
which is identical to eq.(3.177) when the therm si+1 is dropped. Notice, however, that

this term couldn’t simply be dropped from the above-mentioned equation on the basis

that the said term vanishes, because the structural error is not expected to vanish at the

optimum solution. The computation of ∆ki from eq.(3.180) now should be pursued via

an orthogonalization procedure, as studied in Subsection 1.4.5. With ∆ki calculated, the

ith iteration is complete, as a new, improved value ki+1 of the design parameter vector

k is available. Now the new structural-error vector value si+1 can be computed, and

then the normality condition verified. If the condition is not verified, a new iteration

is in order; if the same condition is verified, then the procedure stops. An alternative

convergence criterion, equivalent to the latter, is to verify whether ‖∆ki‖ < ǫ, for a

prescribed tolerance ǫ. The equivalence of the two criteria should be apparent from the

relation between ∆ki and the product of the last three factors of the right-hand side of

eq.(3.179).

Branch-switching Detection

This Subsubsection is limited to planar linkages, its generalization to spherical and spatial

linkages should be doable, as the problem under study is based on the concept of the sign

of the transmission index. The latter was studied in Section 3.6.

In the foregoing analysis an implicit assumption was adopted: all generated values

{φi }
m

1 lie on the same linkage branch. However, all four-bar linkages studied in this

chapter, planar, spherical and spatial, were shown in Section 3.4 to be bimodal, i.e., they

all entail two solution branches of their input-output equation. This means that, within an

iteration loop, the occurrence of branch-switching should be monitored. Below we explain

a simple means of doing this, as applicable to planar linkages. The two branches of a

typical planar four-bar linkage are apparent in Fig. 3.8(a). In this figure, the transmission

angle is µ = ∠BCD in one branch, in the second being µ′ = ∠BC ′D. The qualitative

difference between the two branches lies in the sign of the sine of the transmission angle,

for, in the first branch, we have sin µ > 0; in the second, sinµ′ < 0. Moreover, sin µ

vanishes at deadpoints, when the input angle reaches either a maximum or a minimum—

linkages of this kind have an input rocker. Hence, a simple way of deciding whether all

values {φi }
m

1 lie in the same branch relies on the computation of sin µ with the correct

sign. This is most simply done by means of the 2D version of the cross product12 of

vectors
−−→
CB = b − c and

−−→
CD = d − c, in this order, where b, c and d are the position

vectors of points B, C and D, respectively, in the given coordinate frame. The product

at stake is given by

p ≡ (b− c)TE(d− c) = ‖b− c‖‖d− c‖ sinµ = a3a4 sinµ (3.181)

12See Subsection 1.4.1.
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with E introduced in eq.(1.1a). Given that the link lengths are positive, we have the

relation

sgn(sinµ) = sgn(p) (3.182)

which now can be used to monitor branch-switching.

Introducing a Massive Number of Data Points

As shown by Hayes et al. (1999), one simple way of minimizing the structural error is via

design-error minimization in the presence of a large number of prescribed poses. We show

with one example below that, as the cardinality m of the data set increases, the design

and structural errors converge. The results are taken from the foregoing reference.

In the example below, the weighted Euclidean norm of the design and the structural

error, ‖e‖2W and ‖s‖2W , respectively, are minimized. For any m-dimensional vector v,

this norm is defined as the rms value of its components, namely,

‖v‖2W ≡

√

1

m
vTv (3.183)

Example 3.7.1 We synthesize here a planar and a spherical RRRR four-bar linkage to

generate a quadratic I/O function for the values given below:

ψi = α +∆ψi, φi = β +∆φi, ∆φi =
9∆ψ2

i

8π
, i = 1, . . . , m

For each linkage the I/O dial zeros (α and β) are selected to minimize the condi-

tion number κ of S for each data-set, in following the procedure proposed by Liu and

Angeles (1993). Then both the design and structural errors are determined for the link-

ages that minimize the respective Euclidean norms for data-sets with cardinalities of

m = {10, 40, 70, and 100}. These results are listed in Tables 3.5–3.8. Finally the struc-

tural errors, corresponding to m = 40, of the linkages that minimize the Euclidean norms

of the design and structural errors are graphically displayed in Fig. 3.20.

Table 3.5: Results for m = 10.

Planar RRRR Spherical RRRR

αopt (
◦) 123.8668 43.3182

βopt (
◦) 91.7157 89.5221

κopt 33.2974 200.5262

‖e‖2W 2.2999× 10−3 2.4033× 10−4

‖s‖2W 1.8863× 10−3 1.3187× 10−4
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Table 3.6: Results for m = 40.

Planar RRRR Spherical RRRR

αopt (
◦) 117.4593 42.7696

βopt (
◦) 89.4020 88.8964

κopt 32.5549 203.0317

‖e‖2W 2.484× 10−3 2.984× 10−4

‖s‖2W 2.375× 10−3 1.671× 10−4

Table 3.7: Results for m = 70.

Planar RRRR Spherical RRRR

αopt (
◦) 116.4699 42.7014

βopt (
◦) 89.0488 88.8045

κopt 32.5242 204.7696

‖e‖2W 2.496× 10−3 3.031× 10−4

‖s‖2W 2.438× 10−3 1.701× 10−4

3.8 Synthesis Under Mobility Constraints

Read (Liu and Angeles, 1992).

3.9 Synthesis of Complex Linkages

To come.

3.9.1 Synthesis of Stephenson Linkages

To come.

Table 3.8: Results for m = 100.

Planar RRRR Spherical RRRR

αopt (
◦) 116.0679 42.6740

βopt (
◦) 88.9057 88.7674

κopt 32.5170 205.5603

‖e‖2W 2.499× 10−3 3.047× 10−4

‖s‖2W 2.464× 10−3 1.712× 10−4
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(a) (b)

Figure 3.20: Structural error comparison for: (a) planar and (b) spherical RRRR linkages

upon minimizing ‖s‖2W & ‖e‖2W .
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