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Abstract

The determination of the planar four-bar linkage intended to guide
a rigid body through five finitely-separated configurations s known
as the Burmester Problem. This is a nonlinear problem that
volves finding the roots ol a svstem of four bilinear equations
four nnknowns. When solving this problem mumericallv, for it is
evasive to ol her means. issnes snch as numerical conditioning, mnl-
tiplicity of solutions and singularities must be considered. Herve we
present a semigraphical mcthod of solution that reduces the prob-
lem to finding the intersections of two contonrs in the w-y plane of
motion. The method not only produces all real solutions, by sim-
ple ispection. but also provides information about the numerical
conditioning ol those solutions.

1 Introduction

The Burmester problem consists of designing a planar four-bar
linkage. as shown in Fig. 1. to guide a rigid-hody thirongh a series
of five prescribed finitelv-separated poses—positions and orienta-
tions,

In the Burmester probleny we want to find the circle points of
the moving body. i.e.. points Ay and A7 of Fig. 1 that move on a
circle as the body passes throngh the given poses. For each such
a circle, the correspouding center 3 or B is called a center point.
The study of the coele-points is referred to as Burmester theory.
named after the 19th centiry kinematician who first proved that
for five given positions. there are a maximum of four circle-points
(Burmester 1836). Any two of the circle-points. together with their
associated center-points (whicl define the ground pivots), vields a
four-bar linkage. It is known {Bottema and Roth 1979) that at
most four such points can be found. and hence. up to six different
linkages can be assembled.

Several techuiques have been utilized for the planar svathesis
problem. such as algebraic methods. complex numbers and matrix
methods (Angeles, 1982; Sandor and Erdman, 1984). A comnier-
cial package by the name of LINCAGES (Sandor and Erdmau.

321

1981 is available for obtaining solntions to this problem by plot
ting the circle-point or center-point curves. The method nsed b
Sandor and Frdiman consists of hreaking the five precisions point
problem into four fone-position cases for which the loct of the civele
points or the loci of the center-points are plotted. the solations to
the original five-position problenr heing obtained Trom the mier-
sections of the fonr curves. Since these civeles and center port
creves are enbic, up to nine intersections conld he fonnds of these.
onlv a maximunt of fonr <olutions are usable. the rest hemg spu-
rious. Nunerical techuigques known as conlinuation mclhods frave
heen recenthy introduced i the solution of this type of probleins
{Wampler, Morgan and Sommese. 19901
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Figure 11\ four-bar linkage

Continuation methods are very powerful and provide all <o-
Intious to a given nonlinear problem formulated ax a svstent ol



polvinomial equations. We will present an alternative method in
this paper. that consists of reducing the given nonlinear system of
equations to only two equations in two unknowns. Here we dif-
fer essentially from other approaches that aim at either reducing
all equations to only one polynonial equation in one unknown or
that handle all equations simultaneously. The two equations that
we derive for the case at hand are quadratic. and hence, spurious
solutions are eliminated. Fach of the two equations then defines a
contour in the plane of the two associated variables. In our case,
these are the Cartesian coordinates of the circle points in the ref-
erence or zeroth configuration. The intersection of the contours
thus provides the two circle points that are sought.

Furthermore. the numerical condition of the solutions. i.e.. their
sensitivity 1o small changes in the problemn data, can be readily
estimated from the angle at which the contours cross each other,
Note that this information is not readily available with other meth-
ods. Moreover. the use of suitable plotting soltware eases tremen-
donsly the task of the designer when applving this method. Tn our
solution, we have resorted either to MATHEMATICA L running on
an IRIS 1D/210VGXN workstation or Autocad, running on a Sun
Sparestation. Under these conditions, the contours are produced
i a fraction of a second.

R, \— e

J / e H') ()0 5 X()

Figure 20 The local coordinate system set at K,

2 Derivation of the Contour Equa-
tions

In Fig. 2. the coupler link is represented by a trapezoidal block.
the for-bar linkage being shown at the zeroth pose (fy.6). It
is required to design a four-bar linkage. i.e.. to find a pair {ag. b)
of position vectors of points Ay and B. respectively. such that
the resulting linkage will carry the block rigidly attached to the
coupler link thirougl its five prescribed poses. which ave given with
reference to the coordinate frame O-ry as {(R,.0,)}; -

Without loss of generality. let us define our local coordinate
frame JF, with origin at Ry as shown in Fig. 2. and hence. ry = 0.
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Fignre 3: Relations between the position vectors
Referring to Fig. 3. the condition that the distauce between ag
and b remains constant vields four constraint equations. namely.
H(r», *b)+Q/ﬂuH_ = Hau "'bHZ . for p = 1.2.3.1 i

where Q, 15 the rotation matrix imvolved. te.,

Ccos o, — s,

Q =

SH1 O, cos o,
with o, =0, ~ 0,.

After expanding eq. (1] and simplifving. we obtain

b’ (1-Q)ay+r,"’Q,a,—r,'b+ =0. forj=1.2.31 %

where 1 s the 2+ 2 identity matrix.

Thix is a svstem of for Dilinear equations in the fore nnknowns
aote g bl gt Border to solve this svstenn we rednec i to 1w
(adratic cquations by a transformation of variables. as dos b
i (Bottema aud Roth. 1979). In fact. the rotation matrix Q can

he decomposed as

¢, =, 0 —1
’ = ¢ + S . = . (1
[ ol+sE E 10 ‘

J ;
where ¢, and «; stand for cos o, and sin o, respectively. The first
term in eq. (3) thus becomes

b'(1-Qa, = b'[(1 =1~ E]a,
= (1-¢,)b'a, - ~b' Ea,

= (I =cu=sv (5
where variables v and ¢ are defined as indicated helow:
i =bla,. v =b!Ea, (6)

Substituting eq. (3) nto eq. (3] vields

r/ r/

(I —¢)u—=sv —I“/Ib =-r,7Qa,




or,
u v
| —¢; ~s; -r,7 } v = —r]T(Q]ao-k.—Z]), forj =1,2,3,
b

{8)
Equations (8) constitute a linear system of four scalar equations
in six unknowns. namely, «, v, the two components of ag and
the two components of b. These four equations are then used
to solve for four of the six unknowns, namely u, v, and the two
components of b, in terms of ag . To this end, we introduce now
some definitions, namely, the 4 x4 matrix M and the 4-dimensional
vectors X and ¢ given as

T
—-r]

— ¢
-y
3

M

~

1
i
1
1

4

Thus, vector X is now computed as
x=M""c
Moreover. eqs. {6) can be rewritten in terms of vector x as
Nx =0 (11)
where N is a 2 x 4 matrix and 0 is the 2-dimensional zero vector.

lLe..

-1 0 af 0
0 -1 a’E |- 0

Upon substitution of x as given in eq. (10), mto eq. (11), we

N 0= (12)

obtain

NM™'e =0 (13)
which is the desived svsten of two equations in two unknowns.
Note that these two equations are quadratic i ag. for matrix N
hence. its

and vector ¢ are lincar in ag, whereas matrix M and

inverse, is constant. Eacli of the two above equations thus defines
a conic section in the r-y l)lanP the intersection of which. theun,
provides all real solutions of the problem at hand.

Ounce ay is available from the foregoing calculations, b can be
computed in one of two ways: ¢) by inversion of matrix M. as
indicated in eq. {(10). which produces not ouly b, but also u and ¢
values that are not needed: and 17) from eqs. (3}, which leads to an
overdetermined linear system of four equations in two unknowns.

of the forin

Bb =d (14)
where
Q) - Hay+1,]" ri' Qap + erlrl‘l
B = [(Q: Dag +ry)" d = I‘zTQau + l1"2'111‘2 (15)
[(Q, — Day + Fz]l rs an + 5T
[(Qi— Dao +r}" r.7Qay + 4 r;lm
Thus, 1()110\\111g the second approach. b can be calculate(l from

(. (1) as its least -square approximation given by
b=(B'B)"'B"d
Note that. by using a least-square approach.

up any two of the four of eqs. (3}, roundoff errors are filtered and
a robust solution is possible.

(16)

rather than picking

4.
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3 Numerical Condition of the Solu-

tions

The conditioning of a solution is understood as the condition nnm-
ber (Golub and Van Loan, 1983) of the Jacobian matrix of the
underlying nonlinear equations at that particular solution. Below
we show that the condition number of the solutions can be esti-
mated visually from the intersection of the two contours discussed
above. Clearly, more precise values of the said numbers can he also
obtained from the partial derivatives of the two scalar functions
producing the contours.

First.
this case the Jacobian of the two functions providing the contours.

let us recall that the condition nwuber of a matrix. in
with respect to the Cartesian coordinates of the circle points. is the
amplification factor of the computed roundoff error with respect to
the data roundoff error when solving a linear system of equations
assoctated with that matrix (Golub and Van Loan., 1933). Let the
system (13) be represented in the form

(17

where r and y denote the coordinates of point The Jacobian

Ao

of the two functions at hand can he expressed as

F

o]

where V f, denotes the gradient of f, with respect to the two un

knowns, i.e.,
v/ af oy

[t is noted that multiplving any of the two equations (17) by a

=[df.)or

scalar does not aflect the conditioning of the solutions. and hence.

we will assinne heneeforth that cach of the two equations has been
previousihv mudtiplied by a factor rendering its gradient a nnit vec-
tor in the o-y plane. ln order to calculate the condition munber of
F. which determines the conditioning of the solutions. we caleudate
its singular values as the positive sqnare roots of the cigenvalues
of FFT. This matrix is given as

1N

-
FE' = | o) o), 1

N
and hence. its eigenvalues Ay and A, are given by
Ay =1 4 cosy

Al =1 —cosH.

where 4 is the angle at which the contours intersect each other.
Thus. the coudition number « of ¥ can be readily computed as

A 1 (%)
W= = \\
/\1
which means that. the closer 5 is to £90°. the better the numerical

conditioning of the associated solution. i the two contours

Clearly.

are tangent to each other. v = 0 and » — . which means tha

F is singular. In this case. small perturbations in the data can
=3
produce either a double real solution or no real solution at all. a

rather uncomfortable situation!



Table 1: Prescribed positions for Example 1

j r ¢, (deg)
| (-3.3, -7.8) =57
2 (6.4, -7.9) 169
3 (-8.0, 0.5) -69
1 (-5.0, 2.5) 31

Table 2: Prescribed positions for example 2

] r 9; {deg)
I (1.5.0.8) 10
2 (1.6, 1.5) 20
3 (2.0, 3.0) ~ 60
} (2.3, 3.5) 90

4 Numerical Examples

We will nse two numerical examples to illustrate our method of
solution. The first example is taken from {Angeles. 1978), while
the second example is taken from (Sandor and Evdman. 1931).
The prescribed positions are given in Tables 1 and 2. the contour

equations taking on the simple forms displayved helow:

Figure 4: Contours €y & C; for Example |

Example 1:

—1.548 + R.5032 + 0.602327 — 9.6T15y

—0.6398xy — 0.6342y° =0 (19)
0.5989 + 7.9304r + 1.0883.r% — 22329y
—1.23650y + 1.72381y° = 0 (20)
Example 2:
—3.0217 4 1.0359%r — 0.38570% + 5.1383y +
1.0496.0y — 0.9866y° = 0 (21)
5.6722 4 6.704020 + 1.01190% — 0.3737y
—0.10092y — 0.03165% = 0 (22)

Y

-1.0 -0.9 -0.8

£

—-0.7 0.6

Figure 5: Contours C; & O for Example 2

The overlay of the two contours thus obtained is dislaved in
Figs. 4 and 5. The calculated coudition number of the jth solution
of the ith example is denoted by #,; below:

N1t 232494,
28

N.8696.

Ryy = 24.6
Ko = 2 1

Koy =
which correspond to the angles 4, calculated from eq. (18} namely.

T = 23.13°. T2 = 22.79°
7

B6°. = 9.63°

very much in agreement with the intersection angles of Figs. |

and 5. The above results show that the data of the second example

lead to a problem that is. rooughly. one order of magnitude more
ill- conditioned than the second problem. It is worth noting than
the results obtained with AutoC' AD. for the first example. are very
much in agreement with those reported in (Angeles. 1973) using
the Newton-Raplhson method. However. for the second example.
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the results shown in Tables 4 and 5, show noticeable differences
that mav be due to the condition number involved. The morale

4.5 T
wr Of these examples is that, if possible, the data should be chosen !
so as to vield contours that intersect at angles that are as close as
possible to 90°.
8
6
1
2
|
0 -
Y
-2
4
x
76 S o . ~ -
Figure 7: Four-bar linkage for Example 2
B first example, the data are given in coordinate axes not passing
\\V.,,/‘ through Iy, Hence. a change of coordinates was introduced here
- ‘ ‘ 1 in order to render the data in the required format.
] 2 4 6 8 10 12 1
x .
5 Conclusions
Figure 6: Four-bar linkage for Example | We derived a method for the determination of all veal solntions of
the Burmester Problem associated with the svinthesis of a planar
four-bar inkage meant to guide a rigid body through five finitely
Table 3: Solutions for Example | separated poses in a plane. The method reduces the original four
bilinear equations in four unknowns to only two quadratic egua-
| . | i
Sol. no. A, b tions in two unknowns. while avoiding the introduction of spurious
| (-0.191%, -0.3111) (-4.6072. -2.7921) roots. The method is very {ast if implemented on modern worksta-
2 (-2.3156, -2.8161) (-7.6050. -2.0503) tions using advanced mathematical software. As a byproduct. the
method produces information on the nmuerical conditioning of the
Tabl ot o o9 solutions. Moreover. the method can be wsed interactively for link-
able d: Solutions for Example 2 age optimization. if a workstation with multiple window facilities
: is available. Thus. while one window can display one candidate
bol._no. Zo b linkage. another one can display the contours wider changes in the
e —— = < . spla; < K
l (-0.7676. 2.8467) (-0.3713. 3.3117) e (Til)( d rigid-hody po for example
N N escribed rigrd-hody ses. for exd >
2 (-0.8498. 1.9847) (<0412, 2.5747) ! & .
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Shown in Figs. 6 and 7 are the given poses and the calculated
~ linkages. for Examples 1 and 2, respectively. Note that. for the
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