yang and Freudenstein, within a purely

numerical approach.
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Table 3.2: D-H parameters of a RCCC mechanism

Link 1 2 3 4

ai[in] 5 2 4 3

αi[deg] 60 30 55 45

di[in] 0 variable variable variable

Table 3.3: RCCC displacements

Branch 1 Branch 2

ψ[deg] φ[deg] d1[in] φ[deg] d1[in]

0 83.70015289 −0.1731633183 −83.70015289 0.1731633183

20 68.59658457 0.01107737578 −105.3298310 0.8429100445

40 64.21379652 −0.5291731100 235.9479009 1.085719194

60 67.55907283 −1.262205018 223.0109192 0.9378806915

80 75.72376603 −1.888758476 214.5328380 0.6631677103

100 87.21970033 −2.259417488 209.1315343 0.3676536240

120 101.1949772 −2.248309766 206.1460158 0.08437533590

140 116.6745934 −1.770565950 205.6297490 −0.1502382358
160 131.8997404 −0.9205435228 208.4003706 −0.2203697101
180 144.2093802 −0.1150813726 215.7906198 0.1150813650
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Table 3.4: Possible values of ψ and φ

[p, q] ψ[deg] φ[deg]

1 [0.6047587377,−.7964087325] −52.78 [−65.68,−227.07]
2 [−.9289796338,−.3701308418] −158.27 [−130.66,−207.99]
3 [0.5819053587, 0.8132565115] 54.41 [66.04, 226.10]

4 [0.8869350365, 0.4618941881] 27.50 [65.79,−113.02]

Example 2: Prescribing d1 as Input

In the second example, we try to find the rotations, ψ and φ, for a given d1, and given

dimensions of a RCCC linkage. The dimensions are the same as those in Example 1, with

d1 = 1.0. In this example, eq.(3.99) takes the form:

A0p
4 + A1(q)p

3 + A2(q)p
2 + A3(q)p+ A4(q) = 0 (3.100)

where coefficients Ai(q), for i = 0, . . . , 4, are given below:

A0 = 0.09209746694

A1(q) =−0.06765823468q − 0.0073324502

A2(q) =−0.1754806581q2 + 0.01487658368q− 0.1902460942

A3(q) = 0.1353164694q3 + 0.1202907568q2 + 0.2424947249q + 0.04203177757

A4(q) =−0.015625q4 − 0.0811898817q3 − 0.020697377q2 − 0.1362382267q

+0.0484753242

Equation (3.100) represents a curve in the p-q plane, whose intersections with the

circle of eq.(3.98) yield all real roots of the system at hand. Note, moreover, that all

such roots are bound to lie on the above circle. The four real solutions of the foregoing

system are given by the four intersections depicted in Fig. 3.14. The solutions are listed

in Table 3.4, including the corresponding angles of rotation4.

Mobility of the Input and Output Links

In this case, the mobility analysis applies only to the input ψ and the output φ, as this

analysis decides whether a joint is fully rotatable—can sweep an angle of 2π—or not.

This analysis thus reduces to that of the spherical mechanism whose IO equation is the

primal part of the dual equation of this linkage.

4In this table only p and q are given with 10 digits; all other values are given with only four, for the

sake of economy of space.
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Figure 3.14: The case of an input translation

3.5 Approximate Synthesis

Regardless of the type of four-bar linkage, k (k̂) is a n-dimensional real (dual) vector;

for planar linkages, n = 3, for spherical, n = 4. For spatial linkages, n is still four, but

now, the parameters being dual, the total number of real parameters is eight. In general,

for m input-output pairs—in the spatial case, the output is dual!—to meet with m > 3

in the planar case, and m > 4 in the spherical and spatial cases, no set of Freudenstein

parameters can verify all synthesis equations, thereby ending up with an error vector e:

e ≡ b− Sk (3.101a)

which, in the case of RCCC linkages, becomes dual, i.e.,

ê ≡ b̂− Ŝk̂ (3.101b)

The foregoing error vector, in its two versions, primal and dual, is termed the design-

error vector. A positive scalar derived from this vector will be termed a design error.

The design error ed adopted here is the rms value of the components of vector e, i.e.,

ed ≡

√
√
√
√

1

m

m∑

1

e2i (3.102a)

where ei is the ith component of vector e, i.e., the residual of the ith synthesis equation.

Hence, the design error is proportional to the Euclidean norm of the design-error vector:

ed ≡
√

1

m
‖e‖ (3.102b)

121



It is apparent that, for fixed m, if we minimize ‖e‖, we minimize ed. In the case of

the spatial four-bar linkage, of course, ed is defined as

êd =

√

1

m
‖ê‖ (3.102c)

where, from eq.(A.9e),

‖ê‖ =
√
êT ê, êT ê = ‖e‖2 + ǫ2eTeo (3.102d)

The value k0 of k that minimizes ‖e‖, as derived in Subsection 1.4, is applicable to

the planar and spherical cases; it is given in eq.(1.41)5—The value k̂0 that minimizes êd

is discussed in Subsection 3.5.3. In the planar and spherical cases, this equation leads to

k0 = SIb (3.103a)

which is the least-square approximation of the given overdetermined system of linear equa-

tions, SI being the left Moore-Penrose generalized inverse of S, as introduced in eq.(1.42),

and is given by

SI = (SST )−1ST (3.103b)

Hence,

e0 ≡ b− Sk0 (3.104)

is the least-square error vector, and

ed0 ≡
√

1

m
‖e0‖ (3.105)

is the least-square design error of the approximation to the overdetermined system of

synthesis equations.

Remark 3.5.1 Expression (3.103a) for k0 can be derived upon multiplying both sides of

eq.(3.12) by ST :

(STS)k = STb (3.106)

where STS is a n× n matrix. If this matrix is nonsingular, then

k ≡ k0 = (STS)−1STb

Remark 3.5.2 The least-square approximation k0 can be thought of as being derived upon

“inverting” the rectangular S matrix in the original overdetermined system, eq.(3.12), with

the “inverse” of S understood in the generalized sense.

Remark 3.5.3 k0 minimizes the Euclidean norm of e, which is proportional to the design

error.

5k0 shouldn’t be mistaken by ko, the dual part of k̂.
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Remark 3.5.4 The least-square error of the approximation of the overdetermined system

of synthesis equations does not measure the positioning error, a.k.a. the structural error,

but rather the design error e defined above. The structural error produced by the synthe-

sized linkage must be measured with respect to the task, not with respect to the synthesis

equations. That is, if we let φi denote the prescribed value of the output angle, corre-

sponding to the ψi value, with φi denoting the generated value of the output angle, then

the structural error is the vector s given by

s ≡ [φ1 − φ1 φ2 − φ2 · · · φm − φm ]T (3.107)

Computing the least-square approximation k0 verbatim as appearing in eq.(3.103a) is

not advisable because of Remark 1.4.3 and the discussion in the paragraph below this re-

mark. This is, if κ(S) is moderately large, say, of the order of 1000, κ(STS) is inadmissibly

large, of the order of 106.

Numerical methods for the solution of eq.(3.12) in the presence of a rectangular S are

available in the literature (Golub and Van Loan, 1983), as outlined in Subsection 1.4.5

and implemented in scientific software. The two methods outlined in Subsection 1.4.5 fall

into what is called the QR decomposition: S is factored into an orthogonal matrix Q and

an upper-triangular matrix R.

Maple uses Householder reflections to find numerically the least-square approximation

of an overdetermined system of linear equations; it uses Gram-Schmidt orthogonalization

to do the same if data are given symbolically.

In any event, the original system (3.12) is transformed into the form

Tk = c (3.108)

where T and c are the transforms of S and b of eq.(3.101a), respectively, with T of the

form

T =

[
U

O

]

(3.109)

while U and O are

U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn







, O : (m− n)× n zero matrix (3.110)

In order to solve eq.(3.108) for k, we partition vector c into a n-dimensional upper

part cU and a (m− n)-dimensional lower part cL:

c =

[
cU

cL

]

(3.111)

where, in general, cL 6= 0.
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System (3.108) thus takes the form

[
U

O

]

k =

[
cU

cL

]

⇒
{

Uk = cU

Ok = cL 6= 0
(3.112)

Remark 3.5.5 If S is of full rank, then so is T and hence, U is nonsingular.

Remark 3.5.6 If U is nonsingular, then none of its diagonal entries vanishes, for det(U) =

u11u22 · · ·unn.

Remark 3.5.7 If U is nonsingular, then k1, k2, . . . , kn can be computed from the first

of eqs.(3.112) by backward substitution.

Remark 3.5.8 The second of eqs.(3.112) is a contradiction: its RHS is zero, but its

LHS is not! Hence, cL is the error vector—although not in the original vector basis, but

in a new, orthonormal basis—and thus, the error in the approximation of the synthesis

equations is

ed0 =

√

1

m
‖cL‖ (3.113)

3.5.1 The Approximate Synthesis of Planar Four-Bar Linkages

For planar linkages the procedure is straightforward, as illustrated with the example

below.

Example 3.5.1 (Approximate synthesis of the gripper mechanism) The mechan-

ism of Fig. 3.6 is to be synthesized, but now with a large number of input-output (IO)

values. For comparison purposes, the data points used by Dudiţă et al. (1989) are used

here, which are prescribed by equally spacing 61 IO values between ψ1 = 30◦, φ = 240◦

and ψ61 = 60◦, φ61 = 210◦, as depicted in Fig. 3.15.

Solution: The 61×3 synthesis matrix S and the 61-dimensional vector b are not displayed

for the sake of economy of space. Details of the solution are available in the code written

for the purpose at hand6. The least-square approximation was computed using Householder

reflections, which yielded, using 16 digits for comparison purposes with the results reported

by Dudiţă et al. (1989):

k0 = [ 2.9417068638 2.7871366821 2.7869959265 ]T

with corresponding link parameters

a1 = 1.0, a2 = 0.3587911588, a3 = 0.7071482506, a4 = 0.3588092794

6See Dudita2.mw
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Figure 3.15: The 61 points prescribed in the φ-vs.-ψ plane

in units of length. In the foregoing reference, the authors computed the least-square ap-

proximation using the normal equations, which produced

kD = [ 2.9398767070 2.7857633820 2.7857633820 ]T

thereby obtaining the link lengths7 below:

a1 = 1.0, a2 = 0.3589680324, a3 = 0.7071510069, a4 = a2

in units of length. The values of both k and kD coincide up to the first two digits, those

of the link lengths up to the first three digits, which is a fair matching, a consequence of

the moderate condition number of the synthesis matrix, namely κ = 195, as computed in

Dudita2.mw. However, the normality conditions were met, with the values provided in the

foregoing reference, with an error of O(−4); the same conditions were met with an error

of O(−14) in the code given above, which uses HHR.

To the naked eye, the synthesized linkage doesn’t appear different from that in Fig. 3.7.

7Dudiţă et al. adjusted the values of the second and the third components of the kD array to be

identical.
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3.5.2 The Approximate Synthesis of Spherical Linkages

This case parallels that of planar linkages, with the provision that, as in the case of

exact synthesis of spherical linkages, nothing guarantees that the computed least-square

approximation complies with the two conditions (3.33). The first of these, |k3| ≤ 1, can

be enforced in the least-square solution by adding one more equation, k3 = 0, to the

synthesis equations. Compliance with this condition, however, will invariably lead to a

larger value of ed0. Enforcing the second condition of eq.(3.33) is less straightforward,

as it requires techniques for solving problems of constrained least squares with nonlinear

equality constraints, which fall outside of the scope of this course, and will not be further

discussed. The reader is referrred to the literature on engineering optimization whenever

confronted with this problem.

Adjoining the above equation, k3 = 0, to the synthesis equation, then, leads to the

augmented synthesis equations

Sak = ba (3.114a)

where

Sa =

[
S

uT

]

, ba =

[
b

0

]

(3.114b)

with u = [0, 0, 1, 0]T , and hence, Sa now becomes of (m + 1) × 4, while ba is now

(m+ 1)-dimensional.

But least-square approximations allow for more flexibility, if we introduce weights in

eq.(3.114a), by means of a (m+ 1)× (m+ 1) constant matrix Va:

VaSak = Vaba (3.115a)

with

Va =

[
V 0m

0m
T v

]

(3.115b)

in which V is a m×m block, 0m is the m-dimensional zero matrix, and v is a scalar. Both

V and v are assigned by the user under the only constraint of avoiding the introduction

of large roundoff-error amplification. We will describe presently how to prescribe V and

v.

Notice that the least-square approximation k0 of eq.(3.115a) now becomes, symboli-

cally,

k0 = [(VaSa)
T (VaSa)]

−1(VaSa
T )Vaba

= (Sa
TWaSa)

−1Sa
TWaba, Wa ≡ Va

TVa (3.116)

in which the symmetric and positive-definite Wa is termed a weighting matrix.

Also notice that

Wa =

[
VT 0m

0m
T vm+1

] [
V 0m

0m
T vm+1

]

=

[
W 0m

0m
T wm+1

]

(3.117a)
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with

W = VTV, wm+1 ≡ v2m+1 (3.117b)

Since no constraint is imposed on V, besides robustness to round-off error amplifica-

tion, V can be freely chosen as symmetric and positive-definite, and hence, nonsingular,

i.e.,

V2 = W ⇒ V =
√
W (3.118a)

where
√
W denotes the the positive-definite square root of W. Now, the simplest matrices

to square-root are diagonal matrices, W then being chosen as

W = diag(w1, w2, . . . , wm) (3.118b)

Now, the error vector in the approximation of eqs.(3.115a) is

ea = Va(ba − Sak) =

[
V 0m

0m
T vm+1

] [
b− Sk

k3

]

(3.119a)

whose Euclidean norm is

‖ea‖2 = [bT − kTST k3 ]

[
V2 0m

0m
T v2m+1

] [
b− Sk

k3

]

= (bT − kTST )W(b− Sk) + wm+1k
2
3

=
m∑

i=1

wie
2
i + wm+1k

2
3 (3.119b)

which thus yields a weighted error-norm. In order to avoid large roundoff-error amplifi-

cation, we choose the weighting factors {wi }m+1
1 as

m+1∑

i=1

wi = 1, 0 ≤ wi ≤ 1, i = 1, . . . , m (3.120)

so that ‖ea‖2 becomes a convex combination of all m+ 1 errors. If no preference is given

to the set { ei }m1 , then the first m weights can be chosen all equal, while wm+1 is to be

chosen so as to enforce |k3| to be smaller than unity but, if wm+1 is chosen unnecessarily

large, then |k3| will be “too small” at the expense of a “large” design error. The best

compromise is to be chosen by trial and error.

An application of the approximate synthesis of spherical four-bar linkages to the re-

placement of a bevel-gear transmission with input and output axes at right angles was

reported by Alizadeh et al. (2013).

3.5.3 The Approximate Synthesis of Spatial Linkages

This subsubsection is largely based on (Angeles, 2012). The synthesis equations (3.50)

for the spatial four-bar linkage are reproduced below for quick reference:

Sk = b (3.121a)

Sko = bo − Sok (3.121b)
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which can be cast in the standard form (1.28) of an overdetermined system of linear

equations, in this case of 2m equations in 2× 4 = 8 unknowns, the four components of k

and ko. Indeed, assembling the above equations into one single system yields
[
S O

So S

]

︸ ︷︷ ︸

A

[
k

ko

]

︸ ︷︷ ︸

x

=

[
b

bo

]

︸ ︷︷ ︸

r

(3.122)

whose matrix A has four m× 4 blocks, while x is an eight-dimensional vector. One could

think of submitting eq.(3.122) to a linear least-square solver and, sure enough, obtain a

least-square solution x0 à la eq.(1.41). Problem is, this solution would be meaningless

because the error e ≡ r −Ax does not admit a norm. The reason is that the first m

components of e are dimensionless, as they refer to the spherical linkage associated with

the spatial linkage at hand, while the last m bear units of length, as they refer to sliding

errors. This approach is thus ruled out. Instead, the synthesis equations in dual form,

eq.(3.45), with the definitions appearing in eq.(3.46), are recalled, as reproduced below

for quick reference:

Ŝk̂ = b̂ (3.123)

which, for m > 4, cannot be satisfied exactly; the dual error incurred is

ê = b̂− Ŝk̂ (3.124)

Equation (3.123) can be shown to admit the least-square solution

k̂0 = ŜI b̂, ŜI = (ŜT Ŝ)−1ŜT (3.125)

where

ŜT Ŝ = STS+ ǫ(STSo + STo S) (3.126)

whose inverse is readily computed using eq. (A.13) of the Appendix:

(ŜT Ŝ)−1 = (STS)−1 − ǫ(STS)−1(STSo + STo S)(S
TS)−1 (3.127)

and hence,

ŜI = SI + ǫ[−SISoSI + (STS)−1STo − (STS)−1STo SS
I

︸ ︷︷ ︸

∆

] (3.128)

Were it not for the ∆ term in the above expression, it would mimic faithfully the

expression for the dual inverse appearing in eq. (A.13). It will become apparent that this

term can be dropped from the above expression, thereby a) simplifying the expression of

interest and b) leading to a minimum-size linkage.

Upon substitution of expression (3.128) into eq.(3.125), and expansion of the expres-

sion thus resulting, the least-square solution k̂0 is obtained as

k̂0 = (STS)−1STb
︸ ︷︷ ︸

k0

+ǫ (STS)−1[STo b+ STbo − (STSo + STo S)(S
TS)−1STb]

︸ ︷︷ ︸

ko0

(3.129)
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While the above expressions for the least-square solution of both the primal part of

k̂, k0, and its dual counterpart ko0 are theoretically sound, they are not appropriate for

computations verbatim, given the large amount of floating-point operations involved, and

their need of the inverse of STS. As pointed out in Remark 1.4.3, it is not advisable to

compute verbatim that inverse because of the likely amplification of the condition number

of the matrix product. It will be made apparent in the sequel that a terser solution ko0

can be obtained.

Indeed, if first the least-square solution k0 for the primal part of k̂ is computed from

eq.(3.121a), using the left Moore-Penrose generalized inverse SI , and then this expression

is substituted into eq.(3.121b), the least-square solution ko0 is derived as

ko0 = SI(bo − SoS
Ib) (3.130)

which is much terser than its counterpart expression in eq.(3.129). The difference between

the two expressions can be explained based on the observation that the dual generalized

inverse ŜI is not unique, contrary to its real counterpart. This fact is made apparent

below.

Paraphrasing the derivation of the expression (A.13) for the dual inverse, let B̂ =

B + ǫBo be the generalized inverse of a m × n dual matrix Â = A + ǫAo, with m > n.

As Â has been assumed of m× n, B̂ is bound to be of n×m.

Then,

B̂Â = 1n (3.131)

with 1n denoting the n× n identity matrix. Upon expansion of the left-hand side of the

above equation, two real equations are obtained, one for the primal, one for the dual part:

BA = 1n, BoA+BAo = On (3.132)

the first equation leading to the not so unexpected resultB = AI , which, when substituted

into the second equation, yields a matrix equation for Bo:

BoA = −AIAo

A more suitable form of the above equation is obtained, with the unknown Bo as the

right-hand factor of the left-hand side upon transposing the two sides of the equation,

namely,

ATBT
o = −AT

o (A
I)T ≡ −AT

oA(ATA)−1

which is a system of n2 equations in m×n > n2 unknowns. The system is, thus, underde-

termined, thereby admitting infinitely many solutions. The conclusion is, then, that the

dual left generalized inverse is not unique. Among all that many solutions, one of mini-

mum Frobenius norm can be obtained if one resorts to the right Moore-Penrose generalized

inverse of AT , denoted (AT )† (Nash and Sofer, 1996):

(AT )† = A(AAT )−1 (3.133)
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After some obvious manipulations,

Bo = −AIAoA
I (3.134)

Therefore, the minimum-Frobenius-norm ÂI is

ÂI = AI − ǫAIAoA
I (3.135)

The reader is invited to show that, if the foregoing formula is applied to compute the

least-square solution k̂0, the expression below is obtained:

k̂0 = SIb+ ǫSI(bo − SoS
Ib) (3.136)

whose dual part is exactly the one obtained in eq.(3.130). By the same token, the reader is

invited to prove that ∆T , with ∆ as appearing in eq.(3.128), is an orthogonal complement

(OC) of ST , which is the reason why this term was filtered out in eq.(3.130). Below we

expand on the OC concept.

Given a m × n matrix M, with m < n, i.e., with more columns than rows—for

simplicity, its m rows will be assumed linearly independent—its ith row can be regarded

as a vector mi ∈ IRn. Since M has m such vectors, it is possible to find n−m linearly

independent vectors {pk }n−m1 orthogonal to the m rows—picture this with m = 2 and

n = 3. If the vectors of this set are arrayed as the columns of a n × (n −m) matrix P,

then

MP = Omn′ (3.137)

where Omn′ denotes the m× (n−m) zero matrix. Every matrix P that verifies eq.(3.137)

is termed an orthogonal complement of M. It follows that the OC is not unique. Indeed,

a rearrangement of the columns of P yields another OC of M. Likewise, any multiple of

a given P is also an OC of M.

In summary, then, the approximate synthesis of a RCCC linkage proceeds sequentially:

1. Decouple the synthesis problem into two subproblems: one leading to the optimum

Freudenstein parameters of the spherical linkage associated with the spatial link-

age of interest, eq.(3.121a), the other with the optimum dual counterparts of the

foregoing parameters, eq.(3.121b).

2. Apply Householder reflections to the primal part S of the dual synthesis matrix,

thereby obtaining a m × m orthogonal matrix H and a m × 4 matrix E, with an

upper-triangular 4 × 4 block occupying its first four rows and a (m − 4) × 4 block

of zeros. Apply the same reflections to b of the right-hand side of eq.(3.121a) and

obtain k0 by forward substitution on the first four equations.

3. Substitute k into eq.(3.121b) with k0 and then apply the same Householder reflec-

tions to the right-hand side of the same equations.
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4. Compute ko0 from the transformed eqs.(3.121b) by backward substitution over the

same 4× 4 block.

5. Compute the skew angles {αi }41 from eqs.(3.32a)–(3.32d) by nonlinear-equation

solving.

6. Compute the distances { ai }41 from eqs.(3.42) by linear-equation solving.

7. Done!

3.6 Linkage Performance Evaluation

3.6.1 Planar Linkages: Transmission Angle and Transmission

Quality

A variable of merit that is used to assess the linkage performance is the transmission angle

µ, illustrated in Fig. 3.1. The transmission angle is thus defined as the angle between the

axes of the output and the coupler links.

The relevance of this angle is apparent from a kinetostatic analysis8: in Fig. 3.16, the

internal forces of constraint are indicated as Fij , to denote the force exerted by the ith

link on the jth link, using a standard terminology. Therefore, the force transmitted by

the output link to the frame has a magnitude |F41| given by

|F41| = |F14| = |F34| (3.138)

where, from the static equilibrium of the coupler and the input links,

|F34| = |F32| =
∣
∣
∣
∣

τψ
a2 sin(ψ − θ)

∣
∣
∣
∣

(3.139)

and τψ is the applied torque that balances statically the load torque τφ.

The magnitude of the radial component of F14, denoted |F14|r, is derived upon sub-

stitution of eq.(3.139) into eq.(3.138), thus obtaining

|F14|r ≡ |F14 cosµ| =
∣
∣
∣
∣

τψ
a2 sin(ψ − θ)

cosµ

∣
∣
∣
∣

(3.140)

from which it is apparent that |F14|r is proportional to the magnitude of the applied

moment and to the cosine of the transmission angle. Since this is a nonworking force, one

is interested in keeping it as low as possible. However, it cannot be made zero by simply

making zero the applied torque because, then, no useful force would be transmitted! Thus,

8This is an analysis of forces and moments of a mechanical system in motion under static, conservative

conditions.
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A

BB

CC

D

Figure 3.16: A static analysis of the four-bar linkage

the only possible way of keeping that force as small as possible is by keeping cosµ as small

as possible, i.e., by keeping µ as close as possible to ±90◦.
The transmission angle is posture-dependent, of course; hence, it cannot be maintained

at a fixed value for all the linkage postures. In practice, a minimum allowable value on

the transmission angle or, rather, on its absolute value, is prescribed. This is commonly

accepted as 45◦, i.e., a specification when designing four-bar linkages is

|µ| ≥ 45◦ (3.141)

If one is interested in a global evaluation of the performance of a four-bar linkage

throughout its full range of motion, namely, ψ1 ≤ ψ ≤ ψ2, then a merit function of the

linkage that takes into account all possible postures is needed. This quantity can be fairly

termed the transmission quality of the linkage, which is defined as the root-mean-square

(rms) value of sin µ:

Q ≡
√

1

∆ψ

∫ ψ2

ψ1

sin2 µdψ, ∆ψ ≡ ψ2 − ψ1 (3.142)

From the foregoing definition, note that

0 < Q < 1 (3.143)

Evaluating Q as given above is rather difficult because an expression for sinµ is not readily

derivable. However, an expression for cosµ can be readily derived. Indeed, from Fig. 3.1

and the “cosine law”, two expressions for BD
2
can be derived:

BD
2
= a23 + a24 − 2a3a4 cosµ (3.144a)

BD
2
= a21 + a22 − 2a1a2 cosψ (3.144b)

Upon equating the two right-hand sides of the foregoing equations, an expression for cosµ

is derived in terms of the input angle, namely

cosµ =
a23 + a24 − a21 − a22 + 2a1a2 cosψ

2a3a4
(3.145)
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If now relations (3.71) are recalled, an expression for cosµ in terms of the linkage param-

eters {ki}31 is obtained:

cosµ = sgn(k2k3)(c1 + c2 cosψ) (3.146a)

where coefficients c1 and c2 are defined as

c1 ≡
k2 − k1k3√

D
, c2 =

k23√
D
, D ≡ k22 + k23 + k22k

2
3 − 2k1k2k3 (3.146b)

Now the transmission quality Q can be written as Q =
√
1− δ2 where δ is the integral of

cos2 µ over the full mobility interval of the input link, i.e.,

δ ≡
√

1

∆ψ

∫ ψ2

ψ1

cos2 µdψ, ∆ψ ≡ ψ2 − ψ1 (3.147)

and, by virtue of the relation between the transmission quality Q and δ, namely,

Q2 + δ2 = 1 (3.148)

It is reasonable to call δ the transmission defect of the linkage. Hence, maximizing Q is

equivalent to minimizing δ. Note that δ2 can be written as

δ2 ≡ 1

∆ψ

[

c21∆ψ + 2c1c2(sinψ2 − sinψ1) +
1

2
c22∆ψ +

c22
4
(sin 2ψ2 − sin 2ψ1)

]

(3.149)

If, in particular, the input link is a crank, then,

δ2 = c21 +
1

2
c22 (3.150)

In synthesizing a four-bar linkage for function generation, the location of the zeros of

the dials of the ψ and φ values is normally immaterial. What matters is the incremental

values of these angles from those zeros. We can thus introduce parameters α and β

denoting the location of the zeros on the ψ and the φ dials, respectively, so that now

ψi = α +∆ψi, φi = β +∆φi, for i = 1, 2, . . . , m (3.151)

We can thus regard the least-square approximation k0 as a function of α and β, i.e.,

k0 = k0(α, β) (3.152)

It is apparent, then, that the two new parameters can be used to optimize the linkage

performance, e.g., by minimizing its defect δ.

As it turns out, the transmission angle plays an important role not only in the force-

transmission characteristics of the linkage, but also in the sensitivity of its positioning

accuracy to changes in the nondimensional parameters k. Indeed, if we make abstraction

of the parameters α and β, for simplicity, we can calculate the sensitivity of the synthesized
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angle φi to changes in k from the input-output equation (3.11) written for them prescribed

input-output pairs. We display below the ith component of this vector equation:

Fi(ψi, φi,k) = k1 + k2 cos φi − k3 cosψi − cos(ψi − φi) = 0, i = 1, 2, . . . , m (3.153)

where φi is one of the two values of φ that verify the above equation for ψ = ψi, namely,

the one lying closest to φi, as introduced in eq.(3.107). The sensitivity of interest is,

apparently, ∂φi/∂k, which is computed below: this partial derivative is computed upon

differentiation of all sides of eq.(3.153) w.r.t. k, namely,

dFi
dk

=
∂Fi
∂φi

∂φi
∂k

+
∂Fi
∂k

= 0

Hence,
∂φi
∂k

= − ∂Fi/∂k
∂Fi/∂φi

(3.154)

Now, we calculate ∂Fi/∂φi from eq.(3.153):

∂Fi
∂φi

= −k2 sin φ− sin(ψi − φi) = −
a1 sinφi − a2 sin(φi − ψi)

a2
(3.155)

A pertinent relation among the variables and parameters involved in eq.(3.155) is

displayed in Fig. 3.17. From this figure,

a1 sinφi − a2 sin(φi − ψi) = a3 sin µi (3.156)

Upon substitution of eq.(3.156) into eq.(3.155), we obtain

∂Fi
∂φi

= −a3
a2

sin µi (3.157a)

which, when substituted into eq.(3.154), yields

∂φi
∂k

=
a2

a3 sinµi

∂Fi
∂k

(3.157b)

Furthermore,

∂Fi
∂k

=





1

cosφi

− cosψi



 (3.157c)

and hence,

∂φi
∂k

=
a2

a3 sin µi





1

cosφi

− cosψi



 (3.157d)

It is now apparent that the larger | sinµi|, the less sensitive the positioning accuracy

of the linkage is to changes in the linkage dimensions.
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Figure 3.17: Relation between the transmission angle and the parameters and variables

of a four-bar linkage

An interesting relation between the linkage discriminant defined in eq.(3.82a) and the

transmission angle is now derived. From the expression for cosµ obtained in eqs.(3.146a),

an expression for sin2 µ is readily obtained, in terms of the Freudenstein parameters, as

sin2 µ =
k23

k22 + k23 + k22k
2
3 − 2k1k2k3

∆(ψ) (3.158a)

where ∆(ψ) is the linkage discriminant of eq.(3.82a), reproduced below for quick reference:

∆(ψ) ≡ −k23 cos2 ψ + 2(k1k3 − k2) cosψ + (1− k21 + k22) ≥ 0 (3.158b)

which is nonnegative at feasible postures.

Apparently, then, for a given linkage, the square of the sine of the transmission angle

is proportional to the discriminant. Hence, both vanish at dead points of the input link,

which occur when this is a rocker.
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3.6.2 Spherical Linkages: Transmission Angle and Transmission

Quality

Spherical linkages are elusive to a kinetostatic analysis because they are hyperstatic, in that

the number of static equations available under the condition that all their axes intersect

at one common point is smaller than the number of reaction forces and moments to be

found. Rather than deriving the transmission angle for this kind of linkages by means

of a kinetostatic analysis, as in the case of planar linkages, we derive it by establishing

a correspondence between its geometry and that of the planar linkage. This is done by

defining coordinate frames for the planar four-bar linkage in accordance with the Denavit-

Hartenberg notation introduced in Subsection 3.2.2, with axes Xi, for i = 1, . . . , 4 as

illustrated in Fig. 3.18. Notice that axis Z1 is defined in the foregoing figure as that of

the output joint, passing through D, Z2 as that of the input joint, passing through A,

with similar definitions for axes Z3 and Z4, all these axes pointing outside of the plane of

the figure, towards the reader.

A

B

C

Da1

a2

a3
a4

φ
ψ

θ

µ

X2

X3

X4

X1

Figure 3.18: A four-bar linkage for function generation

It is now apparent that we can follow the Denavit-Hartenberg notation to define the

transmission angle in this case as the supplement of that made by X4 and X1, positive

in the direction of Z4, which is θ4 by definition. Indeed, as the reader can readily verify,

based on the DH notation, θ4+µ = π in the planar case. The same holds in the spherical

case, and hence,

cosµ = − cos θ4 (3.159a)

An expression for cosµ in terms of the input angle ψ can be found, as in the planar case,

using trigonometry. Obviously, in the case at hand, spherical trigonometry is the tool to

use, which then yields (McCarthy and Soh, 2011):

cosµ =
cα3cα4 − cα1cα2 − sα1sα2 cosψ

sα3sα4
(3.159b)
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The mechanical significance of the transmission angle is the same as in the planar case:

the closer µ is to ±90◦, the smaller the radial component of the force transmitted by the

output link to the frame, and hence, the higher the quality of the force-transmission from

the input to the output links. That is, for an acceptable performance, the dihedral angle

between the planes of the circular arcs of the coupler and the output links should be such

that the two planes are as far from each other as possible, which happens when the angle

is ±90◦, i.e., when cosµ = 0.

The transmission quality is defined exactly as in the planar case.

3.6.3 Spatial Linkages: Transmission Angle and Transmission

Quality

This subsection is still under construction.

For quick reference, the spatial four-bar linkage of Fig. 3.5 is reproduced here as

Fig. 3.19.

PSfrag
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B

C

D

O

Z1

Z2

Z3

Z4

X1
X2

X3

X4

a1

a2

a3

a4
d3

d4

d1

d2 α1

α2

α3 α4

θ1

θ2

ψ

φ

Figure 3.19: A RCCC linkage for function generation (Fig. 3.5 repeated)

Now, the simplest way of determining the transmission angle is by dualization of the

expression in eq.(3.159a), namely, by putting hats on both µ and θ4, which yields

cos µ̂ = − cos θ̂4 (3.160a)

Similarly, an expression for cos µ̂ in terms of the input angle ψ can be found upon dualizing

both sides of eq.(3.159b), namely,

cos µ̂ =
cα̂3cα̂4 − cα̂1cα̂2 − sα̂1sα̂2 cos ψ̂

sα̂3sα̂4
(3.160b)
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In the foregoing equation, according with the definition of dual angle given in eq.(A.5),

µ̂ = θ4 + ǫd4 (3.161a)

where both are defined positive about and along the positive direction of Z4. The geomet-

ric interpretation of the above expression is straightforward: while θ4 is the angle between

X4 and X1, d4 is the signed distance between X4 and X1, the sign being determined by

rule 5 of the DH notation. By the same token,

α̂i = αi + ǫai (3.161b)

which carries two constant quantities, while

ψ̂ = ψ + ǫd1 (3.161c)

carries two variable quantities, the input angle ψ, and the sliding di, with units of length.

Moreover, the transmission quality is now a dual quantity, namely,

Q̂ ≡
√

1

∆ψ

∫ ψ2

ψ1

sin2 θ4dψ + ǫ2

√

1

∆ψ

∫ ψ2

ψ1

d4 cos θ4 sin θ4dψ, ∆ψ ≡ ψ2 − ψ1 (3.162)

Furthermore, θ4 is the real angle between axes X4 and X1 in the spherical case, in

which the two axes are concurrent. In the spatial case, θ̂4 is the dual angle between two

skew lines, axes X4 and X1. This angle, as discussed in Appendix A, comprises a primal

part and a dual part, the former being the real angle between the two lines, as described

above. The dual part is the signed distance between X4 and X1, which is positive when

Z4 points in the direction from X4 to X1. Thus, in the same way that the dot product of

two unit vectors provides the cosine of the angle between the two vectors, the dot product

of two dual unit vectors—a dual vector is “of unit magnitude” when its primal part is

a real unit vector—provides the cosine of the (dual) angle between two lines. The dual

angle in question involves both the angle between the two lines and their signed distance.

In the planar case, cosµ determines “how far” the axis of the coupler link is from that

of the output link, while keeping one common point, C, at any linkage posture: the larger

| cosµ|, the “closer” the axes. In the spherical case, cosµ determines “how far” the plane

of the circular arc of the coupler link is from its counterpart of the output link, while

maintaining one common line, Z4, at any given linkage posture: again, the larger | cosµ|,
the “closer” the planes. In order to provide a larger lever arm to the transmitted force,

the foregoing “distances” should be kept as large as possible, aiming at values of | cosµ|
closer to zero than to unity.

The generalization to the spatial case then follows: cos µ̂ determines “how far” X4,

while intersecting Z4, is fromX1 at any given linkage posture. When the two axes coincide,

the worst-case scenario, the full wrench—force and moment—transmitted by the coupler

138



link to the output link goes into the linkage support, and no part of it is used to counter

the load applied on the output link. The effect of the transmitted force on the output

link, under these conditions, is the same as that of a force applied to a door along a line

of action that passes through the hinge axis and a moment vector lying in a plane normal

to this axis. Force and moment, in this case, are incapable of turning the door.

In summary, then, maximizing the dual transmission quality of the spatial four-bar

linkage is equivalent to keeping the axis of the coupler link as “far away” as possible from

axis X1 of the DH notation, to increase the dual lever arm of the wrench—combination of

force and moment—driving the output link directly, as transmitted by the coupler link.

Exercise 3.6.1 Under static, conservative conditions, show that the line of action of the

force transmitted by the coupler link to the output link is X4.

Exercise 3.6.2 Derive the expression for the dual transmission quality given in eq.(3.162),

then specialize it for the case of an input crank.

3.7 Design Error vs. Structural Error

In this section we establish the relation between the design error and the structural error.

In doing this, we build upon the analysis proposed by Tinubu and Gupta (1984).

The structural error was introduced in eq.(3.107). If now φ and φ denote the m-

dimensional vectors of generated and prescribed output values, then the structural-error

vector s can be expressed as

s ≡ φ− φ (3.163)

where, it is recalled, φi denotes the generated value, φi the prescribed value of the output

angle for a given value ψi of the input angle. In the ensuing discussion we assume that

the synthesis equations are cast in the general form

Sk = b (3.164)

regardless of the type of linkage, planar, spherical or spatial. However, one should keep in

mind that, in the spatial case, S, b and k become all dual quantities: Ŝ, b̂ and k̂. In this

context, S is am×n matrix, while k and b, or their dual counterparts, as the case may be,

are n- and m-dimensional vectors, respectively. Again, n = 3 in the planar case, 4 in the

spherical and spatial cases9. In the case of spatial linkages, a second equation of the same

gestalt as that of eq.(3.164), involving a second vector of Freudenstein parameters—the

dual part of the dual vector k̂—occurs, as per eqs.(3.121a & b).The difference e ≡ b−Sk—
or its dual counterpart for that matter—is to be highlighted: minimizing a norm of e is

not equivalent to minimizing the same norm of s. Indeed, while e denotes the error in

9Read the opening paragraph of Section 3.5.
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meeting the synthesis equations, whose components involve trigonometric functions of the

input and output angles at the m prescribed pairs, s denotes the error in meeting the

prescribed positions, which is what really matters. Unfortunately, however, a relation of

the form g ≡ g(e, s) = 0 between the two errors is elusive. Nevertheless, a differential

relation between the two errors can be readily obtained, as done below, and that suffices.

In minimizing the structural error, we aim at a minimum of the rms value of the

components of vector s by properly choosing k:

z(k) ≡ 1

2m
‖s‖2 → min

k
(3.165)

where ‖s‖ is the Euclidean norm of the structural error s.

Function z(k) attains a stationary value with respect to k when its gradient vanishes,

i.e.,

∇z ≡ ∂z

∂k
=

(
∂s

∂k

)T
∂z

∂s
= 0n (3.166)

with 0n denoting the n-dimensional zero vector. The above equation is the normality

condition of the minimization problem at hand. Apparently,

∂z

∂s
=

1

m
s (3.167)

Now, in order to compute ∂s/∂k, we recall the definition of s, eq.(3.163), which leads to

∂s

∂k
=
∂φ

∂k
(3.168)

as φ is a constant vector of prescribed output values. Moreover, the ith row of matrix

∂φ/∂k, for the planar case, is displayed in eq.(3.157d) as a column array.

Now, in order to compute ∂φ/∂k, we need an equation relating the array φ of generated

values of the output angle with vector k. One candidate would be the m synthesis

equations (3.164), which define the design error e:

e ≡ e(φ, k) = b− Sk (3.169)

The above expression is, in general, different from zero, when evaluated at the prescribed

values φi of the output angle, for i = 1, . . . , m, and hence, does not define an implicit

equation in φ and k. As a matter of fact, the problem of approximate synthesis consists

in minimizing the Euclidean norm of the nonzero vector e.

However, when the above vector is evaluated at the generated values φi of the output

angle, for i = 1, . . . , m, then it does vanish. Indeed, the ith component of e as defined

in eq.(3.169) is nothing but the input-output function F (ψ, φ) = 0 evaluated at ψi for a

given linkage defined by k. In our case, k is the current value, within an iterative process,

to be formulated in Subsection 3.7.1, of the unknown vector of linkage parameters, i.e.,

the Freudenstein parameters. Upon solving the input-output equation for φ, two values
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of φi are obtained, as found in Section 3.4, and hence, the function does vanish at these

two values. We will assume that, of these two values, φi is chosen as the one closer to φi.

We thus have

F (ψi, φi) ≡ bi − sTi k = 0 (3.170)

in which sTi denotes the ith row of S and bi the ith component of b.

To avoid confusion, let us distinguish between the design error e when evaluated at φ

and when evaluated at φ, by denoting the latter by e, i.e.,

e ≡ e(φ, k) = b− Sk 6= 0 (3.171)

where S and b denote S and b, respectively, when evaluated at the prescribed values of

the input angle {ψi }m1 and at the generated φ.

Moreover, when we evaluate e at the generated value φ, we obtain

e ≡ e(φ, k) = b− Sk = 0m (3.172)

which is an implicit vector function of φ and k, and hence, allows for the evaluation of

∂φ/∂k. Upon differentiation of eq.(3.172) with respect to k, we obtain

de

dk
=
∂e

∂k
+
∂e

∂φ

∂φ

∂k
= Omn (3.173)

where Omn is the m × n zero matrix. Moreover, the m ×m matrix ∂e/∂φ is computed

from the input-output equation (3.170), or its dual counterpart, as the case may be. Since

ek is influenced only by φk, and not by φj , for j 6= k, ∂e/∂φ is diagonal, i.e.,

∂e

∂φ
= diag [ ∂e1/∂φ1 ∂e2/∂φ2 · · · ∂em/∂φm ] ≡ D (3.174a)

Under the assumption that none of the diagonal elements of D vanishes, this matrix

is nonsingular, and hence, the matrix ∂φ/∂k sought can be solved for from eq.(3.173).

Furthermore, it is apparent from eq.(3.172) that ∂e/∂k is nothing but the negative of the

synthesis matrix S, evaluated at the generated values of the output angle, i.e.,

∂e

∂k
= −S (3.174b)

Hence, ∂φ/∂k, as computed from eq.(3.173), is

∂φ

∂k
≡ ∂s

∂k
= D−1S (3.175)

Therefore, the normality condition (3.166) leads to

STD−1s = 0n (3.176)

where 0n denotes the n-dimensional zero vector. The normality condition thus states

that, for k to produce a stationary value of the positioning error—proportional to the
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rms value of the structural error s—the structural error s must lie in the null space of the

matrix product STD−1. That is, the structural error of minimum norm need not vanish

and, in general, it won’t, but must verify eq.(3.176).

Now, contrary to the minimization of the design error, the minimization of the posi-

tioning error leads to a nonlinear least-square problem, which must be solved iteratively,

as described in Subsection 3.7.1.

3.7.1 Minimizing the Structural Error

The approach followed here is similar to the Newton-Gauss method used to solve non-

linear least-square problems, as outlined in Subsection 1.6.1: for starters, a sequence

s0, s1, . . . , si, si+1 of structural-error vector values is generated, which, upon convergence,

should verify the normality condition. For a given si, an improved vector value si+1 is

obtained from the first-order approximation of s:

si+1 ≈ si +
∂s

∂k

∣
∣
∣
∣
k=ki

∆ki = si +D−1
i Si∆ki (3.177)

where Di ≡ D|k=ki and Si ≡ S|k=ki. Hence,

D−1
i Si∆ki = si+1 − si (3.178)

Upon solving for ∆ki, the above equation allows the updating of k as ki+1 = ki +

∆ki. However, in eq.(3.178) we don’t know si+1. Moreover, upon convergence, s needn’t

vanish, and most likely it won’t. We can thus assume that si+1 6= 0m, but, if k
i+1 is

an improvement over ki, then the corresponding structural error si+1 will be “close” to

verifying the normality condition (3.176). In fact, let us assume that si+1 does verify the

normality condition, with S and D evaluated at k = ki, as we cannot evaluate them at

ki+1. Further, let us multiply both sides of eq.(3.178) from the left by STi D
−1
i , which

yields

STi D
−1
i D−1

i Si∆ki = −STi D−1
i si (3.179)

where the term linear in si+1 has dropped because it has been assumed to verify the

normality conditions. In eq.(3.179) the coefficient of ∆ki is a square n× n matrix—with

n being the dimension of vector k—which allows for the computation of ∆ki in the form

∆ki = −(STi D−2
i Si)

−1STi D
−1
i si (3.180)

thereby showing that the correction ∆ki can be computed with the numerical values

available at the ith iteration. In fact, the expression for ∆ki given in eq.(3.180) should

be regarded as a formula, not as an algorithm. Indeed, the verbatim inversion of the

matrix in parentheses in the foregoing equation is to be avoided due to its high condition
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number 10. As a matter of fact, the condition number, in either the Euclidean or the

Frobenius norm, of the same n× n matrix is exactly the square of the same norm of the

m × n matrix D−1
i Si. Hence, a formulation is sought that will allow the computation of

∆ki from a system of equations involving the foregoing rectangular matrix. If we recall

Subsection 1.4.5, the right-hand side of eq.(3.180) is the least-square approximation of the

overdetermined system

(D−1
i Si)∆ki = −si (3.181)

which is identical to eq.(3.178) when the therm si+1 is dropped. Notice, however, that

this term couldn’t simply be dropped from the above-mentioned equation on the basis

that the said term vanishes, because the structural error is not expected to vanish at the

optimum solution. The computation of ∆ki from eq.(3.181) now should be pursued via

an orthogonalization procedure, as studied in Subsection 1.4.5. With ∆ki calculated, the

ith iteration is complete, as a new, improved value ki+1 of the design parameter vector

k is available. Now the new structural-error vector value si+1 can be computed, and

then the normality condition verified. If the condition is not verified, a new iteration

is in order; if the same condition is verified, then the procedure stops. An alternative

convergence criterion, equivalent to the latter, is to verify whether ‖∆ki‖ < ǫ, for a

prescribed tolerance ǫ. The equivalence of the two criteria should be apparent from the

relation between ∆ki and the product of the last three factors of the right-hand side of

eq.(3.180).

Caveat: To the uninitiated, it may appear tempting to transfer D−1
i to the right-hand

side of eq. (3.181), and obtain ∆ki as the least-square approximation of Si∆ki = −DiSi.

This is a bad idea, as the least-square solution obtained from the foregoing equation will

be different from that obtained from eq. (3.181). Reason: eq. (3.181) is not necessarily

verified, but only approximated. Di, or its inverse, carries weights that dictate the value

of the least-square approximation.

Branch-switching Detection

This Subsubsection is limited to planar linkages, its generalization to spherical and spatial

linkages should be doable, as the problem under study is based on the concept of the sign

of the transmission index. The latter was studied in Section 3.6.

In the foregoing analysis an implicit assumption was adopted: all generated values

{φi }m1 lie on the same linkage branch. However, all four-bar linkages studied in this

chapter, planar, spherical and spatial, were shown in Section 3.4 to be bimodal, i.e., they

all entail two solution branches of their input-output equation. This means that, within an

iteration loop, the occurrence of branch-switching should be monitored. Below we explain

a simple means of doing this, as applicable to planar linkages. The two branches of a

10See the definition of this concept in Section 1.4.4.
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typical planar four-bar linkage are apparent in Fig. 3.8(a). In this figure, the transmission

angle is µ = ∠BCD in one branch, in the second being µ′ = ∠BC ′D. The qualitative

difference between the two branches lies in the sign of the sine of the transmission angle,

for, in the first branch, we have sinµ > 0; in the second, sinµ′ < 0. Moreover, sinµ

vanishes at deadpoints, when the input angle reaches either a maximum or a minimum—

linkages of this kind have an input rocker. Hence, a simple way of deciding whether all

values {φi }m1 lie in the same branch relies on the computation of the sign of sinµ. This is

most simply done by means of the 2D version of the cross product11 of vectors
−−→
CB = b−c

and
−−→
CD = d− c, in this order, where b, c and d are the position vectors of points B, C

and D, respectively, in the given coordinate frame. The product at stake is given by

p ≡ (b− c)TE(d− c) = ‖b− c‖‖d− c‖ sinµ = a3a4 sinµ (3.182)

with E introduced in eq.(1.1a). Given that the link lengths are positive, we have the

relation

sgn(sinµ) = sgn(p) (3.183)

which now can be used to monitor branch-switching.

Introducing a Massive Number of Data Points

As shown by Hayes et al. (1999), one simple way of minimizing the structural error is via

design-error minimization in the presence of a large number of prescribed data-pairs. We

show with one example below that, as the cardinality m of the data set increases, the

design and structural errors converge. The results are taken from the foregoing reference.

In the example below, the weighted Euclidean norm of the design and the structural

error, ‖e‖2W and ‖s‖2W , respectively, are minimized. For any m-dimensional vector v,

this norm is defined as the rms value of its components, namely,

‖v‖2W ≡
√

1

m
vTv (3.184)

Example 3.7.1 We synthesize here a planar and a spherical RRRR four-bar linkage to

generate a quadratic I/O function for the values given below:

ψi = α +∆ψi, φi = β +∆φi, ∆φi =
9∆ψ2

i

8π
, i = 1, . . . , m

For each linkage the I/O dial zeros (α and β) are selected to minimize the condi-

tion number κ of S for each data-set, in following the procedure proposed by Liu and

Angeles (1993). Then both the design and structural errors are determined for the link-

ages that minimize the respective Euclidean norms for data-sets with cardinalities of

11See Subsection 1.4.1.
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m = {10, 40, 70, and 100}. These results are listed in Tables 3.5–3.8. Finally the struc-

tural errors, corresponding to m = 40, of the linkages that minimize the Euclidean norms

of the design and structural errors are graphically displayed in Fig. 3.20.

Table 3.5: Results for m = 10.

Planar RRRR Spherical RRRR

αopt (
◦) 123.8668 43.3182

βopt (
◦) 91.7157 89.5221

κopt 33.2974 200.5262

‖e‖2W 2.2999× 10−3 2.4033× 10−4

‖s‖2W 1.8863× 10−3 1.3187× 10−4

Table 3.6: Results for m = 40.

Planar RRRR Spherical RRRR

αopt (
◦) 117.4593 42.7696

βopt (
◦) 89.4020 88.8964

κopt 32.5549 203.0317

‖e‖2W 2.484× 10−3 2.984× 10−4

‖s‖2W 2.375× 10−3 1.671× 10−4

Table 3.7: Results for m = 70.

Planar RRRR Spherical RRRR

αopt (
◦) 116.4699 42.7014

βopt (
◦) 89.0488 88.8045

κopt 32.5242 204.7696

‖e‖2W 2.496× 10−3 3.031× 10−4

‖s‖2W 2.438× 10−3 1.701× 10−4

3.8 Synthesis Under Mobility Constraints

Read (Liu and Angeles, 1992).
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Table 3.8: Results for m = 100.

Planar RRRR Spherical RRRR

αopt (
◦) 116.0679 42.6740

βopt (
◦) 88.9057 88.7674

κopt 32.5170 205.5603

‖e‖2W 2.499× 10−3 3.047× 10−4

‖s‖2W 2.464× 10−3 1.712× 10−4

(a) (b)

Figure 3.20: Structural error comparison for: (a) planar and (b) spherical RRRR linkages

upon minimizing ‖s‖2W & ‖e‖2W .

3.9 Synthesis of Complex Linkages

To come.

3.9.1 Synthesis of Stephenson Linkages

To come.
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Chapter 4

Motion Generation

4.1 Introduction

In the classical problem of motion generation, a.k.a. rigid-body guidance, a set of poses

of a rigid-body is given. These poses are to be visited, in the prescribed order, by the

coupler link of a four-bar linkage of a given type, whose geometric parameters are to be

determined. In this chapter we study the four-bar linkages of the three types studied in

Ch. 3, namely, planar, spherical and spatial.

The problem was originally formulated by Ludwig Burmester (1840-1927), for the

synthesis of a planar four-bar linkage (Koetsier, 2010). Moreover, the problem discussed

here is limited to finitely separated poses, which means that velocity and acceleration

conditions of the body in question are not considered. Furthermore, the problem reduces

to one of dyad synthesis, a dyad being a link that carries two kinematic pairs fixed at

distinct points of the link. In the case of planar linkages, only R and P pairs are considered;

in the spherical case, only R joints; in the case of spatial linkages, only R and C joints.

4.2 Planar Four-bar Linkages

A dyad is defined as a link coupled to two other links, one fixed, one mobile. In fact,

this definition is not limited to planar linkages; it applies to spherical and spatial linkages

as well. Regarding planar linkages, the coupling can take place via a R or a P joint, a

dyad can be of any of four types: RR; RP; PR or PP. All four cases are considered in this

problem. Furthermore, a planar R pair is defined by one point, its center, a P joint by a

unit vector indicating its direction. The R joint is thus known when the position vector

of its center is found, the P-joint when a unit vector parallel to its direction is found.

Shown in Fig. 4.1 is a four bar linkage resulting from the arrangement of two dyads,

A0B and A∗
0B

∗, sharing two common links, the fixed BB∗ and the floating or coupler link

A0A
∗
0. In the problem of linkage synthesis, a set of poses attained by the coupler link is
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given via the successive locations of a landmark point R of the body, {Rj }m0 , and the

corresponding set of position vectors { rj }m0 , together with the attitude attained by the

body at the given poses, denoted by the set { θj }m0 .

Figure 4.1: Two finitely separated poses of a rigid body carried by the coupler link of a

four-bar linkage

Henceforth we use X0-Y0 of Fig. 4.1 as the reference coordinate frame. Under the

usual rigid-body assumption, the dyad-synthesis equation is readily derived: the distance

between points A0 and B equals that between Aj and B, for j = 1, . . . , m, and hence,

‖ (rj − b) +Qja0
︸ ︷︷ ︸

aj−b

‖2 = ‖a0 − b‖2 , j = 1, . . . , m (4.1)

where a0 and b are the position vectors of points A0 and B, respectively, which are the

design parameters of the RR dyad, while Qj denotes the rotation matrix carrying the

guided body, A0A
∗
0, from pose 0 to pose j, i.e.,

Qj =

[
cosφj − sinφj

sinφj cos φj

]

, with φj ≡ θj − θ0 (4.2)

Upon expansion of eq.(4.1) and simplifying the expression thus resulting, we obtain

bT (1−Qj)a0 + rTj Qja0 − rTj b+
rTj rj

2
= 0 , j = 1, . . . , m (4.3)

where 1 is the 2 × 2 identity matrix, thereby obtaining the dyad-synthesis equations

allowing the computation of the design parameters.

It will be shown that a planar dyad can be synthesized exactly for up to five poses, i.e.,

for m = 2, 3, 4. These cases are studied below, following which approximate synthesis is

discussed.
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4.2.1 Dyad Synthesis for Three Poses

For the case at hand, m = 2, and hence, two equations of the form of eq.(4.3) are available.

However, these equations involve four real unknowns, the two components of a0 and the

two of b. The designer thus has the freedom to specify two of these unknowns. Although

any of the four unknowns can be prescribed, it makes sense to specify the two coordinates

of the same point, A0 or B. Moreover, since the space available to locate the anchor joint

centers, B and B∗, is known, it is common practice to specify these. In this light, the two

equations at hand are now arranged in a convenient form, with a0 as unknown:

[
bT (1−Q1) + rT1Q1

bT (1−Q2) + rT2Q2

]

︸ ︷︷ ︸

B

a0 =

[
rT1 (b− (1/2)r1)

rT2 (b− (1/2)r2)

]

︸ ︷︷ ︸

r

(4.4)

whose solution can be obtained in closed form:

a0 = B−1r (4.5)

with B−1 obtained from Fact 1.4.2, namely,

B−1 =
1

det(B)
E [−(1−QT

2 )b−QT
2 r2 (1−QT

1 )b+QT
1 r1 ] (4.6)

and E representing the 2 × 2 rotation matrix through 90◦, as introduced in eq.(1.1a),

while det(B) is obtained by resorting to Fact 1.4.1:

det(B) = [bT (1−Q2) + rT2Q2]E[(1−QT
1 )b+QT

1 r1] (4.7)

thereby completing this case.

4.2.2 Dyad Synthesis for Four Poses

We start with some definitions and concepts of algebraic geometry, that will become useful

in the balance of the chapter. For starters, according to Todd1: “Algebraic geometry is the

study of geometries that come from algebra, in particular, from rings.” A ring, in turn, is a

set S together with two binary operators, denoted by “+” and “∗,” (commonly interpreted

as addition and multiplication, respectively) that satisfy certain conditions that allow for

operations similar to those of real numbers, except for division. The instance of rings that

are of interest in our study is polynomials, and multivariate polynomials for that matter.

Of particular interest to our study is multivariate polynomials involving the two coordi-

nates of a point in a plane, (x, y), or the three coordinates of a point in three-dimensional

space, (x, y, z). More facts on algebraic geometry, as pertaining specifically to cubic

curves in the plane and in the unit sphere, are provided at the end of this subsection.

1Todd, R., “Algebraic Geometry.” From MathWorld–A Wolfram Web Resource, created by Eric W.
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In the four-pose problem at hand, m = 3, and hence, this case leads to an underde-

termined system of three equations in four unknowns. The approach to the solution of

this case is different from the previous case. Rather than finding one specific solution,

we will find a locus of solutions, or rather two loci, one for point A0, henceforth termed

the circlepoint, one for B, henceforth termed the centerpoint. The names arise from the

geometry of the linkage, as A0 lies in a circle with center at B.

In order to obtain the locus of points A0, we eliminate b from the three synthesis

equations at hand. To this end, let z denote the vector of homogeneous coordinates,

introduced in eq.(2.18), of B, and rewrite eq.(4.3) in a more appropriate form, namely,

[aT0 (1−Qj)− rTj ]b+
rTj rj

2
+ rTj Qja0 = 0 , j = 1, 2, 3 (4.8)

Now, in terms of the homogeneous-coordinate vector z, the synthesis equations (4.8)

lead to

Gz = 03 (4.9)

where 03 is the three-dimensional zero vector, while G is a 3 × 3 matrix linear function

of a0, whose jth row is the three-dimensional vector gTj , all defined below:

z ≡
[
b

1

]

=





x

y

1



 , G ≡





gT1
gT2
gT3



 , gj =

[
(1−Qj)a0 − rj

rTj (Qja0 + rj/2)

]

, j = 1, 2, 3 (4.10)

Now, for eq.(4.9) to admit a non-trivial solution, as required by the third component of

z, G must be singular, and hence,

G(x, y) ≡ det(G) ≡ g1 · g2 × g3 = 0 (4.11)

Since each row of G is a linear function of a0 and the matrix is of 3 × 3, it follows

that eq.(4.11) defines an (implicit) cubic function2 G(x, y) in the components of a0, and

hence, a cubic curve K in the X0-Y0 plane, termed the circlepoint curve, as it is the locus

of the circlepoint A0. Therefore, any point on K can be used to locate the centerpoint A0.

Once a given point A0 of K has been chosen, eq.(4.8) represents an overdetermined

linear system of three equations in only two unknowns, the components of b. However,

because a0 is the position vector of a point in K, the three equations in question are bound

to be linearly dependent—remember that G has been forced to be singular! Hence, any

two of these equations yields the corresponding b. The only difference in the three possible

solutions obtained upon choosing two out of the three equations (4.8) is due to roundoff

error. The difference can be large in the presence of an ill-conditioned 2× 2 submatrix of

Weisstein: http://mathworld.wolfram.com/AlgebraicGeometry.html
2The cubic nature of det(G) is made apparent in eq.(4.11), which shows three factors linear in a0.
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G. To alleviate the roundoff-error effect, it is advisable to regard the three equations as

if they were independent, and compute b as the linear least-square approximation of the

three equations using one of the methods of Subsection 1.4.5.

By the same token, a0 can be eliminated from eqs.(4.3). To this end, these are rewritten

in the form

Hw = 03 (4.12)

with H defined as a 3 × 3 matrix linear function of b, while w is the three-dimensional

array of homogeneous coordinates of A0, i.e.,

w ≡
[
a0

1

]

=





u

v

1



 , H ≡





hT1
hT2
hT3



 , hj =

[
(1−QT

j )b+QT
j rj

−rTj b+ rTj rj/2

]

, j = 1, 2, 3 (4.13)

Following the same reasoning as that leading to eq.(4.11), matrix H is bound to be

singular, and hence,

det(H) = 0 (4.14)

which defines a cubic equation in b, and hence, a cubic curve M in the X0-Y0 plane,

termed the centerpoint curve. This curve is the locus of all centerpoints B that satisfy

the three given synthesis equations. Again, once a point B inM has been chosen, and its

position vector substituted into the synthesis equations (4.8), an overdetermined system

of three equations in the two components of a0 is obtained. Its least-square approximation

determines point A0 in a form robust to roundoff-error effects.

A Note on Cubic Equations

Curves K andM are cubic, meaning that they are endowed with special features worth

highlighting. For starters, these curves are what is known as algebraic. A generic planar

curve of this kind is represented by an implicit function f(x, y) = 0, whose left-hand side

is a bivariate polynomial, namely, a linear combination of expressions xiyj, for integers i

and j. The degree N of an algebraic curve is defined as N = max(i + j). As a result,

an algebraic curve of degree N intersects a line at N points at most. In specific cases,

the number of visible intersections of the plots of the curve and the line may be smaller

than N , the reason being that some of the intersections are either points with complex

coordinates, which are, hence, invisible in a plot, or points at infinity.

Furthermore, cubic curves bear the property of having one asymptote. This is a line

that is tangent to the curve, with the points of tangency lying at infinity.
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4.2.3 Dyad Synthesis for Five Poses

When m = 4, eq.(4.8) can be cast in a homogeneous form, similar to eq.(4.9), but now G

becomes a 4× 3 matrix, and hence,

Gz = 04 (4.15)

where 04 is the four-dimensional zero vector, while G, still a matrix linear function of

a0, has won a fourth row, gT4 , vector z remaining as in eq.(4.10), and all four vectors gj

keeping the same pattern as in this equation.

The condition under which eq.(4.15) admits a non-trivial solution z leads to the rank-

deficiency of G, which means that rank(G) < 3. This condition can be imposed by

noticing that it implies that every triplet of rows of G is bound to be linearly dependent,

thereby rendering every 3× 3 submatrix of G singular.

If Gj is the 3× 3 matrix formed by deleting the jth row from G, then the singularity

of every such square matrix defines one circlepoint curve Kj, i.e.,

Kj : ∆j(a0) ≡ ∆j(x, y) ≡ det(Gj) = 0, j = 1, . . . , 4 (4.16)

Each of the four equations (4.16) defines one circlepoint curve in the X0-Y0 plane.

Therefore, one common intersection of the four curves Kj yields one real circlepoint of

the dyad sought. If no such intersection occurs, the problem admits no real solution.

Of course, any pair of equations (4.16) suffices to determine a set of circlepoints a0.

Moreover, a pair of cubic equations bearing a Bezout number3 of 9, one can expect up

to nine real intersections of two cubics. However, upon expressing the rotation matrix

as Qj = cosφj1 + sin φjE, with E introduced in eq.(1.1a), and introduction of a change

of variable, as suggested by Bottema and Roth (1978), the four cubic equations can be

reduced to two quadratics, with a Bezout number of 4. Hence, the number of real solutions

to be expected in this case is 0, 2, or 4, as demonstrated by Chang et al. (1991). Moreover,

given that two dyads are needed to produce a planar four-bar linkage, the total number

N of possible linkages is

N =

(
4

2

)

= 6

.

An alternative approach to solving the problem at hand is purely numeric: Regard the

four cubic equations in a0 as an overdetermined system of four equations in two unknowns,

and solve it by means of the Newton-Gauss method, introduced in Subsection 1.6.1. Notice

that, in this case, various initial guesses must be tried, to obtain all possible solutions.

Likewise, the centerpoints of a RR dyad can be found from relations similar to those

of eq.(4.13), but now with a 4× 3 matrix H, namely.

3See Section 1.3.
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Hw = 04 (4.17)

with H now gaining one fourth row, hT4 , w staying as in eq.(4.13), while the four vectors

hj bear the same pattern as in the same equation.

Therefore, for eq.(4.17) to admit a non-trivial solution, H must be rank-deficient,

and hence, each of its four 3 × 3 submatrices must be singular, which then defines four

corresponding centerpoint curvesMj:

Mj : ∆̃j(b) ≡ ∆̃j(u, v) ≡ det(Hj) = 0, j = 1, . . . , 4 (4.18)

where Hj is formed by deleting the jth row from H. The four equations thus obtained

are functions of b = [u, v]T , and provide four centerpoint curvesMj in the X0-Y0 plane,

for j = 1, . . . , 4. The centerpoints are determined as the intersections of all four curves

Mj. Again, if no common intersection occurs, then the problem admits no real solution.

While algebraically any pair of eqs.(4.16) and (4.18) suffices to determine a0 or, cor-

respondingly, b, for numerical robustness we recommend the use of all four equations

involved. Upon regarding this system of equations in the two unknown components of

a0 (b)—the Cartesian coordinates of A0 (B)—as an overdetermined system of four equa-

tions in two unknowns, we compute the two unknowns as the least-square approximation

of eqs.(4.16) or (4.18), as the case may be. This approach is at the core of the robustness

of the methodology proposed here.

4.2.4 Case Study: Synthesis of a Landing Gear Mechanism

Throughout this section we will illustrate the synthesis procedure with the case study

described below, for various numbers of given poses.

In developing a compact landing gear for small aircraft, a planar four-bar linkage is

being considered. The linkage is to be anchored to the fuselage, indicated as the shaded

region in Fig. 4.2. Produce a design that will do the job, with the fixed R joints as close

as possible to the fuselage boundary, and outside of the working region, i.e., the region

swept by the wheel when it is being either retracted or deployed, as shown in the same

figure. It hasn’t as yet been decided what tire model will be used. For this reason, the

design should be proposed in terms of the tire radius r. To this end, the relations below

are specified:

a = r, b = 2r

Moreover, the tire can be assumed to fit in a rectangle of width r/3 and height 2r.

In order to make the operations of deployment and retraction as smooth as possible, a

smooth trajectory Γ is to be followed by themidpoint of the tire, defined as the intersection
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Figure 4.2: A landing gear for small aircraft

of the tire axis with the tire midplane, while the axis of the tire is to remain tangent to

Γ. More precisely, Γ is defined as a fourth-degree Lamé curve (Gardner, 1965), namely,

(x

a

)4

+
(y

b

)4

= 1 (4.19)

A set of 11 poses is given in Table 4.1, from which subsets of poses are to be taken to

illustrate the synthesis procedure for m = 2, 3, 4, and 11, in the coordinate frame X-Y

of the figure. A note on data-conditioning is in order here: The Lamé curve is as smooth

as an ellipse—it bears the nickname of “superellipse”—but this smoothness carries certain

features that need careful attention, as discussed below.

For starters, if the Cartesian coordinates of the sample points is given in a frame with

origin at O′ of Fig. 4.2, with axis X coinciding with the axis of the wheel at its deployed

pose and axis Y coinciding with the same axis at its retracted pose, then the resolution of

the y-coordinates at points close to the value x = a becomes rather poor. The same holds

for the x-coordinates at points close to the value y = b. For this reason, the coordinate

axes have been defined as shown in the same figure, with origin at O.

Moreover, calculating the coordinates from the implicit equation (4.19) upon assigning

a value to, say x, and then solving for y is a bad idea, as this requires solving a quartic

equation, which incurs roundoff error. A better approach is to resort to the parametric

equations of the curve, which require no equation solving, namely,

x(θ) =
a

(1 + tanm θ)1/m
, y(θ) =

b tan θ

(1 + tanm θ)1/m
, 0 ≤ θ <

π

2
(4.20)
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Table 4.1: A set of prescribed poses for rigid-body guidance

j rj [mm] φj [deg]

0 r[1.0, 0.0]T 0.0

1 r[0.99999, 0.1584]T 0.0142

2 r[0.9998, 0.3249]T 0.1228

3 r[0.9989, 0.5090]T 0.4737

4 r[0.9957, 0.7234]T 1.3731

5 r[0.9850, 0.9850]T 3.5763

6 r[0.9507, 1.3085]T 9.2559

7 r[0.8487, 1.6657]T 25.2897

8 r[0.6237, 1.9196]T 61.2401

9 r[0.3160, 1.9950]T 86.3626

10 r[0.0, 2.0]T 90.0

where (a) θ is the angle made by the position vector of a point P of Γ in the given frame

and (b) the strict inequality is intended to avoid the singularity4 of the tan( · ) function.
Moreover, the unit vector et tangent to the curve at any value of θ within the above range

is given by

et ≡
1

√

x′(θ)2 + y′(θ)2

[−x′(θ)
y′(θ)

]

=
1√

a2 tan6 θ + b2

[−a tan3 θ

b

]

The coordinates of the sample of points and the slope of the tangent to the curve at

its corresponding point are given in Table 4.1.

Dyad Synthesis for Three Poses

Entries j = 0, 5 and 10 of Table 4.1 are chosen here, the two ensuing rotation matrices,

along with the two vectors rj, are now evaluated:

Q1 =

[
0.9981 −0.0624
0.0624 0.9981

]

, Q2 =

[
0.0 −1.0
1.0 0.0

]

, r1 = r

[
0.9850

0.9850

]

, r2 = r

[
0

2.0000

]

Now let us choose B and B∗ symmetrically located on the X-axis with coordinates

x = 0 and x∗ = 3r, respectively. Upon plugging these values into matrix B and vector r

4Points at which the value of a function becomes unbounded are termed singular.
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of eq.(4.4), the numerical values of B, B∗, r and r∗ are obtained below, with an obvious

notation:

B = r

[
1.0445 0.9216

2.0 0.0

]

, r = −r2
[
0.9701

2.0

]

, B∗ = r

[
1.0503 1.1087

5.0 3.0

]

, r∗ = r2
[
1.9847

−2

]

from which B−1 and (B∗)−1 are readily computed:

B−1 =
1

r

[
0.0 0.5

1.0851 −0.5667

]

, (B∗)−1 =
1

r

[−1.2538 0.4634

2.0897 −0.4390

]

which readily lead to

a0 = r

[ −1
0.0807

]

, a∗
0 = r

[−3.4152
5.0254

]

thereby completing the solution.

Dyad Synthesis for Four Poses

For this case we choose entries j = 0, 3, 6 and 10 of Table 4.1, which lead to the three

rotation matrices and the three vectors rj below:

Q1 =

[
0.99997 −0.00827
0.00827 0.99997

]

, Q2 =

[
0.9870 −0.1608
0.1608 0.9870

]

, Q3 =

[
0.0 −1.0
1.0 0.0

]

r1 = r

[
0.9989

0.5090

]

, r2 = r

[
0.9507

1.3085

]

, r3 = r

[
0.0

2.0

]

while vectors gj , for j = 1, 2, 3, are readily obtained:

g1 = r





0.0083 η − 0.9989

−0.0083 ξ − 0.5090

r(1.0031 ξ + 0.5007 η + 0.6285)



 , g2 = r





0.0130 ξ + 0.1608 η − 0.9507

−0.1608 ξ + 0.0130 η − 1.3085

r(1.1487 ξ + 1.1385 η + 1.3079)



 ,

g3 = r





ξ + η

−ξ + η − 2

2r(ξ + 1)



 , with ξ ≡ x

r
& η ≡ y

r

Hence, det(G) follows:

det(G) = r4(0.0646 η3 + 0.0646 ξ2η + 0.2283 + 0.1390 ξ3

+0.9091 ξ2 + 1.0087 ξ + 0.6771 η2 − 0.5213 η + 0.1390 ξη2 + 0.1356 ξ η)

whose plot, representing the circlepoint curve K, is displayed in Fig. 4.3, with a value of

r = 1 unit—whatever the unit may be.

Next, the centerpoint curveM is obtained for the same set of poses. To this end, the

3× 3 matrix H is produced from the three three-dimensional vectors hj , namely,
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Figure 4.3: Circlepoint curve K for m = 3

h1 = r





−0.0083 η∗ + 1.0031

0.0083 ξ∗ + 0.5007

−r(0.9989 ξ∗ + 0.5090 η∗ − 0.6285)



 , h2 = r





0.0130 ξ∗ − 0.1608 η∗ + 1.1487

0.1608 ξ∗ + 0.0130 η∗ + 1.1385

−r(0.9507 ξ∗ + 1.3085 η∗ − 1.3079)



 ,

h3 = r





ξ∗ − η∗ + 2

ξ∗ + η∗

2r(1− η∗)



 , with ξ∗ ≡ u

r
& η∗ ≡ v

r

With the above vectors, H is obtained, its determinant being

det(H) = r4(1.0125− 0.3257 ξ∗ η∗ + 0.1398 ξ∗η∗2 + 0.0647 η∗3

+0.0647 ξ∗2η∗ + 0.6907 ξ∗2 + 0.7821 ξ∗ + 0.5661 η∗2 − 1.6625 η∗ + 0.1398 ξ∗3)

whose plot is also obtained for a value of r = 1 unit, as displayed in Fig. 4.4.

The reader is invited to choose points B and B∗ on K at convenient locations, and

then find the corresponding points A0 and A∗
0, while ensuring that these points meet the

design specs given at the outset.
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Figure 4.4: Centerpoint curveM for m = 3

Dyad Synthesis for Five Poses

Now five poses are chosen from Table 4.1, namely, those of entries 0, 2, 5, 8 and 10. In

this case, we have four gj and four hj vectors, namely,

g1 = r





0.0021 η − 0.9998

−0.0021 ξ − 0.3249

r(1.0005 ξ + 0.3227 η + 0.5526)



 , g2 = r





0.00195 ξ + 0.0624 η − 0.9850 r

−0.0624 ξ + 0.0019 η − 0.9850 r

r (1.0445 ξ + 0.9216 η + 0.9701)





g3 = r





0.5189 ξ + 0.8766 η − 0.6237

−0.8766 ξ + 0.5189 η − 1.9196

r (1.9829 ξ + 0.3768 η + 2.0370)



 , g4 = r





ξ + η

−ξ + η − 2

2 r (ξ + 1)





h1 = r





−0.002144 η∗ + 1.0005

0.0021 ξ∗ + 0.3227

r(−0.9998 ξ∗ − 0.3249 η∗ + 0.5526)



 , h2 = r





0.0019 ξ∗ − 0.0624 η∗ + 1.0445

0.0624 ξ∗ + 0.0019 η∗ + 0.9216

r(−0.9850 ξ∗ − 0.9850 η∗ + 0.9701)





h3 = r





0.5189 ξ∗ − 0.8766 η∗ + 1.9829

0.8766 ξ∗ + 0.5189 η∗ + 0.3768

r(−0.6237 ξ∗ − 1.9196 η∗ + 2.0370)



 , h4 = r





ξ∗ − η∗ + 2

ξ∗ + η∗

r(−2 η∗ + 2)





The four determinants out of each of the 4× 3 matrices of G are displayed below:

det(G1) = r4(0.0295 ξη2 + 0.0089 ξ2η + 0.0057 ξη + 0.0089 η3 + 0.3169 η2
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−0.5264 η + 0.0295 ξ3 + 0.3790 ξ2 + 0.6498 ξ + 0.3941)

det(G2) = r4(0.5552 ξ2 − 0.0125 ξη + 1.1670 ξ + 0.4928 η2 − 0.7816 η

+0.7822 + 0.0307 ξ3 + 0.0307 ξη2)

det(G3) = r4(0.1714 ξ2 − 0.0011 ξη + 0.4820 ξ + 0.1680 η2 − 0.3294 η

+0.4593 + 0.0011 ξ3 + 0.0011 ξη2)

det(G4) = r4(0.0007 ξ2 + 0.0167 ξ + 0.0006 η2 − 0.0093 η + 0.1033)

those of H being

det(H1) = r4(0.0296 ξ∗3 + 0.3273 ξ∗2 + 0.4205 ξ∗ + 0.0089 η∗3 + 0.3051 η∗2

−0.9217 η∗ + 0.0089 ξ∗2η∗ + 0.0296 ξ∗η∗2 − 0.0673 ξ∗η∗ + 0.6543)

det(H2) = r4(0.4947 ξ∗2 − 0.0689 ξ∗ η∗ + 0.6640 ξ∗ + 0.4920 η∗2

−1.2361 η∗ + 0.7945 + 0.0307 ξ∗3 + 0.0307 ξ∗η∗2)

det(H3) = r4(0.1692 ξ∗2 − 0.0018 ξ∗η∗ + 0.3110 ξ∗ + 0.1680 η∗2

−0.3832 η∗ + 0.3177 + 0.0011 ξ∗3 + 0.0011 ξ∗η∗2)

det(H4) = r4(0.0007 ξ∗2 + 0.0160 ξ∗ + 0.0006 η∗2 − 0.0095 η∗ + 0.0963)

4.2.5 The Presence of a P Joint in Dyad Synthesis

The three cases studied above are considered here. We will do this under the assumption

that a PR dyad is sought, i.e., one with a P joint coupling the dyad under synthesis with

the fixed link BB∗. A similar procedure follows if a dyad of the RP type is sought. For

starters, division of the two sides of eq.(4.3) by ‖b‖ lead to:

[(1−Qj)a0 − rj
︸ ︷︷ ︸

−uj

]T
b

‖b‖ +
(

rTj Qja0 +
rTj rj

2

)

1

‖b‖ = 0 , j = 1, . . . , m (4.21)
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Furthermore, we define a unit vector β as

β =
b

‖b‖ (4.22)

When ‖b‖ → ∞, the second term of the right-hand side of eq.(4.21) goes to zero,

while the centrepoint B goes to infinity, which leads to a PR dyad. The unit vector β,

in turn, gives the line of sight of B at infinity, the normal direction to β indicating the

direction of the translations allowed by the P joint sought.

Moreover, upon substitution of eq.(4.22) into eq.(4.21), we obtain

uTj β = 0, j = 1, . . . , m (4.23)

where uj ≡ aj − a0 is the displacement of the circlepoint A0 at the jth pose, i.e.,

uj = rj − (1−Qj)a0, j = 1, . . . , m (4.24)

Figure 4.5: Relation between the ith and jth poses and the circlepoints

With reference to Fig. 4.5, ui (i = 1, . . . , m) is the ith displacement vector of the

circlepoint. For a PR dyad, all m vectors ui must be parallel. In other words, the cross

product of any two displacement vectors must vanish. However, rather than working with

cross products, we simplify the analysis by resorting to the two-dimensional representation

of the cross product introduced in Subsection 1.4.1. This is based on matrix E rotating

vectors in the plane through 90◦ ccw. Hence, the parallelism condition between ui and

uj can be expressed as

∆ij = uTj Eui = 0, i, j = 1, . . . , m, i 6= j (4.25)

which expands to

∆ij = aT0 (−EQi −QT
j E+QT

j EQi)a0

− (Eri −QT
j Eri − Erj +QT

i Erj)
Ta0 + rTj Eri = 0 (4.26)
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We develop below all quadratic terms of eq.(4.26), those in the first line of this equa-

tion, by writing Qi in the form Qi = ci1 + siE, in which ci ≡ cosφi and si ≡ sinφi.

Hence,

−aT0EQia0 =−aT0E(ci1+ siE)a0 = −ciaT0Ea0 − siaT0E2a0 = si||a0||2 (4.27a)

−aT0QT
j Ea0 =−aT0ETQja0 = aT0EQja0 = −sj ||a0||2 (4.27b)

aT0Q
T
j EQia0 = aT0 (cj1− sjE)(ciE+ si1)a0 = aT0 [−(cjsi − sjci)1+ (sjsi + cjci)E]a0

= (−cjsi + sjci)||a0||2 = − sin(φi − φj)||a0||2 (4.27c)

Notice that the foregoing relations could have been obtained by pure geometric rea-

soning, as EQi is a rotation through an angle φi + π/2, given that angles of rotation

are additive in planar motion. By the same token, QT
j E is a rotation through an angle

π/2 − φj, while QT
j EQi is one through an angle φi + π/2 − φj. Moreover, terms of the

form aT0Ea0 vanish because E is skew-symmetric.

Further, let

vij ≡ −Eri +QT
j Eri + Erj −QT

i Erj (4.28)

as appearing in the second line of eqs.(4.26), which are now rewritten as

∆ij = (si − sj − sī)‖a0‖2 + vTija0 + rTj Eri = 0, i, j = 1, . . . , m, i 6= j (4.29)

and represent the loci of A0, of position vector a0, namely, a family of circles {Cij}mi,j=1;i 6=j,

where sī ≡ sin(φi − φj). A line L passing through A0 and parallel to the direction of

sliding of the P joint is shown normal to vector β in Fig. 4.5. Given that P joints have a

direction, but no position, the slider implementing this joint can be placed anywhere on

the fixed frame, as long as its sliding direction is parallel to L. It is common practice to

represent the P joint of a PR dyad as a line passing through the centre of the R joint, but

this by no means limits the actual implementation of the joint in question.

Remarks:

1. The foregoing relations have been derived from the condition of the vanishing of

the product uTj Eui in eq.(4.25). This product can be shown to be identical to the

determinant of a 2× 2 matrix D, namely,

D = [uj ui ] (4.30)

Obviously, the vanishing of det(D) is equivalent to the linear dependence, and hence,

the parallelism of vectors ui and uj . Fact 1.4.1 should shed light on this relation.

2. The locus of the centrepoints of a PR dyad, for every pair of parallel unit vectors

(ui, uj), is a circle Cij , which is sometimes referred to as the “circle of sliders.”
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Indeed, this circle was derived from geometric arguments by Hall (1961), although

without giving a specific name to the circle. In the same reference, Hall points

out that, in the limit, as the three poses defining that circle become infinitesimally

separated, the circle becomes the inflection circle of curvature theory.

Three-pose Synthesis

In this case m = 2, and hence, eqs.(4.29) reduce to a single one:

(s1 − s2 − s12̄)‖a0‖2 + vT12a0 + rT2Er1 = 0

which can be cast in the form

‖a0‖2 +
vT12

s1 − s2 − s12̄
a0 +

rT2Er1
s1 − s2 − s12̄

= 0 (4.31)

The radius and the position vector c of the center of the circle are readily found when

comparing this equation with that of the circle with the foregoing characteristics, and

applied to one point A0 of the circle, of position vector a0:

‖a0‖2 − 2cTa0 + ‖c‖2 − r2 = 0 (4.32)

In summary, for three positions, the problem admits infinitely many solutions, all with

a circlepoint A0 lying in a circle of center C, of position vector c, and radius r, as given

above.

Four-pose Synthesis

It is noteworthy that a PR dyad always exists in this case, as we have one single centerpoint

curve, the corresponding P joint being equivalent to a R joint with its center at infinity.

The direction of the unit vector β identical to the direction of the line of sight of point

B lying at infinity and normal to the sliding of the P joint is given by the asymptote of

the centerpoint curve. Hence, one single P joint is to be expected here.

Moreover, we have three displacements {ui}31, and hence, three independent parallelism

conditions, namely, u1‖u2, u2‖u3 and u3‖u1, as given by eq.(4.29). In principle, two of

these conditions imply the third. However, if u2 happens to vanish, then, while the first

two conditions still hold, the third does not necessarily do so. To guarantee the parallelism

condition in any event, we use the three equations available in this case.

Now, the three equations at hand represent, each, a circle in the X0-Y0 plane. It is

apparent that we can always find a suitable linear combination of two distinct pairs of

the three equations (4.29), with m = 3, that will yield, correspondingly, two lines, upon

subtraction of one from the other two, which will lead to the elimination of the quadratic

terms ‖a0‖2 in the latter. Hence, the parallelism condition leads to one circle C and two
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lines L1 and L2. The geometric interpretation of the problem of finding the point A0 is

then straightforward: the circlepoint sought (a) is the intersection of the two lines and

(b) lies on the circle.

Remarks:

1. If the coefficient of ‖a0‖2 in one of eqs.(4.29) vanishes, then the resulting equation

is already a line. A second line is then obtained by a suitable linear combination of

the remaining two circle equations, which will then lead to the general case.

2. If the same coefficient vanishes in two of eqs.(4.29), then we need not look for any

linear combination to obtain the two lines of the general case.

3. If the same coefficient vanishes in the three eqs.(4.29), then we have three lines that

must be concurrent at one common point, the circlepoint A0 sought.

4. The above statement on the existence of one single circlepoint A0 is best explained by

noticing that, from the plot of the centerpoint curve, its asymptote can be estimated

by inspection—a precise value can be obtained from the equation of the asymptote,

of course. If this estimate is plugged into eq.(4.8), and the second term of the

equation is deleted because, as ‖b‖ → ∞, this term tends to zero, we obtain three

linear equations in a0. In the absence of roundoff error, only two are independent5,

and hence, determine uniquely a0.

Once a0 is obtained, solving for β is straightforward6:

β =
Eû

‖Eû‖ , û =
1

m

m∑

j=1

uj (4.33)

Five-pose Synthesis

In this case we have four displacements {ui}41, and hence, six possible pairs7 (ui,uj), for

j 6= i. It is noteworthy that the parallelism relation is transitive, i.e., if u1‖u2 and u2‖u3,

then u1‖u3. Hence, the number of independent relations reduces to three. However, and

within the spirit of robustness, we recommend the use of the full six parallelism conditions

available.

We can always find a suitable linear combination of the first equation with each of the

remaining five equations (4.29) that will yield, correspondingly, five lines, upon elimination

of the quadratic terms ‖a0‖2, in the four-pose case. Hence, the parallelism conditions lead

5To account for roundoff error, we recommend to regard the three equations as independent, and

compute the unique value of a0 as their least-square approximation.
6One single vector uj would suffice. We take the mean value here in order to filter out roundoff error.
7The combinatoric number of four objects taking two at a time.
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to one circle C and five lines L1, . . . ,L5. A geometric interpretation of the solution then

follows: the circlepoint A0 sought (a) is the common intersection of the five lines and (b)

lies on the circle.

A similar discussion for the cases in which the coefficient of ‖a0‖2 in eq.(4.29) vanishes

in all four equations is straightforward, and follows the same line of reasoning as Remark 3

of the four-pose case.

If there is one common point to the five lines and the circle, this point is then the

solution A0 sought. Otherwise, there is no solution. After a0 is obtained, β can be found

from Eq. (4.33).

The whole section was devoted to the synthesis of a PR joint. To handle the case

of a RP joint the procedure is the same: divide both sides of eq.(4.3) by ‖a0‖ and then

let ‖a0‖ → ∞. The procedure that ensues parallels that described above. The reader is

invited to develop it on her/his own, but details are given by Chen et al. (2008).

Finally, notice that, in this case, a P joint is not to be taken for granted. Indeed, for

a centerpoint to lie at infinity, and hence, for a PR dyad to be possible, the asymptotes

of all centerpoint curves Kj must be parallel. Likewise, for a RP dyad to be possible, the

asymptotes of all circlepoint curvesMj must be parallel. The condition for a PP dyad to

occur in this case follows immediately.

4.2.6 Approximate Synthesis

When the number of prescribed poses is greater than five, i.e., when m > 4 in eq.(4.3),

the problem admits no solution. However, it is always possible to find a linkage that best

meets the given poses with a minimum error in the least-square sense. To this end, we

regard the left-hand side of eqs.(4.3) as functions ej of a0 and b that represent the error

incurred in the approximation of the jth pose. We thus define this error as

ej ≡ bT (1−Qj)a0 + rTj Qja0 − rTj b+
rTj rj

2
j = 1, . . . , m ≥ 5 (4.34)

Caveat: A pose error, in fact, is impossible to define (Angeles, 2006), the reason being

that the concept includes items with different dimensions, length for the position and

dimensionless for the orientation. Nevertheless, the pose error defined in eq.(4.34) is

dimensionally homogeneous, as it is measured in units of surface, i.e., in m2.

The problem is now handled as one of optimum design. In this vein, an objective

function z(x) is defined, that is positive-definite—i.e., positive, unless the error vanishes,

in which case the function vanishes as well—with x denoting the vector of design variables,

namely, the position vectors of the circlepoint and the centerpoint, a0 and b, respectively.

To guarantee positive-definiteness, moreover, z(x) is defined as a norm of the error vector

e, introduced below. Moreover, to ease the ensuing calculations, the Euclidian norm is
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adopted, as the gradient of its square with respect to the design-variable vector is a vector

linear function of the error, as we know from the experience gained in Ch. 1.

The optimum-design problem at hand is thus formulated as

z ≡ 1

2
‖e‖2 = 1

2

m∑

1

e2j(x) → min
x

with e ≡





e1
...

em



 & x ≡
[
a0

b

]

(4.35)

Since the optimization problem requires no constraints, its first-order normality con-

ditions (FONC) (Hillier and Liebermann, 1995) reduce to the vanishing of the gradient

of z with respect to x:

∇z ≡





∑m
1 ej

∂ej
∂a0

∑m
1 ej

∂ej
∂b



 = 04 (4.36)

with
∂ej
∂a0

= (1−QT
j )b+QT

j rj &
∂ej
∂b

= (1−Qj)a0 − rj (4.37)

Upon substitution of the two foregoing expressions into the FONC of eq.(4.36), while

recalling the expression for ej displayed in eq.(4.34), the FONC decompose into two two-

dimensional subsystems, namely,

∂z

∂a0
≡

m∑

1

[bT (1−Qj)a0 + rTj Qja0 − rTj b+
rTj rj

2
][(1−QT

j )b+QT
j rj ] = 02 (4.38)

and

∂z

∂b
≡

m∑

1

[bT (1−Qj)a0 + rTj Qja0 − rTj b+
rTj rj

2
][(1−Qj)a0 − rj ] = 02 (4.39)

In light of the two foregoing expressions, we now have two useful results:

Lemma 4.2.1 The partial derivative of z with respect to a0 is linear in a0 and

quadratic in b, this derivative thus being cubic in x.

Lemma 4.2.2 The partial derivative of z with respect to b is quadratic in a0 and

linear in b, this derivative thus being cubic in x as well.

As a result of the two above lemmas, the normality conditions (4.36) are both cubic

in x, and hence, lead to a total of four cubic scalar equations in x, the Bezout number

of the foregoing algebraic system then being NB = 34 = 81. This means that up to 81

solutions are to be expected, some real, some complex. Of course, we are interested only

in the real solutions.
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Furthermore, note that the first two-dimensional subsystem of eq.(4.36) is linear in

a0, the second linear in b, although both are quadratic in the other vector block of x.

This feature eases the reduction of the polynomial system to two scalar equations in only

two unknowns, either the coordinates of A0 or those of B. For concreteness, the second

two-dimensional subsystem of the system in question is used to solve for b in terms of

a0, the resulting expression then substituted into the first two-dimensional subsystem of

the same system, thereby obtaining a new two-dimensional vector equation in a0. First,

each term of the second summation of eq.(4.36), i.e., the intermediate side of eq.(4.39), is

expanded:

ej
∂ej
∂b

= [bT (1−Qj)a0
︸ ︷︷ ︸

aT
0
(1−QT

j )b

+rTj Q
T
j a0 − rTj b+

rTj rj

2
][(1−Qj)a0 − rj]

Then, after rearranging, to assemble all terms including b in one single term,

ej
∂ej
∂b

= [(1−Qj)a0 − rj] [a
T
0 (1−QT

j )− rTj ]
︸ ︷︷ ︸

[(1−Qj)a0−rj ]T

b+ rTj (Q
T
j a0 +

rj
2
)[(1−Qj)a0 − rj ]

That is,

ej
∂ej
∂b

= [(1−Qj)a0 − rj ][(1−Qj)a0 − rj]
Tb+ rTj (Q

T
j a0 +

rj
2
)

︸ ︷︷ ︸

(QT
j a0+rj/2)T rj

[(1−Qj)a0 − rj]

which, when substituted into eq.(4.39), leads to a linear equation in b, in terms of a0 and

the data:

Bb+ r = 02 (4.40)

with B and r defined as8

B ≡
m∑

1

[(1−Qj)a0 − rj][(1−Qj)a0 − rj]
T , r ≡

m∑

1

[(QT
j a0 +

rj
2
)T rj][(1−Qj)a0 − rj]

and hence,

b = −B−1r with B−1 ≡ Adj(B)

det(B)
(4.41)

Apparently, B is a sum of m > 4 rank-one9 2 × 2 matrices, all, in general, linearly

independent. As it takes only two such matrices to make up a 2× 2 nonsingular matrix,

and the sum has at least five terms, matrix B is, except for pathological cases, invertible.

Furthermore, upon invoking Facts 1.4.1 and 1.4.2, it becomes apparent that B−1 is a

rational expression, whose matrix numerator, Adj(B), is quadratic in a0, its denominator,

det(B) quartic in the same. Therefore, the product det(B)ej∂ej/∂b is nonic in a0, and

hence, we have

8B in eq.(4.40) not to be confused with B in eq.(4.4).
9See footnote 1 in Ch. 2 for a definition of rank-one matrix.
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Lemma 4.2.3 The vanishing of the partial derivative of z with respect to a0 leads to two

nonic equations in a0, free of b.

Since we have two scalar nonic equations to solve for the circlepoint A0, the Bezout

number of the system in question is NB = 92 = 81, i.e., the problem admits up to 81

solutions, some real, some complex.

By symmetry, we can conclude further one complementary result:

Lemma 4.2.4 The vanishing of the partial derivative of z with respect to b leads to two

nonic equations in b, free of a0.

Therefore, the system of two nonic equations arising from the vanishing of the partial

derivative of z with respect to b also has a Bezout number of 81. However, once one par-

ticular circlepoint A0 has been found, of position vector a0, the corresponding centerpoint

B, of position vector b can be computed in closed from, namely, via eq.(4.41).

Each of the two scalar equations in a0 = [x, y]T defines a contour Kj , for j = 1, 2, in

the X0-Y0 plane. This means that the real values of a0 can be found by inspection, at the

intersection of the two contours. Notice that these two contours can be fairly regarded as

circlepoint curves, as each represents a locus of circlepoint candidates. The intersections of

the two loci then determine which of the infinitely many candidates is a valid circlepoint.

The same holds for the centerpoints. All valid circlepoints and centerpoints, however,

are stationary points (SPs) of the optimization problem at hand. Each can be a local

maximum, a local minimum or a saddle point. The nature of each SP is elucidated by

means of the Hessian matrix H of z with respect to x, namely,

H =

[
∂2z/∂a2

0 ∂2z/(∂a0∂b)

∂2z/(∂b∂a0) ∂2z/∂b2

]

(4.42)

Now, since z(a0, b) is a biquadratic equation in a0 and b, i.e., quartic—and hence,

algebraic—in x, it satisfies the conditions of Schwarz’s Theorem (Brand, 1955); therefore,

H is symmetric, i.e.,

∂2z

∂a2
0

=

(
∂2z

∂a2
0

)T

,
∂2z

∂b2
=

(
∂2z

∂b2

)T

,
∂2z

∂b∂a0
=

(
∂2z

∂a0∂b

)T

(4.43)

Hence, the four eigenvalues of H are all real, the corresponding eigenvectors mutually

orthogonal. Now the identification of the nature of each SP is summarized below:

1. A SP is a local maximum if H is negative-definite, i.e., if all its eigenvalues are

negative at this point;

2. A SP is a local minimum if H is positive-definite, i.e., if all its eigenvalues are

positive at this point; and
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3. A SP is a saddle point if H is sign-indefinite at this point.

Our interest being the minimization of the Euclidian norm of the error, we look only

at the local minima. Of these, the smallest one is the global minimum.

Example of Synthesis with 11 Poses

In this case we aim at a planar four-bar linkage that can best meet all the 11 poses

displayed in Table 4.1. To this end, b is expressed as a rational vector function of a0,

as per eqs.(4.41). The expression thus resulting is then substituted into eq.(4.38), which

leads to two nonic equations in a0, Fi(x, y) = 0, i = 1, 2, free of u and v, the components of

b. Notice that F1(x, y) = 0 represents the normality condition ∂z/∂x = 0 as one equation

in x and y, F2(x, y) = 0 representing ∂z/∂y = 0—or their corresponding nondimensional

versions with ξ replacing x and η replacing y—likewise.

The two foregoing implicit functions of x and y—ξ and η, correspondingly, when

normalized—which can be regarded as circlepoint curves K for the case at hand, are

plotted in Fig. 4.6. In this figure, ∂z/∂ξ appears as a continuous curve, ∂z/∂η as a

dashed curve.

While the system of two nonic equations is expected to admit up to 92 solutions, only

two real solutions were found within a reasonable distance of the origin, i.e., within a

region commensurate with the dimensions of the landing gear operation of deployment

and retraction. Alas, these two solutions are a) too close to each other, which would make

a rather too short coupler link, and b) close to the fuselage boundary.

Figure 4.6: Circlepoint curves K for m = 10
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4.3 Spherical Four-bar Linkages

A

B

b

a

x

y

z

A*

B*

b*

a*

O

Figure 4.7: The spherical 4R linkage

The spherical four-bar linkage under synthesis is depicted in Fig. 4.7, with its four link-

age dimensions {αj }41. Just as in the planar case of Section 4.2, the linkage is composed

of four links coupled by four R joints, this time around with their axes intersecting at one

common point, O, as depicted in Fig. 4.7. The two fixed axes, OB and OB∗, intersect the

unit sphere at points B and B∗, the two moving axes, OA and OA∗, at points A and A⋆.

For brevity, the axes will be referred to only by their intersection points with the sphere.

More accurately, one should refer here not to centerpoints and circlepoints, but, rather,

to cone axis and cone element, as axis A0 sweeps a circular conical surface of apex O, one

of its element being A0.

The reference locations of the moving axes are denoted by A0 and A
⋆
0, the linkage then

being fully defined by the two dyads BA0 and B⋆A⋆0. By analogy with the planar case,

points B and B⋆ are called the centerpoints, while A0 and A⋆0 the circlepoints.

As the coupler link moves, while visiting the m prescribed attitudes, the circlepoint

attains positions A1, . . . , Am, the moving revolute axis thus attaining locations OAj , for

j = 1, . . . , m, as shown in Fig. 4.8.

The two dyads of this linkage are thus arc A0B, defined by axes OA0 and OB, arc

A∗
0B, defined by axes OA

∗
0 and OB∗, respectively; the position vectors of A0 and B are

a0 and b, respectively, both of unit magnitude, i.e.,

‖a0‖ = 1, ‖b‖ = 1 (4.44)

which will be termed henceforth the normality conditions.

Likewise, the position vectors of points A⋆0 and B⋆ are denoted by the unit vectors a⋆0
and b⋆, respectively.

With the foregoing definitions, the spherical Burmester problem, the counterpart of

the problem studied in Section 4.2, is stated as:

169



Find a spherical four-bar linkage that will conduct its coupler link through a

set of m attitudes given by a corresponding set of orthogonal matrices, Q =

{Qj }m1 , defined with respect to a reference attitude given by Q0 = 1, 1 now

denoting the 3× 3 identity matrix.

By virtue of the link rigidity, the angle between OAj and OB remains equal to α2, and

hence, constant. The synthesis equation is thus obtained upon imposing this geometric

constraint:

aTj b = aT0 b or (aj − a0)
Tb = 0, j = 1, . . . , m (4.45)

where, apparently,

aj = Qja0 (4.46)

Therefore, conditions (4.45) become

aT0 (Q
T
j − 1)b = 0, j = 1, . . . , m (4.47)

Figure 4.8: A spherical dyad and the cone formed by the moving axis OA

In order to ease the ensuing discussion, let

cj ≡ (Qj − 1)a0 (4.48)

eq.(4.47) then taking the form

cTj b = 0, j = 1, . . . , m (4.49)

Geometrically, Eq. (4.49) states that vector b is perpendicular to any vector cj . Re-

ferring to Fig. 4.8, this means that segment OB is perpendicular to segments A0Aj, for

j = 1, . . . , m. That is, as link AB attains the set of attitudes A = {AjB}m0 , all points
{Aj}m0 lie in a circle whose plane is normal to vector b.

Note that the rotation matrices Qj admit various parameterizations, the one adopted

here is in terms of the natural invariants of the rotation, namely the unit vector ej parallel
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to the axis of the rotation represented by Qj , and the corresponding angle of rotation,

φj, as described in Section 2.2. The rotation matrix Qj thus takes the form of eq.(2.1b),

reproduced below for quick reference.

Qj = 1+ sjEj + (1− cj)E2
j , cj ≡ cosφj , sj ≡ sinφj (4.50)

with Ej ≡ CPM(ej) and the operator CPM(·) defined in turn as the cross-product matrix

of the three-dimensional vector (·) in eq.(2.1d). Hence,

Qj − 1 = [sj1+ (1− cj)Ej]Ej (4.51)

Therefore, eq.(4.47) becomes

aT0Ej[sj1− (1− cj)Ej]b = 0, j = 1, . . . , m (4.52)

which is the synthesis equation of the problem at hand. Its solution for various values of

m is discussed below.

4.3.1 Dyad Synthesis for Three Attitudes

In this case, m = 2, two constraint equations thus occurring in eq.(4.49), namely,

cT1 b = 0, and cT2 b = 0 (4.53)

Hence, one of the two vectors a0 and b can be prescribed arbitrarily. If, for example, the

former is prescribed, then c1 and c2 are known. The conditions of Eq. (4.53) are thus

verified for b defined as the unit vector derived from the cross product of the two other

vectors in the above equations, i.e.,

b =
c1 × c2
‖c1 × c2‖

(4.54)

However, as in the planar case, most commonly the centerpoints B and B∗ are given,

as the space available to anchor the mechanism is known in a practical design project. In

this case, two equations are given explicitly with a0 as unknown:

dTj a0 = 0, j = 1, 2 (4.55)

with dj defined as

dj ≡ (QT
j − 1)b, j = 1, 2 (4.56)

and hence, the solution sought takes the form

a0 =
d1 × d2

‖d1 × d2‖
(4.57)

thereby showing that, in this case, the problem has a unique solution—obtained in closed

form—modulo the antipodal of B or of A0, as the case may be. Indeed, in formulas (4.54)
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and (4.57), nothing prevents the designer from using the alternative cross product c2×c1

or, correspondingly, d2 × d1. The result would be the same, the only difference being

that the new vector b, or a0, would be pointing in the direction opposite to that of its

previous counterpart. That is, the designer would be looking at a different branch of the

same circular-conical surface, both sharing one common point, the cone apex.

4.3.2 Dyad Synthesis for Four Attitudes

Now we have m = 3, the constraints being

cT1 b = 0, cT2 b = 0 and cT3 b = 0 (4.58)

or correspondingly,

dT1 a0 = 0, dT2 a0 = 0 and dT3 a0 = 0 (4.59)

In order to be able to find a vector b simultaneously perpendicular to all three vectors

cj in eq.(4.58), these vectors must be coplanar, and hence, this triplet must obey the

condition

K : F (x, y, z) ≡ c1 × c2 · c3 = 0 (4.60)

which is a product of three factors, each linearly homogeneous in a0, as per eq.(4.48), and

hence, it is cubic and homogeneous in a0. As well, any vector a0 verifying eq.(4.60) is an

element of a conic surface with apex at the origin O. Its intersection with the unit sphere

described by the first of eqs.(4.44) is thus a spherical surface, labeled K to mimic the

planar case of Subsection 4.2.2. Notice that every conical surface has two sheets sharing

one common point, the surface apex. Therefore, K consists of two parts, one the antipodal

of the other. Any point on the curve represents a solution a0. In this light, we call K the

circlepoint curve.

As in the case of a planar cubic curve, its spherical counterpart intersects the spherical-

surface equivalent of the planar line, namely, a major circle, at a maximum of three points.

Likewise, a spherical cubic curve has one asymptote, which in this case is, again, a major

circle.

Furthermore, once a point on K has been chosen as A0, its corresponding centerpoint

B, of position vector b, is chosen as any of the three possible cross products cj × cj+1,

for j = 1, 2, 3 and j + 1 ≡ j + 1 mod 3, upon normalizing the product to yeild a unit

vector. Algebraically, these three products, although not necessarily identical—the angle

between any pair of their factors are, in general, different—yield identical unit vectors

upon normalization. However, due to roundoff errors, the three unit vectors will be

numerically different. In order to filter the roundoff error, the obvious strategy is to

compute all three products, then take their mean value. Normalizing this value to render

it of unit norm yields vector b.
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By a similar reasoning, the centerpoint conical surfaceM and its corresponding cen-

terpoint curve10 are obtained as

M : G(u, v, w) ≡ d1 × d2 · d3 = 0 (4.61)

with dj defined in eq.(4.56). Any point onM gives one corresponding circlepoint A0 on

the unit sphere and any point of K gives one centerpoint B on the unit sphere.

4.3.3 Dyad Synthesis Five Attitudes

Form = 4, the synthesis equations lead to a system of four homogeneous bilinear equations

in the unknown vectors a0 and b. As these are three-dimensional vectors, the total number

of unknowns at hand is six, but then again, two additional equations are available, namely,

eqs.(4.44), and the problem is fully determined. The four homogeneous equations can then

be cast in the form







aT0E1[s11− (1− c1)E1]

aT0E2[s21− (1− c2)E2]

aT0E3[s31− (1− c3)E3]

aT0E4[s41− (1− c4)E4]







︸ ︷︷ ︸

C

b = 04 (4.62)

whose matrix coefficient C is a 4 × 3 array. In light of the second of equations (4.44),

moreover, the trivial solution of eqs.(4.62) is not acceptable, and hence, C must be rank-

deficient, i.e., its three columns must be linearly dependent. This happens if and only if

the four distinct 3× 3 determinants obtained by taking three rows of C at a time vanish.

Let

∆j(a0) ≡ det(Cj) = 0, j = 1, . . . , 4 (4.63)

with Cj denoting the 3 × 3 matrix obtained from C upon deleting its jth row. From

Subsection 4.3.2 it is known that each of the four determinants defines a conical cubic

surface whose apex is the origin. The common intersections of all four surfaces are common

elements of these surfaces; they are candidate axes capable of guiding the coupler link

through the five prescribed poses.

Likewise, surface equations for b can be formulated with

Da0 = 04 (4.64)

in which the 4× 3 matrix D = [dT1 , . . . ,d
T
4 ]
T with dj defined in eq.(4.56) for m = 2; the

same pattern holds for the case at hand, m = 4. The rank-deficiency of matrix D yields

∆j(b) ≡ det(Dj) = 0, j = 1, . . . , 4 (4.65)

10McCarthy and Soh (2011) call the conical surfaces generating these curves the center-axis cone and
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with Dj denoting the 3× 3 matrix obtained from D upon deleting its jth row.

The Bezout number of the four cubic equations (4.63) is thus 34 = 81. Ditto that of

the four cubic equations (4.65). This number is an overestimate of the actual number of

possible solutions. Indeed, McCarthy and Soh (2011), by invoking the Burmester-Roth

Theorem (Roth, 1967), showed that the four cubic equations in a0 can be reduced, by

elimination of two of the three coordinates of A0, to a sextic polynomial. As a consequence,

the problem admits six, four, two or zero circlepoint solutions. The same reasoning leads

to the conclusion that the problem also admits six, four, two or zero centerpoint solutions.

Therefore, the number of possible dyads that solve the problem is six, four, two or zero.

Correspondingly, the number of spherical four-bar linkages that can guide their coupler

link through the five given attitudes is the number of combinations of six, four, two or

zero objects taking two at a time, i.e., 15, six, one or zero.

4.3.4 Spherical Dyads with a P Joint

While it may appear counterintuitive to associate a P joint with a spherical linkage, such

a joint is possible in this linkage type. In fact, the putative P joint is still of the R type,

but with a special feature: it allows the motion of its coupling link via a circular guideway,

defined by a major circle on the unit sphere.

In a spherical dyad, a P joint is a special case of the R dyad, whose arc subtends an

angle of 90◦. The foregoing method of synthesis still applies, if with some modifications.

Indeed, for the prescribed attitudes to lead to a linkage that admits a P joint, at a

circlepoint for example, the circle traced by A, or A⋆ for that matter, becomes a major

circle. In this case Aj moves on a major circle lying in a plane normal to b, eq.(4.45) then

becoming

bTa0 = bT ⇒ Qja0 = 0, j = 0, . . . , m (4.66)

with Q0 = 1, the 3 × 3 identity matrix. The foregoing equation means that all vectors

{ aj }m0 are coplanar, b then being the unit normal to the plane of the set. Furthermore,

relations (4.66) can be rewritten as an array of m+ 1 scalar equations:

Ha0 = 0m+1 (4.67)

where H is a (m+1)×3 matrix. Again, matrix H has to be rank-deficient, as only m ≥ 2

conditions are considered11. This implies, for the four-attitude synthesis problem, that

det(Hi) = 0, i = 1, . . . , 4 (4.68)

the 3 × 3 matrix Hi obtained by deleting the ith row from matrix H. In the case of five

poses, Hi is obtained by deleting the ith and (i+ 1)st rows from matrix H.

the circling-axis cone, respectively.
11For m = 1 it is always possible to find two linearly independent vectors normal to a given one!
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4.3.5 Approximate Dyad Synthesis

Exactly as in the case of planar linkages, whenever m ≥ 5 the synthesis equations, in

general, cannot be satisfied exactly. In this case, as in its planar counterpart, the approach

is to formulate the synthesis problem as one of optimum design. To this end, an objective

function z is defined as in the planar case, namely, as one-half the Euclidian norm of

an error vector e defined exactly as in the planar case as well. Contrary to the latter,

however, the optimization task at hand is no longer unconstrained, because vectors a0 and

b are now subjected to the normality conditions (4.44), which play the role of equality

constraints in the optimization task. Unfortunately, the literature on the solution of the

approximate synthesis problem for spherical four-bar linkages is rather scarce.

The challenge posed by the approximate synthesis of spherical linkages lies in that

solving a constrained optimization problem is more complex than solving an unconstrained

one, as the former must incorporate the constraints, first in the formulation, then in the

solution algorithm (Hillier and Liebermann, 1995).

The basic optimization problem is stated below. First, the error incurred at the jth

pose is defined:

ej ≡ aT0 (Q
T
j − 1)b, j = 1, . . . , m ≥ 5 (4.69)

the optimization problem now being formulated as

z ≡ 1

2
‖e‖2 = 1

2

m∑

1

e2j (x) → min
x
, with x ≡

[
a0

b

]

∈ R
6 & e ≡





e1
...

em



 (4.70)

subject to12

h(x) ≡ 1

2

[
(‖a0‖2 − 1)

(‖b‖2 − 1)

]

= 02 (4.71)

In order to handle the constraints, we can cite two approaches: i) adjoin the con-

straints to the objective function z(x), defined above, by means of Lagrange multipliers,

which become additional unknowns to the optimization problem, as done by Liu and

Angeles (1992); and ii) introduce an alternative parametrization of the problem, that

allows formulating the synthesis task as an unconstrained optimization problem (Léger

and Angeles, 2014). There are pros and cons to the two approaches, as described below.

Constrained-minimization Approach

In this case, a new objective function is defined, that allows the handling of the problem

as in the unconstrained case, by means of a vector λ of Lagrange multipliers, of dimension

identical to the number of scalar constraints, which, in our case, is two. The new objective

12The purpose of the 1/2 factor in the definition of h(x) is to avoid carrying a factor of 2 when

calculating ∇h.
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function then becomes

F (x,λ) ≡ z(x) + λTh(x) → min
x,λ

, λ ∈ R
2 (4.72)

subject to no constraints.

The FONC of the unconstrained problem are now:

∂F

∂x
=
∂z

∂x
+ J(x)Tλ = 06, J(x) ≡ ∂h

∂x
=

[
aT0 0T

0T bT

]

∈ R
2×6 (4.73)

∂F

∂λ
= h(x) = 02 (4.74)

with J(x) termed the constraint Jacobian, and eq.(4.74) being a restatement of the con-

straint, eq.(4.71).

Given the simplicity of z(x), which is a quartic scalar function of x, and of h(x), which

is, in turn, a quadratic vector function of the same, their gradients ∂z/∂x and J(x), are

also algebraic functions, but now cubic and, correspondingly, linear in x, their FONC

are algebraically simple equations that should lead to simplifications. For one thing, in

light of the linearity of eq.(4.73) in λ, it is possible to eliminate this vector from the same

equation system. Rather than eliminating λ by means of equation-solving, an alternative

approach is introduced below.

The concept of orthogonal complement, introduced in Subsection 3.5.3, is key to the

elimination of the vector of Lagrange multipliers: let L be an orthogonal complement of

the constraint Jacobian J, in the sense that the columns of L span the null space of J.

Since the later is a 2 × 6 matrix, L is bound to be a 6 × 4 matrix because J is of full

rank, since its two rows are apparently linearly independent. The range of J is thus 2,

and hence, four linearly independent six-dimensional vectors can be found that are all

orthogonal to the two columns of J. These four vectors thus span the null space of J, and

hence, can be chosen at the four columns of L. It should be apparent that the choice of

these four vectors is not unique, as long as they are linearly independent.

An obvious choice of the four columns of L is given below:

L =

[
A0u 0 A0v 0

0 Bu 0 Bv

]

(4.75)

where A0 = CPM(a0), B = CPM(b), while u and v are arbitrary linearly independent

three-dimensional vectors that, for purposes of numerical stability, might as well be chosen

of unit magnitude. Under these conditions, the reader can readily prove that

JL = O ∈ R
2×4 (4.76)

Upon multiplying both sides of the first of eqs.(4.73) by LT from the left, a new system

of first-order normality conditions for the problem at hand is obtained, free of λ, namely,
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LT∇z = 0 ∈ R
4 (4.77)

with ∇z representing the gradient of z(x), i.e.,

∇z =
[
∂z/∂a0

∂z/∂b

]

(4.78)

whose two three-dimensional blocks are readily computed below:

From the definition of z(x) in eq.(4.70), ∂z/∂a0 readily follows:

∂z

∂a0
=

m∑

1

ej
∂ej
∂a0

=

m∑

1

[aT0 (Q
T
j − 1)b]

∂ej
∂a0

(4.79)

the last partial derivative being displayed below:

∂ej
∂a0

= (QT
j − 1)b (4.80)

with a similar expression for ∂ej/∂b:

∂ej
∂b

= (Qj − 1)a0 (4.81)

Hence,

∂z

∂a0

=
m∑

1

ej
∂ej
∂a0

=
m∑

1

[aT0 (Q
T
j − 1)b](QT

j − 1)b (4.82a)

which can be cast in the form
∂z

∂a0
= Zab (4.82b)

with Za defined as

Za ≡
m∑

1

ej[a
T
0 (Q

T
j − 1)b](QT

j − 1) (4.82c)

Likewise, ∂z/∂b is computed as

∂z

∂b
= Zba (4.83a)

with Zb defined as

Zb ≡
m∑

1

ej [a
T
0 (Q

T
j − 1)b](Qj − 1) (4.83b)

It is noteworthy that the last factor in Zb differs from its counterpart in Za, in that

matrix Qj is not transposed, a consequence of the definition of the derivative of a scalar,

ej in this case, with respect to a vector, a0 or b, as per the definitions introduced in

Subsection 1.4.4.

In summary, then, system (4.77) yields four equations in the six unknowns x =
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[ aT0 , b
T ]T , to be complemented with the two scalar constraints, eqs.(4.71), thereby end-

ing up with a system of six nonlinear equations in six unknowns. The number of possible

solutions to the foregoing system can be predicted via its Bezout number. First, notice

that Za and Zb are quadratic in a0 and b, i.e., in x. Since the first block of ∇z is linear

in Za and in b, while its second block is linear in Zb and a0, it follows that ∇z is cubic in

x. Moreover, the two scalar constraints (4.71) are quadratic in x, the overall system of

six algebraic equations in six unknowns has a Bezout number NB = 44 × 2 × 2 = 1024.

Upon removing the antipodal solutions, the total number of distinct solutions can be as

high as 512.

This system can be solved numerically via the Newton-Raphson method, whose con-

vergence, as pointed out in Section 1.5.1, cannot be predicted. For this reason, a robust

alternative is investigated.

The alternative solution aims at an overdetermined, although consistent, system of

nonlinear equations, to be solved numerically via the Newton-Gauss method, whose con-

vergence is guaranteed, as per the results of Subsection 1.6.1. To this end, an alternative,

although expanded orthogonal complement of J(x) is explored. What the qualifier in

italics means is an orthogonal complement with a surplus of columns. This is a 6 × 6

matrix, namely,

L =

[
A0 O

O B

]

∈ R
6×6 (4.84)

where A0 = CPM(a0) and B = CPM(b), while O ∈ R
3×3 is the 3× 3 zero matrix. The

reader is invited to prove that JL = O ∈ R
2×6.

Further, upon premultiplying the first of eqs.(4.72) by LT , with L given as in eq.(4.84),

a new system of first-order normality conditions is obtained, free of Lagrange multipliers:

LT∇F =

[−A0Zab

−BZba0

]

= 0 ∈ R
6 (4.85)

which, together with the constraints (4.71), lead to an overdetermined system of eight

nonlinear equations in six unknowns, to be solved with the Newton-Gauss method, which

is guaranteed to converge to one of the multiple solutions admitted by the problem.

An alternative to the Newton-Gauss method is, of course, a semigraphical method,

aimed at eliminating all but two of the six unknowns of the first six-dimensional system

or of the eight-dimensional system in the second approach. All real solutions can then be

obtained by contour intersection.

Unconstrained-minimization Approach

If, rather than using Cartesian coordinates, one uses spherical coordinates tailored to

points lying on the unit sphere, then not only are the constraints eliminated, but the
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number of design variables is reduced, from three per point to only two, as the third

spherical coordinate, the distance of a point in 3D space to the origin, is constant. Indeed,

all points of interest lie in the unit sphere.

However, introduction of spherical coordinates brings about its own complexity, as

the point-coordinates entail the harmonic functions, sine and cosine, of the spherical

coordinates, thereby destroying the algebraic nature of the problem. While the tan-

half identities, introduced in eq.(3.73), can be invoked, that would bring the system of

equations back to algebraic, the degree of the error, eq.(4.69), would be now higher than

quadratic. One alternative to cope with the new algebraic system is to resort to dialytic

elimination (Salmon, 1964), which allows a systematic means of eliminating unknowns

from a system of algebraic equations. This is an interesting research topic, but it will not

be pursued here.

One practical means of coping with the nonlinearity of the problem is by resorting to

a purely numerical approach, if with some massaging of the relations involved, as outlined

presently. Given that the optimization problem is now unconstrained, it can be regarded

as one of nonlinear least squares, as studied in Section 1.6, and solved by means of the

Newton-Gauss method.

The spherical coordinates to be used here are longitude and latitude. Let, then13,

ϑA and ϕA be the longitude and the latitude of A0, ϑB and ϕB those of B. Hence, the

position vectors of interest, a0 and b, are now given, each, in terms of only two design

variables:

a0 =





cosϕA cosϑA

cosϕA sinϑA

sinϕA



 , b =





cosϕB cos ϑB

cosϕB sinϑB

sinϕB



 (4.86)

As the synthesis problem admits two valid solutions, one the antipodal of the other,

we will now limit the search of the optimum solution to only one of the two alternatives.

This is readily done by specifying the ranges of all spherical coordinates as

{ϕA, ϑA, ϕB, ϑB} ∈ [−π/2, π/2] (4.87)

In order to formulate the unconstrained optimization problem we recall the error ej

of eq.(4.69) for the jth prescribed attitude. The approximate-synthesis problem is now

formulated as

z ≡ 1

2
‖e‖2 = 1

2

m∑

1

e2j(x) → min
x
, with e ≡





e1
...

em



 & x ≡
[
α

β

]

∈ R
4 (4.88)

with vectors α and β defined, in turn, as

α ≡
[
ϕA

ϑA

]

and β ≡
[
ϕB

ϑB

]

(4.89)

13ϑ and ϕ are read “vartheta” and “varphi,” respectively.
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The simplest way of solving the foregoing problem is by means of the approach used

for overdetermined systems of nonlinear equations, as introduced in Section 1.6. That is,

we look at an overdetermined system of m ≥ 5 equations in four unknowns, of the form

e(x) = 0m, with m ≥ 5 & x ∈ R
4 (4.90)

Further, the Newton-Gauss method requires the Jacobian of e with respect to x,

namely,

Φ(x) ≡ ∂e(x)

∂x
(4.91)

However, the components ej of e are given in eq.(4.69) in terms of a0 and b. The gradients

of these components w.r.t. α and β thus call for application od the chain rule for vector

arguments, as introduced in eq.(1.35). To do this, notice that an increment ∆e of e, as

a result of an increment ∆x in x, is given, to a first-order approximation, which is good

enough for a reasonably small increment ∆x, by

∆e = Φ∆x, Φ ≡ ∂e

∂x
∈ R

m×4 (4.92)

where, in light of the partitioning of x, as per eq.(4.88), Φ admits the partitioning

Φ = [Φα Φβ ] , with Φα ≡
∂e

∂α
& Φβ ≡

∂e

∂β
∈ R

m×2 (4.93)

Further, in order to obtain matrices Φα and Φβ, the Jacobians of e w.r.t. α and β, in

terms of the corresponding Jacobians of a0 and b with respect to α and β, respectively—

notice that a0 is a function of α alone, while b is, in turn, a function of β alone—, the

chain rule of differentiation for vector arrays, introduced in eq.(1.35), is now recalled:

∂ej
∂α

=

(
∂a0

∂α

)T
∂ej
∂a0

,
∂ej
∂β

=

(
∂b

∂β

)T
∂ej
∂b

, j = 1, . . . , m (4.94)

The Jacobians of interest are now computed from eqs.(4.86):

A ≡ ∂a0

∂α
=





− sinϕA cosϑA − cosϕA sinϑA

− sinϕA sinϑA cosϕA cosϑA

cosϕA 0



 ∈ R
3×2 (4.95)

and

B ≡ ∂b

∂β
=





− sinϕB cosϑB − cosϕB sin ϑB

− sinϕB sin ϑB cosϕB cosϑB

cosϕB 0



 ∈ R
3×2 (4.96)

while the gradients of ej w.r.t. a0 and b were already obtained, as displayed in eqs.(4.80)

and (4.81), respectively.

Upon substitution of eqs.(4.95) and (4.96), along with eqs.(4.80) and (4.81), into

eqs.(4.94), the gradients of ej with respect to α and β are obtained:

∂ej
∂α

= AT (QT
j − 1)b,

∂ej
∂β

= BT (Qj − 1)a0 ∈ R
2, j = 1, . . . , m (4.97)
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Table 4.2: Five Given Attitudes of a Rigid Link

No. φj[rad] eT

0 0 undefined

1 0.2034 [−0.0449,−0.5133,−0.8569]T
2 1.1957 [0.1827, 0.7709,−0.6101]T
3 1.1932 [0.5212, 0.8414,−0.1422]T
4 1.0512 [0.5384, 0.8114, 0.2271]T

which are all two-dimensional vector arrays. Now, upon assembling these arrays into the

two arrays Φα and Φβ of eqs.(4.93), the m× 2 gradients appearing therein, we obtain

Φα =








bT (Q1 − 1)A

bT (Q2 − 1)A
...

bT (Qm − 1)A







, Φβ =








aT0 (Q
T
1 − 1)B

aT0 (Q
T
2 − 1)B
...

aT0 (Q
T
m − 1)B







∈ R

m×2 (4.98)

the Jacobian Φ of e w.r.t. x, introduced in eq.(4.91), thus being completed:

Φ =








bT (Q1 − 1)A aT0 (Q
T
1 − 1)B

bT (Q2 − 1)A aT0 (Q
T
2 − 1)B

...

bT (Qm − 1)A aT0 (Q
T
m − 1)B







∈ R

m×4 (4.99)

Once the Jacobian Φ is available, the Newton-Gauss method can be implemented for

a given initial guess x0, which is all that this algorithm needs.

4.3.6 Examples

A set of attitudes of a rigid link is given in Table 4.2, from which data will be taken for

the synthesis examples below.

Synthesis of a Spherical Dyad for Three Attitudes

Attitudes No. 1 and 2 are taken from Table 4.2 to design a RR dyad. First, the rotation

matrices Q1 and Q2, taking the dyad end-link from the reference attitude, 0 in the table

and represented by 1, are calculated, based on the angle of rotation φ and the unit vector

e given in rows 1 and 2 of the table. These are

Q1 =








0.9794 0.1736 − 0.1029

−0.1726 0.9848 0.0181

0.1045 0 0.9945







, Q2 =








0.3876 0.6569 0.6467

−0.4784 0.7430 −0.4680

−0.7879 −0.1280 0.6023
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Furthermore, a first centerpoint b is chosen a

b = [ 0.5774 0.5774 0.5774 ]T

which leads to vectors

d1 =








−0.1955

0.0236

−0.0039







, d2 =








−0.0072

−0.1492

−0.1907








With the two foregoing vectors, the corresponding circlepoint is found as

a0 = [ 0.9199 0.36117 0.1532 ]T

A second centerpoint b is specified as

b = [ 0.0 −0.7071 0.7071 ]T

which leads, in turn, to vectors

d1 =








−0.1955

0.0236

−0.0039







, d2 =








−0.0072

−0.1492

−0.1907








the corresponding circlepoint being given by the position vector

a0 = [−0.1063 −0.7812 0.6152 ]T

thereby completing the synthesis of the two dyads making up the desired spherical four-bar

linkage.

Synthesis of a Spherical Dyad for Four Attitudes

Attitudes 1, 2 and 3 of Table 4.2 are taken now, which produce one third rotation matrix,

besides Q1 and Q2 used above for the three-attitude synthesis, namely,

Q3 =








0.5403 0.4090 0.7353

0.1447 0.8157−0.5600

−0.8289 0.4089 0.3816








With a0 = [x, y, z]T and the three foregoing matrices, vectors cj , for j = 1, 2, 3, are

obtained, as per eq.(4.48); when the latter is substituted into eq.(4.60), the cubic equation

in a0 = [x, y, z]T defining the circlepoint spherical curve K is obtained, namely,

K : F (x, y, z) =−0.01766 x3 + 0.03116 x2y + 0.04156 x2z + 0.02939 xy2 + 0.08747 xyz
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−0.06021 xz2 − 0.01747 y3 − 0.02155 y2z + 0.02673 yz2 − 0.00482 z3 = 0

Likewise, the centerpoint spherical curveM is obtained for unit vector b = [u, v, w]T as

M : G(u, v, w) = 0.01678 u3 + 0.05157 u2v + 0.01743 u2w − 0.04005 uv2 + 0.02803 uvw

−0.05074 uw2 − 0.00259 v3 − 0.05317 v2w − 0.00933 vw2 + 0.02762w3 = 0

The spherical circlepoint and centerpoint curves are shown in Fig. 4.9. Dyad syn-

thesis now proceeds as discussed in Subsection 4.3.2. In the same figure, the reader can

appreciate the asymptotes of the two cubic curves, as two major circles.
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Figure 4.9: Four-pose synthesis curves on the unit sphere, (a) the circlepoint curve and

(b) the centerpoint curve

Synthesis of Spherical Dyads for Five Attitudes

In this example, attitudes 1, 2, 3, and 4 of Table 4.2 are to be met by a spherical dyad.

In order to enable the visual determination of the solutions from the intersections of the

four circlepoint equations arising from the data, we adopt here spherical coordinates,

as introduced in Subsection 4.3.5 for the unconstrained approach to the approximate

synthesis of spherical dyads.

The four circlepoint contours in the ϕa-vs.-ϑa plane are illustrated in Fig. 4.10a, those

of the centerpoint in the ϕb-vs.-ϑb plane in Fig. 4.10b. Four common intersections can

be identified by inspection on each of the two figures, which provide plausible values for

the initial guess of numerical solutions via the Newton-Gauss method. To match each

solution for a0 and its corresponding solution for b, the linear equations derived from a

value of a0 are used: for example, each solution of a0 is substituted into the synthesis

equation (4.47), which yields a system of m linear equations in b. The values of b that

verify the linear equations correspond to the given value of a0. The matched solutions are
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Table 4.3: Solutions for the Spherical-dyad 5-attitude Synthesis

a0(ora
⋆
0) b(or b⋆)

# 1 [0.7085,−.6418,−.2932] [0.2640,−.6636,−.6998]
# 2 [0.0385, 0.3163, 0.9478] [0.1143, 0.7263,−.6777]
# 3 [0.1642, 0.6977, 0.6972] [0.5218, 0.8413,−.1403]
# 4 [0.8077, 0.1493, 0.5702] [0.9524,−.2535, 0.1686]

recorded in Table 4.3. Note that the results are also the solutions of vectors a⋆0 and b⋆.

Six linkages14, shown in Fig. 4.11, are generated from the four dyads. In the foregoing

subfigures, notation L# : i + j stands for a linkage generated using solutions i and j of

Table 4.3.

Branching-detection on the six mechanism was conducted by means of the sign of sinµ,

with µ denoting the transmission angle for spherical linkages defined in Subsection 3.6.2.

Sign changes of the sine of the transmission angle were found in linkages L3 and L4, which

indicates the presence of branching defect in these two solutions. The remaining linkages

were found to be defect-free. Linkage animations confirmed this point. It was also found

from animations that linkages L1, L2 and L5 are of the crank-rocker type, while linkage

L6 is a double-rocker.

(a) (b)

Figure 4.10: The four contours for five-attitude dyad synthesis leading to four possible

solutions: (a) for the circlepoint; (b) for the centerpoint

Accurate values of the four circlepoint and centerpoint coordinates, displayed in Ta-

ble 4.3, were obtained numerically, using nonlinear least-squares.

14The number of possible combinations of four objects taken two at a time.
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(a) L1: 1+2 (b) L2: 1+3 (c) L3: 1+4

(d) L4: 2+3 (e) L5: 2+4 (f) L6: 3+4

Figure 4.11: Six synthesized mechanisms, shown together with all task orientations in

yellow. Solid dots show traces of a point of the coupler link

Table 4.4: Five attitudes for the synthesis of a PR spherical dyad

φj [rad] eT

0 [0,0,1]

0.2563 [−0.2280,−0.4553,−0.8606]
1.1307 [−0.0578, 0.2370,−0.9697]
1.1938 [0.5049, 0.8505,−0.1468]
1.3665 [0.7119, 0.6601, 0.2393]

Synthesis of a Spherical Dyad with a P Joint

For concreteness, let us assume that the P joint is located at the centerpoint B, coupling

the dyad under synthesis with the fixed link. Then the axis of the R joint at A0 intersects

the foregoing major circle at right angles. In the example at hand, five attitudes are given,

as displayed in Table 4.4.

By means of eq.(4.68), and a representation of vector a0 with spherical coordinates ϑa

and ϕa, contours of four determinant equations are plotted in Fig. 4.12. It is seen that

there is only one real solution {ϑa, ϕa}. The corresponding unit vector b⋆ is thus obtained,
followed by the unit vector a⋆0. For the remaining dyad consisting of two R joints, four

solutions are found with the general procedure. Of the four solutions of a0 and b, one is

identical to the solution already found for a⋆0 and b⋆, which restates that a P joint is a

special case of the general spherical RR dyad. All results are listed in Table 4.5.

185



Table 4.5: Solutions of Example 3

a0 b

# 1 [0.2845, 0.3863, 0.8773] [0.1219,−.7089,−.6946]
# 2 [0.7226, 0.5295, 0.4442] [0.2309, 0.4566, 0.8591]

# 3 [0.9573,−.2433, 0.1555] [0.8134, 0.1643, 0.5579]

a⋆0 b⋆

# 4 [0.5221, 0.8442,−.1208] [0.0655, 0.1015, 0.9926]

Figure 4.12: Contour plot to find position vectors for the unit vector of the P joint.

Altogether, there are three possible four-bar linkages containing one P joint for the

given solutions. One is shown in Fig. 4.13, which is a branching-free linkage, as made

apparent by animation.

Figure 4.13: Spherical four-bar linkage with a P joint

As a matter of fact, circular guideways are common joints in machinery, available from

manufacturers. One circular guideway from Germany-based Schaeffler AG15 is included

in Fig. 4.14.

15http://www.schaeffler.com/content.schaeffler.com/en/divisions/industrial/industrial.jsp
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Figure 4.14: An instance of an industrial circular guideway

Approximate Synthesis of Spherical Dyads

Read (Léger and Angeles, 2014) plus the pertinent references therein.

4.4 Spatial Four-bar Linkages

This section is still under construction. It is based on (Bai and Angeles, 2012; 2014).
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Chapter 5

Path Generation

Disclaimer: This chapter is still work in progress. It should be taken with a grain of

salt!

5.1 Introduction

A recurrent problem in mechanical engineering design is the tracing of a continuous path

by means of a mechanism. Examples abound in practice: cranes to upload and download

containers from ships, a task that requires horizontal segments to ease the load on the

motor; guiding of laser beams to cut a profile from a metal plate; guiding the centre of

the wheel in the landing gear of small aircraft through a planar curve; and so on. The

foregoing examples pertain to planar linkages. Other tasks call for spherical curves, i.e.,

curves lying on the surface of a sphere, which are to be implemented by means of spherical

linkages. An example of this task is the linkage needed to guide the focal axis of a solar

collector in the form of a paraboloid of revolution. The axis must aim at the centre of the

Sun as this moves on the sky throughout the day, with daily adjustments, of course. One

more class of tasks involve the tracing of the path generated by a line, namely, a ruled

surface, which is to be implemented with a spatial linkage. An application example here

is the design of the landing gear (LG) of large aircraft, in which case the generating line

is the axis of one of the wheels of the LG, as large aircraft carry several wheels on each

of the two halves of their LG.

While the foregoing operations can be realized by means of robots, these become

impractical when the operation involves endless repetitions through the same path. A

single-dof linkage is the solution here not only because of its low cost in terms of produc-

tion, maintenance and servicing, but also because of reliability and repeatability. A robot

cannot compete with a linkage in terms of repeatability. Other applications include the

synthesis of dwell in production lines. For example, the gluing of labels or the filling of

a bottle, presented to the pertinent mechanism of a packaging system, calls for contact
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of a mechanism link with the bottle during a finite amount of time. From the results

of Subsection 3.3.1, it is apparent that a four-bar linkage cannot produce dwell, which

requires that output velocity and acceleration vanish simultaneously during a finite time

interval. This then calls for a multiloop linkage, e.g., a six-bar linkage with two kinematic

loops. The synthesis of a dwell mechanism then requires the addition of an extra triad1

to a four-bar linkage. The triad can be of two types, RRR or RPR, with the extreme R

joints coupled to the machine frame and to the coupler link of the four-bar linkage, at a

designated point P . For triads of the first type, dwell is obtained by choosing the point P

so that it traces, during a certain finite interval, a coupler curve (CC) that locally approx-

imates a circle of radius r to a third order, meaning that the curvature of the CC is 1/r at

the linkage posture at which the curvature becomes stationary with respect to the input

angle of the four-bar linkage. Points of the coupler curve with the stationarity property

are known (Hartenberg and Denavit, 1964) to lie on a cubic curve fixed to the coupler

link, this curve being quite appropriately known as the cubic of stationary curvature. For

triads of the second type, P is chosen so that its coupler curve locally approximates a line

segment to a second order, meaning that the curvature of the CC traced by P vanishes

at a given posture of the linkage. It is known (Hartenberg and Denavit, 1964) that the

locus of points of the coupler link with a vanishing curvature is a circle, which is rightfully

known as the inflection circle. Both loci are unique at a given linkage posture, meaning

that these loci, fixed on the coupler link, change as the linkage moves from posture to

posture.

The balance of the chapter discusses the methodology behind the synthesis of planar,

spherical and spatial four-bar linkages with the property that one point, the planar case,

or one line, the case of the spherical and the spatial cases, of their coupler link, will visit

a discrete set of points or, correspondingly, lines.

5.2 Planar Path Generation

The problem to be solved here is formulated as:

Problem 5.2.1 Synthesize a planar four-bar linkage, as shown in Fig. 5.1, whose coupler

point P will attain a set of positions {Pj}m0 , as the linkage is driven by its input link.

In the problem statement above, the input link is to be decided by the designer. It

could be any one of the two links pinned to the machine frame, BA or B∗A∗. Before the

assignment of the driving function to one of the two foregoing links, it is futile to speak

of the transmission angle2 in this case, although it is common in the literature to find

1Similar to a dyad, a tryad is a two-link chain, with two LKPs at its free ends and one third pair

coupling both.
2This concept is defined in Section 3.2.1.
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synthesis problems in which the transmission angle is to be optimized at this stage.

X0

Y0

θ0

A∗
0

P0 ≡ O0

B∗

B

A0

θjφj

Pj

Aj

Figure 5.1: A planar four-bar linkage whose point R is to visit a set of positions {Rj }m0

The general method of linkage synthesis for path generation is based on the synthesis

equations derived for motion generation (Chen et al., 2008), which stem from Fig. 5.2,

and recalled below for quick reference: for dyad BA0,

bT (1−Qj)a0 + pTj Qja0 − pTj b+
1

2
pTj pj = 0 , for j = 1, . . . , m (5.1a)

while, for dyad B∗A∗
0,

(b∗)T (1−Qj)a
∗
0 + pTj Qja

∗
0 − pTj b

∗ +
1

2
pTj pj = 0 , for j = 1, . . . , m (5.1b)

If matrix Qj in the above equations is substituted by the expression given in eq.(1.6),

with φj in lieu of θ, eq.(5.1a) becomes

(b+ pj)
T (cj1+ sjE)a0 + pTj

(

b+
1

2
pj

)

= 0, for j = 1, . . . , m

with a similar expression for eq.(5.1b) and the definitions: cj ≡ cosφj and sj ≡ sinφj.

If now the tan-half identities of eq.(3.73) are introduced in the above equation, a set of

polynomial equations is obtained upon clearing denominators: for dyad BA0,

(b+ pj)
T [(1− T 2

j )1+ 2TjE]a0 + pTj

(

b+
1

2
pj

)

(1 + T 2
j ) = 0 , for j = 1, . . . , m (5.2a)

while, for dyad B∗A∗
0,

(b∗+pj)
T [(1−T 2

j )1+2TjE]a
∗
0+pTj

(

b∗ +
1

2
pj

)

(1+T 2
j ) = 0 , for j = 1, . . . , m (5.2b)
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In summary, then, the problem involves 8 +m unknowns, the two components of the

four position vectors a0, b, a
∗
0 and b∗, plus the m angles of orientation of the coupler

link, { θj }m1 . The number of equations is 2m, i.e., m equations for each set of eqs. (5.2a

& b). The maximum number of points that can be visited with a planar four-bar linkage

is obtained by equating the number of equations with that of unknowns, namely,

8 +m = 2m, ⇒ mmax = 8 (5.3)

and, if the reference location P0 is considered, the total number of points in the plane

that can be visited with a planar four-bar linkage is nine.

It should be apparent now that each of equations (5.2a & b) is quartic in the 8 +m

unknowns, a0, b, a
∗
0 and b∗, { Tj }m1 . The Bezout number NB of the system of equations

(Salmon, 1964), for the maximum number of prescribed points, is, then,

NB = 42mmax = 416 = 232 = 4294967296 (5.4)

which is about 4.3 billion! As a matter of fact, because of a concept from algebraic

geometry known as circularity, the actual number of expected roots drops dramatically.

An interesting case is m = 4, which leads to eight equations in 12 unknowns, thereby

allowing for the free choice of four of these unknowns. Morgan and Wampler (1990)

solved an instance of this problem in which they specified the two fixed joint centres B

and B∗. In this case the problem is reduced to four quartic equations in four unknowns,

with a Bezout number of 44 = 256. They showed that this problem admits, in fact, up to

36 nonzero real solutions only.

The algebraic complexity of this problem reduces when the prescribed points are to

be visited at prescribed values of the input angle, a problem known as path generation

with prescribed timing. This problem is the subject of Section 5.3.

5.3 Planar Path Generation With Prescribed Timing

If the problem of path generation calls for a synchronization of the points {Pj }m0 with

the values of the input angle, that will be assumed to be that made by BA with X0, as

per Fig. 5.1 and denoted {ψj }m0 at the prescribed poses, then we have a problem of path

generation with prescribed timing. This is the case in which one may need, for example,

to have points {Pj }m0 laid down on a line with equal spacing between consecutive points,

for equal increments of the input angle.

The data are thus given as {Pj, ψj }m0 . As Qj is unknown, the synthesis equations

are derived now upon elimination of this matrix from eqs.(5.1a & b), as described below.

Notice, however, that the set of values of the input angle, {ψj }m0 , are now given.
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Elimination of Qj

Since the input link BA undergoes rotations about B, we can write

aj − b = Rj(a0 − b) , for j = 1, . . . , m (5.5)

where Rj is the rotation matrix carrying BA0 into BAj through angle βj = ψj−ψ0. Since

timing is prescribed, introduction of matrices Rj does not introduce additional unknowns.

Moreover, matrix Rj can be represented using eq.(1.6), with θ replaced by βj , namely,

Rj = cos βj1+ sin βjE , for j = 1, . . . , m

where 1 is the 2 × 2 identity matrix and E is the 90◦-ccw rotation matrix introduced in

eq.(1.1a). With reference to Fig. 5.2,

aj − pj =
−−→
PjAj = Qj

−−−→
P0A0 = Qja0, for j = 1, . . . , m

Upon substituting eq.(5.5) into the above equation, we obtain

Qja0 = Rja0 + (1−Rj)b− pj , j = 1, . . . , m (5.6)

Now, if we substitute eq.(1.6) into the above equation, with φj in lieu of θ, we end up

with

cφja0 + sφjEa0 = Rja0 + (1−Rj)b− pj , j = 1, . . . , m

which can be cast in the form

[a0 Ea0 ]

[

cφj

sφj

]

= Rja0 + (1−Rj)b− pj
︸ ︷︷ ︸

cj

, j = 1, . . . , m

Consequently, we can readily solve the above equation for cφj and sφj as
[

cφj

sφj

]

= [a0 Ea0 ]
−1cj =

1

‖a0‖2

[

aT0E
T

−aT0

]

Ecj =
1

‖a0‖2

[

aT0 cj

−aT0Ecj

]

,

j = 1, . . . , m

where we have recalled the formula for the inverse of a 2× 2 matrix given in Fact 1.4.2.

The Equation for the BAP Dyad

When the expression forQja0 of eq.(5.6) is substituted into the synthesis equations (5.1a),

we obtain

bTa0 − bTRja0 − bT (1−Rj)b+ pTj Rja0 + pTj Rjb− pTj b−
1

2
pTj pj = 0 , j = 1, . . . , m

which simplifies to

bT (1−Rj)b+ bT (Rj − 1)a0 + pTj (Rj − 1)b− pTj Rja0 +
1

2
pTj pj = 0 , (5.7)

thereby deriving the m synthesis equations for the left-hand dyad of Fig. 5.2 for the

problem at hand. Apparently, these equations are quadratic in b and linear in a0, their

degree being two.
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The Equation for the B∗A∗P Dyad

Vector Qja
∗
0 appearing in eq.(5.1b) can be derived by mimicking eq.(5.6), which yields

Qja
∗
0 = [a∗

0 Ea
∗
0 ]

[

cφj

sφj

]

=
1

‖a0‖2
[(aT0 cj)a

∗
0 − (aT0Ecj)Ea

∗
0] , for j = 1, . . . , m

or

Qja
∗
0 =

1

‖a0‖2
[
(aT0 cj)1− (aT0Ecj)E

]
a∗
0 , j = 1, . . . , m

Substituting the above expression into eq.(5.1b), we obtain, after clearing the denomina-

tor,

(b∗)T
[
(‖a0‖2 − aT0 cj)1+ (aT0Ecj)E

]
a∗
0 + pTj

[
(aT0 cj)1− (aT0Ecj)E

]
a∗
0

−‖a0‖2pTj b∗ +
1

2
‖a0‖2‖pj‖2 = 0 , j = 1, . . . , m (5.8)

which are the synthesis equations for the right-hand dyad of Fig. 5.2 for the problem at

hand. Apparently, these m equations are all cubic.

Remarks

• We have 2m equations, (5.7 & 5.8), to solve for eight unknowns—the components of

a0, b, a
∗
0, b

∗. Therefore, to have a determined system of equations, we must have

m = 4, which implies that up to five points can be visited in a plane using a four-bar

linkage, with prescribed timing.

• Since the system of eqs.(5.7 & 5.8) involves four quadratic and four cubic equations

in the unknowns {a0,b}, the Bezout number NB of the system, which gives an upper

bound for the number of roots to expect, thus being NB = 24 × 34 = 1296

• Equations (5.7) are linear in a0 and quadratic in b. Consequently, we can eliminate

a0 by casting the said system in the form

Bx = 0 (5.9)

in which x = [aT0 1]T and B is a 4× 3 matrix function of b of the form

B =








bT (R1 − 1)− pT1R1 b
T (1−R1)b+ pT1 (R1 − 1)b+ (1/2)pT1 p1

bT (R2 − 1)− pT2R2 b
T (1−R2)b+ pT2 (R2 − 1)b+ (1/2)pT2 p2

bT (R3 − 1)− pT3R3 b
T (1−R3)b+ pT3 (R3 − 1)b+ (1/2)pT3 p3

bT (R4 − 1)− pT4R4 b
T (1−R4)b+ pT4 (R4 − 1)b+ (1/2)pT4 p4








For the 4 × 3 matrix B to have a nontrivial null space, which is needed in light of

the form of x, B must be rank-deficient. This means that every 3× 3 submatrix of
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B must be singular. We can thus derive four bivariate polynomial equations in the

Cartesian coordinates u and v of B, the components of b, namely,

∆j(u, v) = det(Bj) , for j = 1, . . . , 4 (5.10)

where ∆j is the determinant of the jth 3 × 3 submatrix Bj, obtained by deleting

the jth row of B. Notice that ∆j can be computed by the cofactors of the third

column of its corresponding matrix. Moreover, this column is quadratic in b, the

corresponding cofactors being determinants of 2 × 2 matrices whose entries are

linear in b. Such a determinant is expanded in Fact 1.4.1, Subsection 1.4.2, in

which it is apparent that this determinant is a bilinear expression of its rows or,

correspondingly, of its columns. Hence, each 2 × 2 cofactor is quadratic in b, the

result being that ∆j is quartic in b. Therefore, the Bezout number of any pair of

those equations is NB = 42 = 16.

Moreover, each eq.(5.10) defines a contour in the u-v plane. The real solutions of

system (5.9) can be visually estimated by plotting them contours in the same figure.

Notice that, at the outset, we do not have bounds for the location of B in the u-v

plane. However, we always have a region available of this plane in which we can

anchor the revolute centre B. Our first attempt of finding real solutions for B is

thus this region.

Once b is known, we can solve for a0 from eq.(5.9) using a least-square approxima-

tion. To this end, we rewrite eq.(5.9) in the form

Ma0 = n

where

M =








bT (R1 − 1)− pT1R1

bT (R2 − 1)− pT2R2

bT (R3 − 1)− pT3R3

bT (R4 − 1)− pT4R4







, n =








bT (R1 − 1)b− pT1 (R1 − 1)b− (1/2)pT1 p1

bT (R2 − 1)b− pT2 (R2 − 1)b− (1/2)pT2 p2

bT (R3 − 1)b− pT3 (R3 − 1)b− (1/2)pT3 p3

bT (R4 − 1)b− pT4 (R4 − 1)b− (1/2)pT4 p4








• Equation (5.8) is bilinear in b∗ and a∗
0. Once we have a0 and b from eq.(5.9), we

can solve eq.(5.8) for a∗
0 and b∗ using dialytic elimination, as we did in the motion-

generation case. That is, computing b∗ and a∗
0 leads to the solution of one quartic

polynomial. We need not find the roots of this polynomial numerically, if we apply

the contour technique introduced in Chapter 4.

Reducing the Degree of the Synthesis Equations of the BAP Dyad

Using the definition of Qj of eq.(1.6), the first term of eq.(5.7) can be further simplified

to

bT (1−Rj)b = bT [(1− cβj)1+ sβjE]b = (1− cβj)‖b‖2 , j = 1, . . .m
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where we used the identity bTEb ≡ 0, because matrix E is skew-symmetric. Thus,

eq.(5.7) reduces to

(1− cβj)‖b‖2 + bT (Rj − 1)a0 + pTj (Rj − 1)b− pTj Rja0 +
1

2
pTj pj = 0 (5.11)

for j = 1, . . . , m.

Let M be j ∈ { 1, . . . , m } that maximizes |1 − cβj| and use the Mth equation of

eqs.(5.11) as a pivot, to reduce the order of the remaining equations. After a reshuffling

of the equations, we let M = 1, so that now the pivot equation is the first one of the set.

Just as in Gaussian elimination, subtract a “suitable” multiple of the first equation from

the remaining ones, so as to eliminate the quadratic term of those equations, which leads,

for j = 2, . . . , m, to

(1− cβ1)‖b‖2 + bT (R1 − 1)a0 + pT1 (R1 − 1)b− pT1R1a0 +
1

2
pT1 p1 = 0 (5.12a)

bT [Rj − 1− qj(Rj − 1)]a0 + [pTj (Rj − 1)− qjpTj (R1 − 1)]b

−(pTj Rj − qjpT1R1)a0 +
1

2
(pTj pj − pT1 p1) = 0 (5.12b)

j = 2, . . . , m

where

qj =
1− cβj
1− cβ1

System (5.12) can be cast in linear-homogeneous form in x, if this vector is defined as

x = [aT0 1 ]T , thereby obtaining

Bx = 04 (5.13a)

with

B =








bT (R1 − 1)− pT1R1 s1

(1− q2)bT (R2 − 1)− (pT2R2 − q2pT1R1) s2

(1− q3)bT (R3 − 1)− (pT3R3 − q3pT1R1) s3

(1− q4)bT (R4 − 1)− (pT4R4 − q4pT1R1) s4








(5.13b)

and

s1 = (1− cβ1)‖b‖2 + pT1 (R1 − 1)b+
1

2
pT1 p1 (5.13c)

sj = [pTj (Rj − 1)− qjpTj (R1 − 1)]b+
1

2
(pTj pj − pT1 p1) j = 2, . . . , m (5.13d)

Notice that s1 is quadratic and {sj}m2 are all linear in b. Thus, the corresponding ∆1 of

eq.(5.10) for system (5.13) is quadratic, but {∆j}m2 are all cubic in b. Consequently, the

Bezout number of any pair of equations (1, j), for j = 2, . . . , m, is NB = 3× 4 = 12.
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5.4 Coupler Curves of Planar Four-Bar Linkages

The four-bar linkage of Fig. 5.2 is given in a Cartesian frame F with origin at the midpoint

of segment BB∗ and axis X containing the foregoing segment. The trajectory traced by

point P of its coupler link is called the coupler curve traced by that point.

 

 

V

P (x, y)

U

G

v

w

uA0

a3

θ
A0

∗

Y

B∗B

F

X

a4

φψ

a2

a1/2 a1/2

Figure 5.2: Determination of the coupler curve traced by point P of a planar four-bar

linkage

Construction of the Coupler Curve

We start by proving a basic result in planar kinematics regarding the nature of the coupler

curve of a planar four-bar linkage, namely,

Theorem 5.4.1 (Coupler Curve of a Planar Four-Bar Linkage) The curve traced

by any point of the coupler link of a planar four-bar linkage is algebraic, of sixth degree.
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In general, a curve can be either algebraic or non-algebraic. A planar curve is algebraic

if it is given by an implicit function F (x, y) = 0, with F (x, y) being the sum of products

of integer powers of x and y. The degree of the curve is the highest degree of the various

terms making up F (x, y). Moreover, a curve of degree n intersects a straight line at a

maximum of n points, which the reader is invited to prove. Thus, the coupler curve of a

four-bar linkage intersects a straight line at a maximum of six points. As a consequence,

the coupler curve under discussion cannot have straight segments of finite length. There

are, however, well-known examples of planar four-bar linkages that trace coupler curves

that, to the naked eye, appear as having line segments. The best known of these linkages

are those bearing the eponyms of Roberts and Chebyshev. Linkages capable of tracing

exactly line segments are also known, but these comprise more than four links and more

than one kinematic loop, e.g., those of Peaucellier and Hart (Bricard, 1927; Dudiţă et al.,

1989; McCarthy and Soh, 2011).

The coupler link carries a point P (x, y) lying on the V -axis of a second Cartesian

frame, G, its U -axis passing through A0 and A
∗
0. What we need now is an implicit function

F (x, y) = 0, free of any linkage variable, and having as parameters the link lengths.

The desired function is obtained by first noticing that, irrespective of the linkage

posture,

‖−−→BA0‖2 = a22 , ‖−−−→B⋆A⋆0‖2 = a24 (5.14)

Vectors
−−→
BA0 and

−−−→
B∗A∗

0 can be expressed as

−−→
BA0 = a0 − b = p−−−→A0P − b (5.15a)
−−−→
B∗A∗

0 = a∗
0 − b∗ = p−−−→A∗

0P − b∗ (5.15b)

where, in our standard notation, a0 (a∗
0), b (b∗) and p denote the position vectors of A0

(A∗
0), B (B∗) and P in F .
In light of the two foregoing expressions, the left-hand sides of eqs.(5.14) take the

forms

‖−−→BA0‖2 = ‖p‖2 + ‖−−→A0P‖2 + ‖b‖2 − 2pT
−−→
A0P − 2pTb+ 2bT

−−→
A0P (5.16a)

‖−−−→B∗A∗
0‖2 = ‖p‖2 + ‖

−−→
A∗

0P‖2 + ‖b∗‖2 − 2pT
−−→
A∗

0P − 2pTb∗ + 2b∗T−−→A∗
0P (5.16b)

Vectors a0, a
∗
0, b and b∗ are given directly in frame F , −−→PA0 and

−−→
PA∗

0 in G. In order

to express the latter in F a rotation Q that takes F into G is introduced:

Q =

[
cos θ − sin θ

− sin θ cos θ

]

(5.17a)

which can be expressed as

Q = 1 cos θ + E sin θ (5.17b)
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with 1 denoting the 2×2 identity matrix, while E is the 2×2 matrix defined in eq.(1.1a).

Now vectors
−−→
PA0 and

−−→
PA∗

0 can be represented in F as

[
−−→
PA0]F = QT [

−−→
PA0]G = QTg,

−−→
PA∗

0F = QT [
−−→
PA∗

0]G = QTg∗ (5.18)

where

g = [−u −v ]T , g∗ = [w −v ]T (5.19)

Substitution of eqs.(5.16a), (5.16b) and (5.18) into eqs.(5.14), while taking into account

that

‖−−→PA0‖2 = u2 + v2, ‖−−→PA∗
0‖2 = w2 + v2, ‖b‖2 = ‖b∗‖2 = a21

4
(5.20)

leads, correspondingly, to

‖p‖2 + 2gT (b− p) cos θ + 2gTE(b− p) sin θ − 2bTp+ u2 + v2 +
a21
4
− a22 = 0 (5.21a)

‖p‖2+2g∗T (b∗−p) cos θ+2g∗TE(b∗−p) sin θ− 2b∗Tp+w2+ v2+
a21
4
− a24 = 0 (5.21b)

In order to transform the above trigonometric equations into algebraic form, the tan-

half identities are introduced:

cos θ =
1− T 2

1 + T 2
, sin θ =

2T

1 + T 2
, T ≡ tan

(
θ

2

)

Hence, eqs.(5.21a & b) become quadratic in T , namely,

A1T
2 − 2B1T + C1 = 0 (5.22a)

A2T
2 − 2B2T + C2 = 0 (5.22b)

where

A1 = ‖p‖2 − 2gT (b− p)− 2bTp+ u2 + v2 + a21/4− a22 (5.23a)

B1 =−2gTE(b− p) (5.23b)

C1 = ‖p‖2 + 2 gT (b− p)− 2bTp+ u2 + v2 +
a21
4
− a22 (5.23c)

A2 = ‖p‖2 − 2g∗T (b∗ − p)− 2b∗Tp+ w2 + v2 + a21/4− a24 (5.23d)

B2 =−2g∗TE(b∗ − p) (5.23e)

C2 = ‖p‖2 + 2 g∗T (b∗ − p)− 2b∗Tp+ w2 + v2 +
a21
4
− a24 (5.23f)

Apparently, coefficients A1, A2, C1 and C2 are quadratic, B1 and B2 linear in p. More-

over, all four coefficients quadratic in p involve only one such term, namely, ‖p‖2. Hence,
upon subtracting both sides of eq.(5.22b) from the corresponding sides of eq.(5.22a), one

third equation in T is obtained, namely,

A3T
2 − 2B3T + C3 = 0 (5.24)
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with coefficients

A3 = 2(g− g∗ − b+ b∗)Tp− 2(gTb− g∗Tb∗) + u2 − w2 − a22 + a24 (5.25a)

B3 = 2(g− g∗)TEp− 2(gTEb− g∗TEb∗) (5.25b)

C3 = −2(g − g∗ + b− b∗)Tp+ 2(gTb− g∗Tb∗) + u2 − w2 − a22 + a24 (5.25c)

Further, multiplying both sides of eqs.(5.22a) and (5.24) by T , two additional polyno-

mial equations in T are derived:

A1T
3 − 2B1T

2 + C1T = 0 (5.26a)

A3T
3 − 2B3T

2 + C3T = 0 (5.26b)

eqs.(5.22a), (5.24), (5.26a) and (5.26b) thus forming a system of four linear homogeneous

equations in the four powers of T : T 0, . . . and T 3, namely,

Mt = 04 (5.27)

with M and t defined as

M =








A1 −2B1 C1 0

A3 −2B3 C3 0

0 A1 −2B1 C1

0 A3 −2B3 C3







, t =








T 3

T 2

T

1








(5.28)

Since eq.(5.27) must admit nontrivial solutions—the fourth component of t is identi-

cally unity—matrix M must be singular, and hence,

∆ ≡ det(M) = 0 (5.29)

The entries of M are apparently all scalar functions of vector p. In particular, A1 and

C1 are quadratic, while A3, B1, B3 and C3 are linear in p. Therefore, two rows of M are

quadratic two are linear in p, which leads to a determinant of degree sixth in p, as the

reader is invited to prove. Upon expansion,

∆ = 4A1B1B3C3−4A1B3
2C1−A1

2C3
2+2A1A3C1C3−4A3B1

2C3+4A3B1B3C1−A3
2C1

2

(5.30)

Apparently, each of the seven terms of ∆ is at most, sextic in p, which means that

∆(p) is indeed a sextic polynomial in p.

In summary, ∆(p) = ∆(x, y) = 0 defines a sextic curve in the X-Y plane, thereby

proving Theorem 5.4.1.
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Example 5.4.1 (Coupler curve of a planar four-bar linkage3)

A planar four-bar linkage and a point P of its coupler link are defined by the linkage

parameters given below:

a1 = 200, a2 = 100, a3 = 230, a4 = 230, u = 80, v = 170, w = 150

all in the same units. Draw the coupler curve traced by point P in the two conjugate

configurations of the linkage.

Figures 5.3 and 5.4 show the coupler curve traced by point P of the above linkage when

postured in its two conjugate configurations. For simplicity, the coordinate axes are not

included, but they are obvious.

P

Figure 5.3: Curve of a planar four-bar linkage traced by a point P of its coupler link

5.5 The Theorem of Roberts-Chebyshev

In the realm of planar-linkage synthesis for path generation it is noteworthy that the

solution to any problem is not unique. In fact, for every coupler curve generated by a

planar four-bar linkage, there exist two more four-bar linkages, called the cognates of the

first one, that trace exactly the same coupler curve.

A proof of this result is available in (Bricard, 1927) and (Malik et al., 1994).

3The algorithm and the code to plot the coupler curves of this example were produced by Salvatore

Grande, University of Cassino, Italy.
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P

Figure 5.4: Coupler curve of the same point P of the same linkage as that of Fig. 5.3, as

traced by its conjugate configuration
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Appendix A

A Summary of Dual Algebra

The algebra of dual numbers is recalled here, with extensions to vector and matrix oper-

ations. This material is reproduced from a chapter in a NATO Advanced Study Institute

book1

A.1 Introduction

The aim of this Appendix is to outine the applications of dual algebra to kinematic

analysis. To this end, the algebra of dual scalars, vectors, and matrices is first recalled.

The applications included here refer to the computation of the parameters of the screw of

a rigid body between two finitely-separated positions and of the instant screw. However,

the applications of dual numbers go beyond that in kinematics. Indeed, the well-known

Principle of Transference (Dimentberg, 1965; Bottema and Roth, 1978; Rico Mart́ınez

and Duffy, 1993) has been found extremely useful in spatial kinematics, since it allows the

derivation of spatial kinematic relations by simply dualizing the corresponding relations

of spherical kinematics.

Dual numbers were first proposed by Clifford (1873), their first applications to kine-

matics being attributed to both Kotel’nikov (1895) and Study (1903). A comprehensive

analysis of dual numbers and their applications to the kinematic analysis of spatial link-

ages was conducted by Yang (1963) and Yang and Freudenstein (1964). Bottema and

Roth(1978) include a treatment of theoretical kinematics using dual numbers. More

1Angeles, J., 1998, “The Application of Dual Algebra to Kinematic Analysis”, in Angeles, J. and

Zakhariev, E. (editors), Computational Methods in Mechanical Systems, Springer-Verlag, Heidelberg,

Vol. 161, pp. 3-31.
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recently, Agrawal (1987) reported on the application of dual quaternions to spatial kine-

matics, while Pradeep, Yoder, and Mukundan (1989) used the dual-matrix exponential in

the analysis of robotic manipulators. Shoham and Brodsky (1993, 1994) have proposed a

dual inertia operator for the dynamical analysis of mechanical systems. A comprehensive

introduction to dual quaternions is to be found in (McCarthy, 1990), while an abstract

treatment is found in (Chevallier, 1991).

A.2 Definitions

A dual number â is defined as the sum of a primal part a, and a dual part a0, namely,

â = a+ ǫa0 , (A.1)

where ǫ is the dual unity, which verifies ǫ 6= 0, ǫ2 = 0, and a and a0 are real numbers, the

former being the primal part of â, the latter its dual part. Actually, dual numbers with

complex parts can be equally defined (Cheng and Thompson, 1996). For the purposes of

this chapter, real numbers will suffice.

If a0 = 0, â is called a real number, or, correspondingly, a complex number ; if a = 0,

â is called a pure dual number ; and if neither is zero â is called a proper dual number.

Let b̂ = b + ǫb0 be another dual number. Equality, addition, multiplication, and

division are defined, respectively, as

â = b̂⇔ a = b, a0 = b0 (A.2a)

â + b̂ = (a + b) + ǫ(a0 + b0) (A.2b)

âb̂ = ab+ ǫ(ab0 + a0b) (A.2c)

â

b̂
=
a

b
− ǫ
(
ab0 − a0b

b2

)

, b 6= 0 . (A.2d)

From eq.(A.2d) it is apparent that the division by a pure dual number is not defined.

Hence, dual numbers do not form a field in the algebraic sense; they do form a ring

(Simmons, 1963).

All formal operations involving dual numbers are identical to those of ordinary algebra,

while taking into account that ǫ2 = ǫ3 = · · · = 0. Therefore, the series expansion of the

analytic function f(x̂) of a dual argument x̂ is given by

f(x̂) = f(x+ ǫx0) = f(x) + ǫx0
df(x)

dx
. (A.3)
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As a direct consequence of eq.(A.3), we have the expression below for the exponential

of a dual number x̂:

ex̂ = ex + ǫ x0e
x = ex(1 + ǫ x0) , (A.4)

and hence, the dual exponential cannot be a pure dual number.

The dual angle θ̂ between two skew lines L1 and L2, introduced by Study (1903), is

defined as

θ̂ = θ + ǫs , (A.5)

where θ and s are, respectively, the twist angle and the distance between the two lines.

The dual trigonometric functions of the dual angle θ̂ are derived directly from eq.(A.3),

namely,

cos θ̂ = cos θ − ǫs sin θ, sin θ̂ = sin θ + ǫs cos θ, tan θ̂ = tan θ + ǫs sec2 θ . (A.6)

Moreover, all identities for ordinary trigonometry hold for dual angles. Likewise, the

square root of a dual number can be readily found by a straightforward application of

eq.(A.3), namely,
√
x̂ =
√
x+ ǫ

x0
2
√
x
, (A.7)

A dual vector â is defined as the sum of a primal vector part a, and a dual vector part

a0, namely,

â = a+ ǫa0, (A.8)

where both a and a0 are Cartesian, 3-dimensional vectors. Henceforth, all vectors are

assumed to be of this kind. Further, let â and b̂ be two dual vectors and ĉ be a dual

scalar. The concepts of dual-vector equality, multiplication of a dual vector by a dual

scalar, inner product and vector product of two dual vectors are defined below:

â = b̂ ⇔ a = b and a0 = b0 ; (A.9a)

ĉ â = c a+ ǫ (c0a+ c a0) ; (A.9b)

â · b̂ = a · b+ ǫ (a · b0 + a0 · b) ; (A.9c)

â× b̂ = a× b+ ǫ (a× b0 + a0 × b) . (A.9d)

In particular, when b̂ = â, eq.(A.9c) leads to the Euclidean norm of the dual vector â,

i.e.,

‖â‖2 = ‖a‖2 + ǫ 2a · a0 . (A.9e)
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Furthermore, the six normalized Plücker coordinates of a line L passing through a point

P of position vector p and parallel to the unit vector e are given by the pair ( e, p× e ),

where the product e0 ≡ p× e denotes the moment of the line. The foregoing coordinates

can be represented by a dual unit vector ê∗, whose six real components in e and e0 are

the Plücker coordinates of L, namely,

ê∗ = e+ ǫ e0, with ‖e‖ = 1 and e · e0 = 0 . (A.10)

The reader is invited to verify the results summarized below:

Lemma A.2.1 For ê∗ ≡ e + ǫ e0 and f̂∗ ≡ f + ǫ f0 defined as two dual unit vectors

representing lines L andM, respectively, we have:

(i) If ê∗ × f̂∗ is a pure dual vector, then L andM are parallel;

(ii) if ê∗ · f̂∗ is a pure dual number, then L andM are perpendicular;

(iii) L andM are coincident if and only if ê∗ × f̂∗ = 0; and

(iv) L andM intersect at right angles if and only if ê∗ · f̂∗ = 0.

Dual matrices can be defined likewise, i.e., if A and A0 are two real n × n matrices,

then the dual n× n matrix Â is defined as

Â ≡ A+ ǫA0 . (A.11)

We will work with 3×3 matrices in connection with dual vectors, but the above definition

can be applied to any square matrices, which is the reason why n has been left arbitrary.

Equality, multiplication by a dual scalar, and multiplication by a dual vector are defined

as in the foregoing cases. Moreover, matrix multiplication is defined correspondingly, but

then the order of multiplication must be respected. We thus have that, if Â and B̂ are

two n× n dual matrices, with their primal and dual parts self-understood, then

ÂB̂ = AB+ ǫ (AB0 +A0B) . (A.12)

Therefore, matrix Â is real if A0 = O, where O denotes the n × n zero matrix; if

A = O, then Â is called a pure dual matrix. Moreover, as we shall see below, a square

dual matrix admits an inverse if and only if its primal part is nonsingular.
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Now we can define the inverse of a dual matrix, if this is nonsingular. Indeed, it

suffices to make B̂ = Â−1 in eq.(A.12) and the right-hand side of this equation equal to

the n×n identity matrix, 1, thereby obtaining two matrix equations that allow us to find

the primal and the dual parts of Â−1, namely,

AB = 1, AB0 +A0B = O ,

whence

B = A−1, B0 = −A−1A0A
−1 ,

which are defined because A is invertible by hypothesis, and hence, for any nonsingular

dual matrix Â,

Â−1 = A−1 − ǫA−1A0A
−1 . (A.13)

Note the striking similarity of the dual part of the foregoing expression with the time-

derivative of the inverse of A(t), namely,

d

dt
[A−1(t)] = −A−1(t)Ȧ(t)A−1(t) .

In order to find an expression for the determinant of an n × n dual matrix, we need

to recall the general expression for the dual function defined in eq.(A.3). However, that

expression has to be adapted to a dual-matrix argument, which leads to

f(Â) = f(A) + ǫ tr

[

A0

(
df

dÂ

)T
]
∣
∣
∣
Â=A

. (A.14)

In particular, when f(Â) = det(Â), we have, recalling the formula for the derivative of

the determinant with respect to its matrix argument (Angeles, 1982), for any n×n matrix

X,
d

dX
[det(X)] = det(X)X−T ,

where X−T denotes the transpose of the inverse of X or, equivalently, the transpose of

X−1. Therefore,

tr

[

A0

(
df

dÂ

)T
]
∣
∣
∣
Â=A

= det(A)tr(A0A
−1) ,

and hence,

det(Â) = det(A)[1 + ǫ tr(A0A
−1)] . (A.15)
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Now we can define the eigenvalue problem for the dual matrix Â defined above. Let

λ̂ and ê be a dual eigenvalue and a dual (unit) eigenvector of Â, respectively. Then,

Âê = λ̂ê, ‖ê‖ = 1 . (A.16a)

For the foregoing linear homogeneous equation to admit a nontrivial solution, we must

have

det(λ̂1− Â) = 0 , (A.16b)

which yields an nth-order dual polynomial in the dual number λ̂. Its n dual roots, real

and complex, constitute the n dual eigenvalues of Â. Note that, associated with each dual

eigenvalue λ̂i, a corresponding dual (unit) eigenvector ê∗i is defined, for i = 1, 2, . . . , n.

Moreover, if we recall eq.(A.4), we can write

eÂ = eA + ǫA0e
A . (A.17)

Upon expansion, the foregoing expression can be cast in the form

eÂ = (1+ ǫA0)e
A 6= eA(1+ ǫA0) , (A.18)

the inequality arising because, in general, A and A0 do not commute. They do so only in

the case in which they share the same set of eigenvectors. A special case in which the two

matrices share the same set of eigenvectors is when one matrix is an analytic function of

the other. More formally, we have

Lemma A.2.2 If F is an analytic matrix function of matrix A, then the two matrices

(i) share the same set of eigenvectors, and

(ii) commute under multiplication.

Typical examples of analytic matrix functions are F = AN and F = eA, for an integer N .

A.3 Fundamentals of Rigid-Body Kinematics

We review in this section some basic facts from rigid-body kinematics. For the sake of

conciseness, some proofs are not given, but the pertinent references are cited whenever

necessary.
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A.3.1 Finite Displacements

A rigid body is understood as a particular case of the continuum with the special feature

that, under any given motion, any two points of the rigid body remain equidistant. A rigid

body is available through a configuration or pose that will be denoted by B. Whenever a

reference configuration is needed, this will be labelled B0. Moreover, the position vector

of a point P of the body in configuration B will be denoted by p, that in B0 being denoted

correspondingly by p0.

A rigid-body motion leaving a point O of the body fixed is called a pure rotation, and

is represented by a proper orthogonal matrix Q, i.e., Q verifies the two properties below:

QQT = 1, det(Q) = +1 . (A.19)

According to Euler’s Theorem (Euler, 1776), a pure rotation leaves a set of points of

the body immutable, this set lying on a line L, which is termed the axis of rotation. If

we draw the perpendicular from an arbitrary point P of the body to L and denote its

intersection with L by P ′, the angle φ between P ′P 0 and P ′P , where, according to our

convention, P 0 denotes the point P in the reference configuration B0 of the body, is called

the angle of rotation. Note that a direction must be specified along this line to define the

sign of the angle. Furthermore, the direction of the line is specified by the unit vector e.

We term e and φ the natural invariants of Q.

As a result of Euler’s Theorem, the rotation Q can be represented in terms of its

natural invariants. This representation takes the form

Q = eeT + cosφ(1− eeT ) + sinφE , (A.20)

where E denotes the cross-product matrix of e, i.e., for any 3-dimensional vector v,

e× v = Ev .

As a result of the foregoing definition, E is skew-symmetric, i.e., E = −ET and, moreover,

it has the properties below:

E2k+1 = (−1)kE, E2k = (−1)k(1− eeT ), for k = 1, 2, . . .

By virtue of the foregoing properties of the cross-product matrix E of e, the rotation

matrix Q can be written in the alternative form

Q = 1+ sinφE+ (1− cos φ)E2 . (A.21)

209



Now, if we recall the Cayley-Hamilton Theorem (Halmos, 1974), we can realize that

the right-hand side of the foregoing equation is nothing but the exponential of φE, i.e.,

Q = eφE , (A.22)

which is the exponential form of the rotation matrix. Now it is a simple matter to obtain

the eigenvalues of the rotation matrix if we first notice that one eigenvalue of E is 0, the

other eigenvalues being readily derived as ±
√
−1, where

√
−1 is the imaginary unit, i.e.,

√
−1 ≡

√
−1. Therefore, if Q is the exponential of φE, then the eigenvalues of Q are the

exponentials of the eigenvalues of φE:

λ1 = e0 = 1, λ2,3 = e±
√
−1φ = cosφ±

√
−1 sin φ . (A.23)

Moreover, we recall below the Cartesian decomposition of an n×n matrix A, namely,

A = As +Ass , (A.24a)

where As is symmetric and Ass is skew-symmetric. These matrices are given by

As ≡
1

2
(A+AT ), Ass ≡

1

2
(A−AT ) . (A.24b)

Any 3×3 skew-symmmetric matrix is fully defined by three scalars, which means that

such a matrix can then be made isomorphic to a 3-dimensional vector. Indeed, let S be a

3× 3 skew-symmetric matrix and v be an arbitrary 3-dimensional vector. Then, we have

Sv ≡ s× v . (A.25)

When the above items are expressed in a given coordinate frame F , the components of

S, indicated as { si,j }3i,j=1, and of s, indicated as { si }31, bear the relations below:

S =





0 −s3 s2

s3 0 −s1
−s2 s1 0



 , s =
1

2





s32 − s23
s13 − s31
s21 − s12



 . (A.26)

In general, we define the axial vector of an arbitrary 3 × 3 matrix A in terms of the

difference of its off-diagonal entries, as appearing in eq.(A.26) for the entries of matrix S.

Apparently, the axial vector of any 3× 3 matrix is identical to that of its skew-symmetric

component; this vector, represented as a ≡ vect(A), is the vector linear invariant of A.
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The scalar linear invariant of the same matrix is its trace, tr(A). With this notation,

note that

1

2
(A−AT )v = a× v .

Further, with reference to Fig. A.3.1, let A and P be two points of a rigid body, which

is shown in its reference and its current configurations.

Figure A.1: Displacements of two points of a rigid body in two finitely-separated config-

urations

We can regard vector p− a as the image of p0 − a0 under the rotation Q, namely,

p− a = Q(p0 − a0) , (A.27)

whence an expression for p can be derived as

p = a+Q(p0 − a0) . (A.28)

Furthermore, the displacement dA of A is defined as the difference a− a0, with a similar

definition for the displacement dP of P . From the above equation, it is now apparent that

a linear relation between the two displacements follows:

dP = dA + (Q− 1)(p0 − a0) . (A.29)

Therefore,

Theorem A.3.1 The displacements of all the points of a rigid body have identical pro-

jections onto the axis of the concomitant rotation.
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The proof of the foregoing result follows upon dot-multiplying both sides of eq.(A.29)

by e:

e · dP = e · dA .

From the previous result it is apparent that ‖dP‖ can attain infinitely large values,

depending on ‖p0− a0‖, but, in general, dP does not vanish. Hence, a minimum of ‖dP‖
can be found, a result summarized in the Mozzi-Chasles Theorem (Mozzi, 1763;Chasles,

1830). This theorem states that the points of B of minimum-norm displacement lie in a

lineM that is parallel to the axis of the rotation represented by matrix Q, the minimum-

norm displacement being a vector parallel to the same axis. If we recall that e and φ

denote the natural invariants of Q, then the position vector p∗ of the point P ∗ ofM lying

closest to the origin O is given by (Angeles, 1997)

p∗ =
(Q− 1)T (Qa0 − a)

2(1− cosφ)
, for φ 6= 0 , (A.30)

the special case in which φ = 0 corresponding to a pure translation, whereby all points

of B undergo identical displacements. In this case, then, the axis M is indeterminate,

because all points of the body can be thought of as undergoing minimum-norm displace-

ments. Henceforth, lineM will be termed the Mozzi-Chasles axis. Note that the Plücker

coordinates of the Mozzi-Chasles axis are given by e and e0 ≡ p∗ × e. We shall denote

with d∗ the minimum-norm displacement, which can be represented in the form

d∗ = d∗e, d∗ = dP · e . (A.31)

Therefore, the body under study can be regarded as undergoing, from B0 to B, a screw

motion, as if the body were rigidly attached to the bolt of a screw of axisM and pitch p

given by

p =
d∗

φ
=

e · dP
φ

. (A.32)

We list below further results:

Lemma A.3.1 Let A and P be two points of a rigid body undergoing a general motion

from a reference pose B0 to a current pose B. Then, under the notation adopted above,

the difference p−Qp0 remains constant and is denoted by d, i.e.,

p−Qp0 = a−Qa0 = d . (A.33)
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Proof: If we recall eq.(A.28) and substitute the expression therein for p in the difference

p−Qp0, we obtain

p−Qp0 = a+Q(p0 − a0)−Qp0 = a−Qa0 = d ,

thereby completing the intended proof.

Note that the kinematic interpretation of d follows directly from eq.(A.33): d repre-

sents the displacement of the point of B that coincides with the origin in the reference

pose B0.

The geometric interpretation of the foregoing lemma is given in Fig. A.2. What this

figure indicates is that the pose B can be attained from B0 in two stages: (a) first, the

body is given a rotation Q about the origin O, that takes the body to the intermediate

pose B′; (b) then, from B′, the body is given a pure translation of displacement d that

takes the body into B.

Figure A.2: Geometric interpretation of Lemma 3.1

Therefore, eq.(A.30) for the position vector of the point of the Mozzi-Chasles axis

lying closest to the origin can be expressed in terms of vector d as

p∗ =
(1−Q)Td

2(1− cos φ)
, for φ 6= 0 . (A.34)

Note that, in general, d is not of minimum norm. Additionally, d is origin-dependent,

and hence, is not an invariant of the motion under study. Now, if we choose the origin on

the Mozzi-Chasles axisM, then we have the layout of Fig. A.3, and vector d becomes a

multiple of e, namely, d = d∗e.
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Figure A.3: Rigid-body displacement with origin on the Mozzi-Chasles axis

We can now express the Plücker coordinates of a line L of a rigid body B in terms

of those of the line in its reference configuration L0 (Bottema and Roth, 1978; Pradeep,

Yoder, and Mukundan, 1989), as shown in Fig. A.3.1. To this end, we let f be the unit

vector parallel to L and P be a point of L, and arrange the Plücker coordinates of L0 and

L in the 6-dimensional arrays λ0 and λ, respectively, defined as

λ0 ≡
[

f0

p0 × f0

]

, λ ≡
[

f

p× f

]

. (A.35)

Figure A.4: The reference and the current configurations of a body and one of its lines

We thus have

f = Qf0, p = Qp0 + d ,

and hence,

p× f = (Qp0 + d)×Qf0 = (Qp0)×Qf + d×Qf0 .

Now, the first term of the rightmost-hand side of the above equation can be simplified

upon noticing that the cross product of two rotated vectors is identical to the rotated

214



cross product. Furthermore, the second term of the same side can be expressed in terms

of D, the cross-product matrix of d, thereby obtaining

p× f = Q(p0 × f0) +DQf0 .

Upon substituting the foregoing expressions for f and p× f into eq.(A.35), we obtain

λ =

[
Qf0

DQf0 +Q(p0 × f0)

]

,

which can be readily cast in the form of a linear transformation of λ0, i.e.,

[
f

p× f

]

=

[
Q O

DQ Q

] [
f0

p0 × f0

]

, (A.36a)

where O denotes the 3× 3 zero matrix.

As the reader can readily verify, the inverse relation of eq.(A.36a) takes the form

[
f0

p0 × f0

]

=

[
QT O

−QTD QT

] [
f

p× f

]

. (A.36b)

By inspection of eq.(A.36a), and recalling the dual-unit-vector representation of a line,

as given in eq.(A.10), we can realize that the dual unit vector of L can be expressed as the

image of the dual unit vector of L0 upon a linear transformation given by a dual matrix

Q̂. Moreover, the dual matrix of interest can be readily derived from the real matrix

of eq.(A.36a). Indeed, it can be realized from Section 2 that the difference between the

primal and the dual parts of a dual quantity is that the units of the dual part are those of

the primal part times units of length. Hence, the primal part of the dual matrix sought

is bound to be Q, which is dimensionless, the corresponding dual part being DQ, which

has units of length. A plausible form of the matrix sought is, then,

Q̂ = Q+ ǫDQ . (A.37)

The correctness of the above expression can be readily realized. Indeed, let f̂∗ = f+ǫp× f

and f̂0∗ = f0 + ǫp0 × f0 be the dual unit vectors of L and L0, respectively. Then upon

performing the product Q̂f̂0∗, we note that the product is rightfully f̂∗, i.e., f̂∗ = Q̂f̂0∗. In

the derivations below, we will need expressions for the vector and scalar linear invariants

of the product of two matrices, one of which is skew-symmetric. These expressions are

derived in detail in (Angeles, 1997). For quick reference, we recall these relations below:
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Theorem A.3.2 Let both A and S be 3 × 3 matrices, the former arbitrary, the latter

skew-symmetric. Then,

vect(SA ) =
1

2
[tr(A)1−A]s , (A.38)

where s ≡ vect(S ).

Now, as a direct consequence of the above result, we have

Corollary A.3.1 If A in Theorem A.3.2 is skew-symmetric, then the axial vector of the

product SA reduces to

vect(SA ) = −1
2
As = −1

2
a× s , (A.39)

where a ≡ vect(A).

Moreover,

Theorem A.3.3 Let A, S, and s be defined as in Theorem A.3.2. Then,

tr(SA ) = −2s · [vect(A )] . (A.40)

Furthermore, we prove now that Q̂ is proper orthogonal. Indeed, orthogonality can

be proven by performing the product Q̂Q̂T and noticing that this product yields the 3×3

identity matrix, i.e., Q̂Q̂T = 1. Proper orthogonality is proven, in turn, upon application

of formula (A.15) to matrix Q̂, as given by eq.(A.37), namely,

det(Q̂) = det(Q)[1 + ǫ tr(DQQ−1)] = det(Q)[1 + ǫ tr(D)] = 1 ,

thus completing the proof.

The exponential form of the dual rotation matrix can be obtained if we note that the

exponential of a pure dual number x̂ = ǫx0 reduces to

eǫx0 = 1 + ǫx0 . (A.41)

On the other hand, we can write

Q̂ = (1+ ǫD)Q . (A.42)
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In analogy with eq.(A.41), the foregoing expression takes the form

Q̂ = eǫDQ .

Furthermore, if we recall the exponential form of Q, as given in eq.(A.22), the foregoing

expression simplifies to

Q̂ = eǫDeφE . (A.43)

However, since D and E are unrelated, they do not share the same set of eigenvectors,

and hence, they do not commute under multiplication, the foregoing expression thus not

being further reducible to one single exponential. Nevertheless, if the origin is placed on

the Mozzi-Chasles axis, as depicted in Fig. A.3, then the dual rotation matrix becomes

Q̂ = Q+ ǫ d∗EQ , (A.44)

where d∗E is, apparently, the cross-product matrix of vector d∗e. Furthermore, the expo-

nential form of the dual rotation matrix, eq.(A.43), then simplifies to Q̂ = e(φ+ǫ d
∗)E or, if

we let φ̂ = φ+ ǫ d∗, then we can write Q̂ = eφ̂E.

A.3.2 Velocity Analysis

Upon differentiation with respect to time of both sides of eq.(A.27), we obtain

ṗ− ȧ = Q̇(p0 − a0) ,

and, if we solve for (p0 − a0) from the equation mentioned above, we obtain

ṗ− ȧ = Q̇QT (p− a) , (A.45)

where Q̇QT is defined as the angular-velocity matrix of the motion under study, and is

represented as Ω, namely,

Ω ≡ Q̇QT . (A.46a)

It can be readily proven that the foregoing matrix is skew-symmetric, i.e.,

ΩT = −Ω . (A.46b)

Moreover, the axial vector of Ω is the angular-velocity vector ω:

ω = vect(Ω) . (A.46c)
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We can now write eq.(A.45) in the form

ṗ = ȧ+Ω(p− a) = ȧ+ ω × (p− a) , (A.47)

whence,

ṗ− ω × p = ȧ− ω × a ≡ v0 = const . (A.48)

Therefore, the difference ṗ − ω × p is the same for all points of a rigid body. The

kinematic interpretation of this quantity is straightforward: If we rewrite v0 in the form

v0 = ṗ+ ω × (−p), then we can readily realize that, −p being the vector directed from

point P of the rigid body to the origin O, v0 represents the velocity of the point of the

body that coincides instantaneously with the origin. Furthermore, we express d, as given

by eq.(A.33), in terms of the position vector of an arbitrary point P , p, thus obtaining

d = p−Qp0 . (A.49)

Upon differentiation of the two sides of the above expression with respect to time, we

obtain

ḋ = ṗ− Q̇p0 ,

which can be readily expressed in terms of the current value of the position vector of P ,

by solving for p0 from eq.(A.49), namely,

ḋ = ṗ−Ω(p− d) or ḋ− ω × d = ṗ− ω × p , (A.50)

and hence, the difference ḋ− ω × d is identical to the difference ṗ− ω × p, i.e.,

ḋ− ω × d = v0 . (A.51)

Furthermore, upon dot-multiplying the two sides of eq.(A.48) by ω, we obtain an

interesting result, namely,

ω · ṗ = ω · ȧ , (A.52)

and hence,

Theorem A.3.4 The velocities of all points of a rigid body have the same projection onto

the angular-velocity vector of the motion under study.

Similar to the Mozzi-Chasles Theorem, we have now
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Theorem A.3.5 Given a rigid body B under general motion, a set of its points, on a line

L, undergoes the identical minimum-magnitude velocity v∗ parallel to the angular velocity

ω.

The Plücker coordinates of line L, grouped in the 6-dimensional array λ, are given as

λ ≡
[

f

π × f

]

, f ≡ ω

‖ω‖ , π ≡ ω × v0

‖ω‖2 , (A.53)

where v0 was previously introduced as the velocity of the point of B that coincides in-

stantaneously with the origin. Line L is termed the instant screw axis–ISA, for brevity.

Thus, the instantaneous motion of B is defined by a screw of axis L and pitch p′, given

by

p′ =
ṗ · ω
‖ω‖2 , (A.54)

where ṗ is the velocity of an arbitrary point P of B, the product ṗ ·ω being constant by

virtue of Theorem A.3.4. A proof of the foregoing results is available in (Angeles, 1997).

A.3.3 The Linear Invariants of the Dual Rotation Matrix

We start by recalling the linear invariants of the real rotation matrix (Angeles, 1997).

These are defined as

q ≡ vect(Q) = (sin φ)e, q0 ≡
tr(Q)− 1

2
= cosφ . (A.55a)

Note that the linear invariants of any 3×3 matrix can be obtained from simple differ-

ences of its off-diagonal entries and sums of its diagonal entries. Once the foregoing linear

invariants are calculated, the natural invariants can be obtained uniquely as indicated

below: First, note that the sign of e can be changed without affecting q if the sign of φ

is changed accordingly, which means that the sign of φ–or that of e, for that matter–is

undefined. In order to define this sign uniquely, we will adopt a positive sign for sin φ,

which means that φ is assumed, henceforth, to lie in the interval 0 ≤ φ ≤ π.

We can thus obtain the inverse relations of eq.(A.55a) in the form

e =
q

‖q‖ , φ = arctan

(‖q‖
q0

)

, q 6= 0 , (A.55b)

the case q = 0 being handled separately. Indeed, q vanishes under two cases: (a) φ = 0,

in which case the body undergoes a pure translation and the axis of rotation is obviously
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undefined; and (b) φ = π, in which case Q is symmetric and takes the form

For φ = π : Q = −1 + 2eeT , (A.55c)

whence the natural invariants become apparent and can be readily extracted from Q.

Similar to the linear invariants of the real rotation matrix, in the dual case we have

q̂ ≡ vect(Q̂), q̂0 ≡
tr(Q̂)− 1

2
. (A.56)

Expressions for the foregoing quantities in terms of the motion parameters are derived

below; in the sequel, we also derive expressions for the dual natural invariants in terms

of the same parameters. We start by expanding the vector linear invariant:

vect(Q̂) = vect(Q + ǫDQ) = vect(Q) + ǫ vect(DQ) . (A.57a)

But, by virtue of eq.(A.20),

vect(Q) = (sin φ)e . (A.57b)

Furthermore, the second term of the rightmost-hand side of eq.(A.57a) can be readily

calculated if we recall Theorem A.3.2, with d ≡ vect(D):

vect(DQ) =
1

2
[tr(Q)1−Q]d . (A.57c)

Now, if we recall expression (A.20), we obtain

tr(Q)1−Q = (1 + cosφ)1− sinφE− (1− cosφ)eeT .

Upon substitution of the foregoing expression into eq.(A.57c), the desired expression for

vect(DQ) is readily derived, namely,

vect(DQ) =
1

2
[(1 + cosφ)d− sinφe× d− (1− cos φ)(e · d)e] , (A.57d)

and hence,

q̂ = (sinφ)e+ ǫ
1

2
[(cosφ)(e · d)e + (1 + cos φ)d+ (sinφ)d× e − (e · d)e]. (A.57e)

On the other hand, the position vector p∗ of the Mozzi-Chasles axis, given by eq.(A.34),

can be expressed as

p∗ =
1

2

sinφ

1− cosφ
e× d+

1

2
d− 1

2
(e · d)e , (A.58a)
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and hence,

p∗ × e =
1

2

sin φ

1− cosφ
d− 1

2

sin φ

1− cos φ
(e · d)e + 1

2
d× e . (A.58b)

Moreover, let us recall the identity

1 + cosφ

sinφ
=

sinφ

1− cosφ
, (A.58c)

which allows us to rewrite eq.(A.58b) in the form

p∗ × e =
1

2

1 + cosφ

sin φ
d− 1

2

1 + cosφ

sinφ
(e · d)e+ 1

2
d× e , (A.58d)

whence,

(sin φ)p∗ × e =
1

2
[(1 + cosφ)d− (1 + cosφ)(e · d)e+ (sinφ)d× e] ,

and q̂ takes the form

q̂ = (sinφ)e+ ǫ [(cosφ)(e · d)e + (sinφ)p∗ × e] . (A.59)

If we now recall eqs.(A.31) and (A.32), d · e ≡ d∗ = pφ, while p∗ × e is the moment

of the associated Mozzi-Chasles axis, e0, and hence, eq.(A.59) becomes

q̂ = (sinφ)e+ ǫ [(cos φ)pφe+ (sin φ)e0] , (A.60)

and hence, q̂ can be further simplified to

q̂ = ê∗ sin φ̂, φ̂ ≡ φ1 + ǫ p) , (A.61)

where ê∗ is the dual unit vector representing the Mozzi-Chasles axis, i.e., ê∗ = e + ǫ e0.

Now, such as in the real case, we can calculate the dual natural invariants of the motion

under study in terms of the foregoing dual linear invariants. We do this by mimicking

eqs.(A.55b), namely,

ê∗ =
q̂

‖q̂‖ , φ̂ = arctan

(‖q̂‖
q̂0

)

, ‖q̂‖ 6= 0 , (A.62)

where ‖q̂‖ is calculated from eq.(A.9e), which gives ‖q̂‖2, the square root of the latter

then following from eq.(A.7), thus obtaining

‖q̂‖ = sin φ̂ = sinφ+ ǫ (e · d) cosφ , (A.63)
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and hence, upon simplification,

ê∗ = e+ ǫp∗ × e = e+ ǫ e0 , (A.64)

which is rightfully the dual unit vector of the Mozzi-Chasles axis. Furthermore,

tr(Q̂) = tr(Q) + ǫ tr(DQ) , (A.65a)

where, from Theorem A.3.3, tr(DQ) turns out to be

tr(DQ) = −2[vect(Q)] · d = −2 sinφ(e · d) , (A.65b)

whence,

tr(Q̂) = 1 + 2 cosφ− ǫ 2(sinφ)e · d , (A.65c)

and so, from the second of eqs.(A.56),

q̂0 ≡ cos φ̂ = cosφ− ǫ (sin φ)(e · d) ,

which, by virtue of eqs.(A.31), leads to

q̂0 = cosφ− ǫ (sin φ)d∗, φ̂ = φ+ ǫ d∗ = φ(1 + ǫ p) . (A.65d)

In summary, the dual angle of the dual rotation under study comprises the angle

of rotation of Q in its primal part and the axial component of the displacement of all

points of the moving body onto the Mozzi-Chasles axis. Upon comparison of the dual

angle between two lines, as given in eq.(A.5), with the dual angle of rotation φ̂, it is then

apparent that the primal part of the latter plays the role of the angle between two lines,

while the corresponding dual part plays the role of the distance s between those lines. It

is noteworthy that a pure rotation has a dual angle of rotation that is real, while a pure

translation has an angle of rotation that is a pure dual number.

Example 1: Determination of the screw parameters of a rigid-body motion.

We take here an example of (Angeles, 1997): The cube of Fig. A.5 is displaced from

configuration A0B0 . . .H0 into configuration AB . . .H . Find the Plücker coordinates of

the Mozzi-Chasles axis of the motion undergone by the cube.
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Figure A.5: Motion of a cube

Solution: We start by constructing Q̂: Q̂ ≡ [ î∗ ĵ∗ k̂∗ ], where î∗, ĵ∗, and k̂∗ are the dual

unit vectors of lines AB, AD, and AE, respectively. These lines are, in turn, the images

of lines A0B0, A0D0, and A0E0 under the rigid-body motion at hand. The dual unit

vectors of the latter are denoted by î0∗, ĵ0∗, and k̂0∗, respectively, and are parallel to the

X , Y , and Z axes of the figure. We thus have

î∗ = −j0 + ǫ a× (−j0), ĵ∗ = k0 + ǫ a× k0, k̂∗ = −i0 + ǫ a× (−i0) ,

where a is the position vector of A, and is given by

a = [ 2 1 −1 ]T a .

Hence,

î∗ =−j0 + ǫ a(−i0 − 2k0)

ĵ∗ = k0 + ǫ a(i0 − 2j0)

k̂∗ =−i0 + ǫ a(j0 + k0)
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Therefore,

Q̂ =





− ǫ a + ǫ a −1
−1 − ǫ 2a + ǫ a

− ǫ 2a 1 + ǫ a



 ,

whence,

vect(Q̂) =
1

2





1− ǫ a
−1 + ǫ 2a

−1− ǫ a



 , tr(Q̂) = − ǫ (2a) ,

and

‖vect(Q̂)‖2 = ‖1
2





1

−1
−1



 ‖2 + ǫ 2
1

2
[ 1 −1 −1 ]





−1
2

−1




a

2
=

3

4
− ǫ a .

Thus,

‖vect(Q̂)‖ =
√
3

2
+ ǫ
−a√
3
=

√
3

2
− ǫ
√
3

3
a .

Therefore, the unit dual vector representing the Mozzi-Chasles axis of the motion at hand,

ê∗, is given by ê∗ = vect(Q̂)/‖vect(Q̂)‖, i.e.,

ê∗ =
1√
3/2

1

2





1

−1
−1



− ǫ a

3/4




1

2





1

−1
−1




−
√
3

3
− 1

2





−1
2

−1





√
3

2



 .

After various stages of simplification, the foregoing expression reduces to

ê∗ =

√
3

3





1

−1
−1



+ ǫ

√
3

9





−1
4

−5



 a .

Thus, the Mozzi-Chasles axis is parallel to the unit vector e, which is given by the primal

part of ê, while the dual part of the same dual unit vector represents the moment of

the Mozzi-Chasles axis, from which the position vector p∗ of P ∗, the point of the Mozzi-

Chasles axis closest to the origin, is readily found as

p∗ = e× e0 =
a

3
[ 3 2 1 ]T .

A.3.4 The Dual Euler-Rodrigues Parameters of a Rigid-Body

Motion

We first recall the definition of the Euler-Rodrigues parameters of a pure rotation, which

are isomorphic to the quaternion of the rotation (Hamilton, 1844). These are most nat-

urally introduced as the linear invariants of the square root of the rotation at hand, and
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represented, paralleling the definition of the linear invariants, as

r ≡ vect(
√

Q), r0 ≡
tr(
√
Q)− 1

2
, (A.66)

the proper orthogonal square root of Q being given as (Angeles, 1997):

√

Q = 1+ sin

(
φ

2

)

E+

[

1− cos

(
φ

2

)]

)E2 . (A.67)

The dual Euler-Rodrigues parameters of a rigid-body motion are thus defined as

r̂ ≡ vect(

√

Q̂), r̂0 ≡
tr(

√

Q̂)− 1

2
. (A.68)

Below we derive an expression for

√

Q̂. Prior to this, we introduce a relation that will

prove useful:

Lemma A.3.2 Let a and b be arbitrary 3-dimensional vectors, and c ≡ a × b. The

cross-product matrix C of c is given by

C = baT − abT . (A.69)

Proof: This follows by noticing that, for any 3-dimensional vector u,

c× u = (a× b)× u = b(aTu)− a(bTu) ,

which readily leads to

Cu = (baT − abT )u ,

thereby completing the proof.

Now we proceed to determine

√

Q̂. To this end, we regard the motion at hand, from

a reference configuration B0 to a current configuration B, as consisting of a rotation Q

about the origin O followed by a translation d. Then, this motion is decomposed into two

parts, as shown in Fig. A.3.4: First, the body is rotated about the origin O by a rotation
√
Q and a translation ds; then, from the configuration B′ thus attained, the body is given

a new rotation
√
Q about O as well, followed by the same translation ds.

It is apparent that, from the general expression for the dual rotation matrix, eq.(A.42),

225



√

Q̂ can be represented as
√

Q̂ = (1+ ǫDs)
√

Q , (A.70)

the calculation of

√

Q̂ thus reducing to that of the skew-symmetric matrix Ds, which is

the cross-product matrix of ds. This matrix is calculated below in terms of
√
Q and D.

We thus have

p2 =
√

Qp0 + ds , (A.71)

p4 =
√

Qp2 + ds = Qp0 + (1+
√

Q)ds . (A.72)

Figure A.6: Decomposition of the motion of a rigid body

But p4 is the position vector of point P in B, which can be attained by a rotation Q

about O followed by a translation d, i.e.,

p4 = Qp0 + d . (A.73)

Upon comparing the right-hand sides of eqs.(A.72) and (A.73), we obtain

(1 +
√

Q)ds = d ,

whence,

ds = (1+
√

Q)−1d . (A.74)

An expression for the above inverse can be derived if we realize that this inverse is an

analytic function of
√
Q, which is, in turn, an analytic function ofQ. We can thus conclude

that by virtue of the Cayley-Hamilton Theorem, invoked when deriving the exponential
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form of the rotation matrix in eq.(A.22), the inverse sought must be a linear combination

of the first three powers of E: e0 ≡ 1, E, and E2, namely,

(1+
√

Q)−1 = α1+ βE+ γE2 , (A.75)

where α, β, and γ are to be determined. To this end, we write

(1+
√

Q)−1(α1+ βE+ γE2) = 1 .

If we now substitute in the above equation the expression for
√
Q displayed in eq.(A.67),

we obtain three equations for the three unknowns α, β, and γ, from which it is a simple

matter to solve for these unknowns, namely,

α =
1

2
, β = − sin(φ/2)

2[1 + cos(φ/2)]
, γ = 0 , (A.76)

the inverse sought thus taking the form

(1+
√

Q)−1 =
1

2

[

1− sin(φ/2)

1 + cos(φ/2)
E

]

. (A.77)

Therefore, eq.(A.74) yields

ds = (1+
√

Q)−1d =
1

2

[

1− sin(φ/2)

1 + cos(φ/2)
E

]

d ,

i.e.,

ds =
1

2

[

d− sin(φ/2)

1 + cos(φ/2)
e× d

]

. (A.78)

Thus, Ds is the cross-product matrix of the sum of two vectors, and hence, Ds reduces

to the sum of the corresponding corss-product matrices. The cross-product matrix of the

first term of the right-hand side of the foregoing equation is apparently proportional to

D, that of the second term being proportional to the cross-product matrix of e× d. The

latter can be readily obtained by application of Lemma A.3.2, which leads to

Ds =
1

2

[

D− sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]

. (A.79)

Hence,
√

Q̂ = 1+ ǫ
1

2

[

D− sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]
√

Q . (A.80)

Now, the linear invariants of

√

Q̂ are

vect(

√

Q̂) = vect(
√

Q) + ǫ vect(Ds

√

Q) (A.81a)
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and

tr(

√

Q̂) = tr(
√

Q) + ǫ tr(Ds

√

Q) . (A.81b)

An expression for vect(
√
Q), appearing in the first term of vect(

√

Q̂), can be obtained

from eq.(A.67), namely,

vect(
√

Q) = sin

(
φ

2

)

vect(E) = sin

(
φ

2

)

e , (A.82)

while an expression for the second term of the right-hand side of eq.(A.81b) is obtained

by application of Theorem A.3.2:

vect(Ds

√

Q) =
1

2
[tr(
√

Q)1−
√

Q]ds ,

which can be further expanded without intermediate lengthy derivations if we realize

that the above expression is the counterpart of that appearing in eq.(A.57c); the latter

is expanded in eq.(A.57d). Thus, all we need now is mimic eq.(A.57d), if with φ and d

substituted by their counterparts φ/2 and ds, respectively, i.e.,

vect(Ds

√

Q) =
1

2

{[

1 + cos

(
φ

2

)]

ds − sin

(
φ

2

)

e× ds

−
[

1− cos

(
φ

2

)]

(e · d)e
}

. (A.83)

If we now simplify the above expression for vect(Ds

√
Q), and substitute the simplified

expression into eq.(A.81a), along with eq.(A.82), we obtain the desired expression for r̂.

Note that the latter is defined in eq.(A.68), and hence,

r̂ = sin

(
φ

2

)

e+ ǫ

[

cos

(
φ

2

)

ps
φ

2
e+ sin

(
φ

2

)

e0

]

, (A.84)

where ps is the pitch associated with the motion represented by

√

Q̂, namely,

ps ≡ ds · e =
1

2
d , (A.85)

where we have recalled the expression for ds displayed in eq.(A.78). Similar to eq.(A.61),

then, the dual vector of the Euler-Rodrigues parameters is given by

r̂ = ê∗ sin

(

φ̂

2

)

, φ̂ ≡ φ+ ǫ d∗s, d∗s ≡ ds · e . (A.86)
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The scalar of the Euler-Rodrigues parameters under study, r̂0, is now found in terms

of the trace of

√

Q̂, which is displayed in eq.(A.81b). In that equation,

tr(
√

Q) = 1 + 2 cos

(
φ

2

)

,

the dual part of the right-hand side of eq.(A.81b) being calculated by application of

Theorem A.3.3:

tr(Ds

√

Q) = −2ds · vect(
√

Q) = −2ds · e sin
(
φ

2

)

or, in terms of the corresponding pitch ps,

tr(Ds

√

Q) = −2ps sin
(
φ

2

)

.

Therefore,

tr(

√

Q̂) = 1 + 2 cos

(
φ

2

)

− ǫ 2ps sin
(
φ

2

)

,

and hence,

r̂0 = cos

(
φ

2

)

− ǫ ps sin
(
φ

2

)

, (A.87)

which is the counterpart of the second of eqs.(A.55a). The set (r̂, r̂0) constitutes the dual

quaternion of the motion under study (McCarthy, 1990).

A.4 The Dual Angular Velocity

Similar to the angular-velocity matrix Ω introduced in eq.(A.46a), the dual angular ve-

locity matrix Ω̂ is defined as

Ω̂ ≡ ˙̂
QQ̂T . (A.88)

Now we differentiate with respect to time the expression for Q̂ introduced in eq.(A.42),

which yields

˙̂
Q = (1+ ǫD)Q̇+ ǫḊQ .

Upon substitution of the above expression for
˙̂
Q and of the expression for Q̂ of eq.(A.42)

into eq.(A.88), we obtain

Ω̂ = Ω+ ǫ (DΩ−ΩD+ Ḋ) . (A.89)
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The dual angular-velocity vector ω̂ of the motion under study is then obtained as the

axial vector of the foregoing expression, namely,

ω̂ = vect(Ω̂) = ω + ǫ [vect(DΩ−ΩD) + ḋ] , (A.90)

with ḋ being the time-derivative of vector d, introduced in eq.(A.33). Thus, in order to

determine ω̂, all we need is the axial vector of the difference DΩ− ΩD. An expression

for this difference can be obtained in various manners, one of which is outlined below:

First, note that this difference is skew-symmetric, and hence,

vect(DΩ−ΩD) = 2 vect(DΩ) .

Further, the vector of DΩ is computed by means of Corollary A.3.1, eq.(A.39), upon

substituting A by Ω in that expression. Thus,

vect(DΩ) = −1
2
ω × d . (A.91)

Therefore,

ω̂ = ω + ǫ (ḋ− ω × d) , (A.92)

and, if we recall eq.(A.51), the foregoing expression takes the alternative form

ω̂ = ω + ǫv0 . (A.93)

In consequence, the dual angular velocity is the dual representation of the twist t of

B, defined as the 6-dimensional array

t ≡
[
ω

v0

]

. (A.94)

We can therefore find the angular velocity vector and the moment of the ISA about

the given origin–i.e., the instant screw parameters of the motion at hand–if we are given

enough information as to allow us to compute ω̂. The information required to determine

the screw parameters of the motion under study can be given as the position and velocity

vectors of three noncollinear points of a rigid body (Angeles, 1997). However, note that

the dual rotation matrix was obtained in Example 1 in terms of the dual unit vectors

representing three mutually orthogonal lines. Notice that, by virtue of Lemma A.2.1, the

three lines of Example 1 were chosen concurrent and mutually orthogonal.
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Now, in order to find the instant-screw parameters of interest, we need the time-

derivatives of the dual unit vectors representing three concurrent, mutually orthogonal

lines, but all we have at our disposal is the position and velocity vectors of three non-

collinear points. Nevertheless, once we know three noncollinear points of a rigid body, say

A, B, and C, along with their velocities, it is possible to find the position and velocity

vectors of three pairs of points defining a triad of concurrent, mutually orthogonal lines,

an issue that falls beyond the scope of this chapter. Rather than discussing the problem

at hand in its fullest generality, we limit ourselves to the special case in which the position

vector p of a point P of the rigid body under study can be determined so that the three

lines PA, PB, and PC are mutually orthogonal. Further, we let the position vectors of

the three given points be a, b, and c. Thus, point P of the body in this case forms a

rectangular trihedron with vertex at P and edges PA, PB, and PC. We can thus express

p as a nonlinear function of the three position vectors a, b, and c:

p = p(a, b, c) . (A.95)

Moreover, the velocity of point P , ṗ, can be calculated now as a linear combination of

the velocities of the three given points, by straightforward differentiation of the foregoing

expression, namely,

ṗ = Paȧ+Pbḃ+Pcċ , (A.96)

where Pa, Pb, and Pc denote the partial derivatives of p with respect to a, b, and c,

respectively. Once the position and the velocity vectors of point P are known, it is

possible to determine the time-rates of change of the dual unit vectors representing the

three lines PA, PB and PC, as described below.

Let ê∗ denote the dual unit vector representing the line determined by points A and

P , its primary and dual parts, e and e0, being given by

e =
a− p

‖a− p‖ , e0 = p× a− p

‖a− p‖ . (A.97)

Straightforward differentiation of the foregoing expressions with respect to time leads

to

ė =
1

‖a− p‖

(

ȧ− ṗ− e
d

dt
‖a− p‖

)

,

ė0 = ṗ× a− p

‖a− p‖ + p× 1

‖a− p‖

(

ȧ− ṗ− e
d

dt
‖a− p‖

)

.
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Figure A.7: A rigid triangular plate undergoing a motion given by the velocity of its

vertices

Upon simplification, we obtain the desired expression for ˙̂e
∗
, namely,

˙̂e
∗
=

1

‖a− p‖ [ȧ− ṗ+ ǫ (pȧ+ ṗ× a)] . (A.98)

Therefore, knowing the velocity of two points of a line, we can determine the time-

rate of change of the dual unit vector representing the line. The foregoing idea is best

illustrated with the aid of the example included below.

Example 2: Determination of the ISA of a rigid-body motion.

For comparison purposes, we take an example from (Angeles, 1997): The three vertices

of the equilateral triangular plate of Fig. A.4, which lie in the X-Y plane, {Pi }31, have
the position vectors {pi }31. Moreover, the origin of the coordinate frame X, Y, Z lies at

the centroid C of the triangle, and the velocities of the foregoing points, { ṗi }31, are given
in this coordinate frame as

ṗ1 =
4−
√
2

4





0

0

1



 , ṗ2 =
4−
√
3

4





0

0

1



 , ṗ3 =
4 +
√
2

4





0

0

1



 .

With the above information, compute the instant-screw parameters of the motion under

study.
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Solution: Since the centroid C of the triangle coincides with that of the three given

points, we have c = 0, where c is the position vector of C. Moreover,

p1 =





1/2

−
√
3/6

0



 , p2 =





0√
3/3

0



 , p3 =





−1/2
−
√
3/6

0



 .

First and foremost, we have to verify the compatibility of the data. To do this, we

calculate the component of the relative velocities of two given points onto the line that

they define. It can be readily shown that the data are compatible, and hence, the motion

is possible. Next, we obtain the position vector of the point P that, along with {Pi}31,
forms an orthogonal trihedron. It is not difficult to realize that the position vector of

point P can be expressed as2

p = c+

√
2

3
(p2 − p1)× (p3 − p1) ,

and hence,

ṗ = ċ+

√
2

3
[(p3 − p2)× ṗ1 + (p1 − p3)× ṗ2 + (p2 − p1)× ṗ3] ,

with the numerical values of p and ṗ given below:

p =

√
6

6





0

0

1



 , ṗ =
1

12





2
√
3√
6

12−
√
3



 .

Now, let ê∗i denote the dual unit vector representing the line that passes through P and

Pi, i.e.,

ê∗i =
1

‖pi − p‖ [pi − p+ ǫp× pi] ,

where

‖pi − p‖ =
√
2

2
, i = 1, 2, 3 .

Next, the three foregoing dual unit vectors are stored columnwise in the dual rotation

matrix Q̂, i.e.,

Q̂ = [ ê∗1 ê∗2 ê∗3 ] .

Upon substitution of the numerical values of these vectors into the above expression, we

obtain

Q̂ =

√
12

12





6 + ǫ 2 − ǫ 2
√
2 −6 + ǫ

√
2

−2
√
3 + ǫ

√
6 4

√
3 −2

√
3− ǫ

√
6

−2
√
6 −2

√
6 −2

√
6



 .

2Although c = 0 in this case, ċ 6= 0, and hence, c must be written explicitly in the expression for p.
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Likewise, the time derivative of Q̂ is computed as

˙̂
Q =

√
2

24









−4
√
3 −4

√
3 −4

√
3

−2
√
6 −2

√
6 −2

√
6

−6
√
2 + 2

√
3 −4

√
3 6
√
2 + 2

√
3





+ ǫ





−1 + 4
√
3 2− 8

√
3 −1 + 4

√
3

12−
√
3 0 −12 +

√
3

−(2 +
√
6) 4 −2 +

√
6







 .

Therefore,

Ω̂ =
˙̂
QQ̂T =

1

12





0 − ǫ (12−
√
3) 6

√
2

+ ǫ (12−
√
3) 0 6

−6
√
2 −6 0



 ,

which, as expected, is a dual skew-symmetric matrix. Hence,

ω̂ = vect(Ω̂) =
1

2





−1√
2

0



+ ǫ
12−

√
3

12





0

0

1



 ,

from which we can readily identify

ω =
1

2





−1√
2

0



 , v0 =
12−

√
3

12





0

0

1



 .

Furthermore, the position vector π∗ of the point P ∗ of the ISA lying closest to the origin

can be obtained from v0. Indeed, let v∗ be the velocity of P ∗, which thus allows us to

write

v0 = v∗ + ω × (−p∗) = v∗ + p∗ × ω .

Upon cross-multiplying the two sides of the foregoing expression by ω, we obtain

v0 × ω = v∗ × ω + (p∗ × ω)× ω ,

whose first term of the right-hand side vanishes because v∗ and ω are parallel. Therefore,

v0 × ω = (p∗ × ω)× ω = (p∗ · ω)ω − ‖ω‖2p∗ .

The first term of the rightmost-hand side of the foregoing equation vanishes because p∗

being the position vector of the point of the ISA that lies closest to the origin, and the

ISA being parallel to ω, these two vectors are orthogonal. We can thus solve for p∗ from

the above expression, which yields

p∗ = −v
0 × ω
‖ω‖2 .
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The quantities involved in the foregoing expression are now evaluated:

−v0 × ω = ω × v0 =
12−

√
3

24





√
2

1

0



 , ‖ω‖2 = 3

4
.

Finally, p∗ = {[(12 −
√
3)]/18}[

√
2 1 0]T , which coincides with the results reported in

(Angeles, 1997), obtained by another method.

A.5 Conclusions

We revisited dual algebra in the context of kinematic analysis, which led us to a straight-

forward introduction of dual quaternions. In the process, we showed that the parameters

of both the finite screw and the instant screw of a rigid-body motion can be computed

from the sum of the diagonal and the difference of the off-diagonal entries of the dual

rotation and, correspondingly, the dual angular-velocity matrices.
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(Optimization of Mechanisms), Tehnicá Publishers, Bucharest.
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Kinematics , Kluwer Academic Publishers, Dordrecht, pp. 129–138.

Shoham, M. and Brodsky, V., 1994, “The dual inertia operator and its application

to robot dynamics,” ASME J. Mechanical Design, Vol. 116, pp. 1089–1095.

Simmons, G.F., 1963, Introduction to Topology and Modern Analysis , McGraw-Hill

Book Co., New York.

Stein, J., 1979, Random House College Dictionary, Random House, New York.

Sternberg, S., 1994, Group Theory and Physics , Cambridge University Press, Cam-

bridge.

Strang, G., 1988, Linear Algebra, 3rd ed., Harcourt Brace Jovanovich College Pub-

lishers, Fort Worth.

Study, E., 1903, Geometrie der Dynamen, Leipzig.

Teng, C.P. and Angeles, J., 2001, “A sequential-quadratic-programming algorithm

using orthogonal decomposition with Gerschgorin stabilization”, ASME J. of Me-

chanical Design, Vol. 123, pp. 501–509.

The Concise Oxford Dictionary of Current English, 1995, Clarendon Press, Oxford.

243



Tinubu, S.O. and Gupta, K.C., 1984, “Optimal synthesis of function generators

without the branch defect,” ASME, J. Mech., Trs., and Auto. in Design,, Vol. 106,

pp. 348–354.

Uspensky, J., 1948, Theory of Equations, McGraw-Hill Book Company, Inc., New

York.

Vitruvius, P.M., 28 BCE, De Architectura, Vol. X.

Waldron, K.J. and Kinzel,G .L., 1999, Kinematics, Dynamics, and Design of Ma-

chinery , John Wiley & Sons, Inc., New York.

Webster’s Collegiate Dictionary, 2003, (on-line).

Wohlhart, K., 1991, “Der homogene Paralleltrieb-Mechanismus,” Mathematica Pan-

nonica, Vol. 2, No. 2, pp. 59–76.

Wohlhart, K., 1992, “Displacement analysis of the general spatial parallelogram

manipulator,” Proc. 3rd International Workshop on Advances in Robot Kinematics,

Ferrara, Italy, pp. 104–111.

Wright, D., Desai S., and Henderson, W., 1964, “Action of the subtalar and ankle-

joint complex during the stance phase of walking,” The J. Bone and Joint Surgery ,

Vol. 46-A, No. 2, pp. 361–382.

Yang, A.T., 1963. Application of Quaternion Algebra and Dual Numbers to the

Analysis of Spatial Mechanisms , Doctoral Dissertation, Columbia University, New

York, No. 64-2803 (University Microfilm, Ann Arbor, Michigan).

Yang, A.T. and Freudenstein, F., 1964, “Application of dual-number quaternion

algebra to the analysis of spatial mechanisms,” J. of Applied Mechanics , Vol. 31,

pp. 300–308.

Koetsier, T., 2010, Ludwig Burmester (1840–1927), in Ceccarelli, M. (editor), Dis-

tinguished Figures in Mechanism and Machine Science. Their Contributions and

Legacies, Part 2, Springer.

244



Bottema, O. and Roth, B., 1978. Theoretical Kinematics , North-Holland Publishers

Co., North-Holland Publishing Company, Amsterdam.
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Index

Π-joint, 53

algebraic equation

degree, 14

approximate synthesis

for function generation, 121

assemblability, 75

augmented synthesis equations, 126

bimodal linkage, 104

bivariate equations, 14

branch switching, 143

chain

exceptional, 71

chain rule, 24

Chebyshev-Grübler-Kutzbach-Hervé Formu-

la, 66

chirality, 46

circularity, 192

contour-intersection, 88

cubic of stationary curvature, 190

damping, 36

damping factor, 36

Denavit-Hartenberg

frames, 83

notation, 83

Denavit-Hartenberg parameters, 9

design

functions, 6

specifications, 6

variants, 6

design vs. structural error, 139

determined system, 32

dimensioning, 9

displacement

groups, 45

dwell, 189

eliminant, 14

engineering design, 5

process, 6

error vector, 22

exceptional chains, 67

floating-point operation, 26

flop, see floating-point operation

four-bar linkage

planar, 80

spatial, 89

spherical, 84

fractal, 35

Freudenstein equation

for planar linkages, 82

Freudenstein parameters
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for the spherical linkage, 86

function generation

exact synthesis, 93

exact synthesis for planar four-bar link-

ages, 93

exact synthesis for spherical four-bar link-

ages, 98

generalized Chebyshev-Grübler-Kutzbach for-

mula, 68

generalized CGK formula, 68

groups of displacements, 66

Index, 247

inflection circle, 190

input-output equation

for spherical linkages, 87

input-output functions, 80

IO equation, 80

Jacobian matrix, 34

kinematic bond, 64

kinematic chain

architecture, 83

kinematic chains

multiloop, 45

kinematic synthesis, 7

kinetostatics, 15

least-square error, 24, 35

normality condition, 23

least-square solution, 36

left Moore-Penrose generalized inverse, 25

LKP, 45

lower kinematic pairs, 45

machine, 5

function, 5

mechanical system, 5

model

parametric, 7

monovariate polynomial equation, 14

motion

representation, 45

multiobjective optimization, 7

multivariate polynomial equations, 14

nonlinear system, 32

normality condition, 37

overdetermined system, 35

paradoxical chains, 67, 74

path generation, 189

with timing, 192

performance evaluation, 131

planar four-bar linkage

coupler curve, 197

feasibility condition, 95

Planar Linkages

transmission angle, quality, 131

planar linkages

Bloch synthesis, 96

planar path-generation, 190

projection

theorem, 25
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QR decomposition, 123

qualitative synthesis, 74

resolvent, 14

rigid body, 46

Roberts-Chebyshev Theorem, 201

Sarrus mechanism, 71

semigraphical method, 88

signum function, 31

spatial linkages

mobility analysis, 120

synthesis for function generation, 118

stationary point, 37

structure, 5

function, 5

Sylvester’s Theorem, 26

synthesis

approximate, 13

equations, 13

exact, 13

qualitative, 8, 45

semigraphical methods, 13

synthesized linkage

analysis, 101

mobility analysis, 114

synthesized planar linkage

analysis, 101

mobility analysis, 108

synthesized spatial linkage

analysis, 114

analysis with d1 as input, 117

synthesized spherical linkage

analysis, 112

trivial chains, 66

trivial-chains, 67

weighting matrix, 36
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