
Figure 2.6: The kinematic chain of a flight-simulator limb

and

P4 for every a ∈ G, there exists an element a
−1, called the inverse of a under ⋆ such

that a ⋆ a−1 = a−1 ⋆ a = ι.

Two types of groups are found, discrete and continuous. The former have a discrete

set of elements, the later a continuum. An example of a discrete group is the symmetry

group of a regular polygon, defined as the set of rotations about the centre of the polygon

that leaves the figure unchanged. Continuous groups, or Lie groups, named after the

Norwegian mathematician Sophus Lie (1842–1899), are of interest to this section.

If the elements of a set D are the displacements undergone by a rigid body, then we

can define a binary operation ⊙—read “o-dot”—of displacements as the composition of

displacements: As the body undergoes first a displacement da and then a displacement

db, taking the body, successively, from pose B0 to pose Ba, and then to pose Bb, it is

intuitively apparent that the composition of the two displacements, da ⊙ db, is in turn a

rigid-body displacement.

More concretely, a rigid-body displacement, illustrated in Fig. 2.8, is defined by a

translation b of a landmark point, say O in the figure, and a rotation Q about the same

point. Point P in the displaced posture is assumed to be the displaced counterpart of a

point P0—not shown in the figure—of position vector π0 in the reference posture. Under

these conditions, the position vector p of P in the reference frame A can be expressed as

p = b+ π
︸︷︷︸

Qπ0

= b+Qπ0 (2.4)
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Figure 2.7: A flight simulator: (a) its photograph; and (b) & (c) two alternatives of its

graph representation (Permission to reproduce from CAE Electronics Ltd. is pending)

which gives the displaced position of P as a sum of vectors, the second being, in turn, the

product of a matrix by a vector. A terser representation can be obtained, involving only
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