
Robot Visualization System for Windows (RVS4W)

User’s Manual

W. Khan, H. Zhuang and J. Angeles

Centre for Intelligent Machines (CIM)
Department of Mechanical Engineering

McGill University, Montréal, Québec, Canada

June 11, 2007

Abstract

Visualization plays an important role in the design of new robots or work
environments. Robot Visualization System for Windows (RVS4W) is an up-
dated cross-platform version of its predecessor, the Robot Visualization System
(RVS).

RVS was developed at the Centre for Intelligent Machines, McGill Uni-
versity, in the 1990s. It was developed on IRIX, the UNIX dialect of Silicon
Graphics Inc. (SGI). Since IRIX is native to SGI workstations, RVS does not
run on Intel-based PCs. Therefore, the source code of RVS had to be modified
in order to use this tool on an Intel-based PC. Based on the two important
attributes of RVS4W, i.e., open source and platform-independent, the proper
development tools were chosen.

RVS4W is an updated version of RVS. The user interface was rewritten
from scratch. We have made an effort to keep the user interface consistent and
user-friendly. The existing kinematics engine was also debugged and improved.
RVS4W incorporates many new features including routines to evaluate the char-
acteristic length, maximum reach, optimum posture—for minimum condition
number—and robot conditioning.

This manual introduces the user to the window-driven environment of RVS4W.

Acknowledgements

John Darcovich, the author of RVS, is the brain behind this project. RVS4W,
like RVS, was made possible thanks to the sustained support of NSERC to the

1

third author’s research.

Disclaimers

RVS4W and RVS are intended for research and education use only. The
authors cannot be held responsible for any errors or damage caused by the use
of this software packages.

2

Contents

1 Introduction 5
1.1 RVS4W Features . 5
1.2 Document Conventions . 6

2 RVS4W Basics 6
2.1 Starting RVS4W . 6
2.2 Mouse Controls . 7
2.3 Units . 7
2.4 The Robot Menu . 7

2.4.1 New Robot: Creating a robot 7
2.4.2 Load Robot: Loading an existing robot 9
2.4.3 Edit Robot: Editing the robot 10
2.4.4 The Link Settings dialog . 10
2.4.5 Displaying the DH parameters of the current robot 11
2.4.6 End-Effector: Selecting an end-effector 11
2.4.7 Save: Saving a robot . 11
2.4.8 Save As: Saving a robot with another name 13
2.4.9 Exit: Exiting RVS4W . 13

2.5 The Posture Menu . 13
2.5.1 Joint Limits: Setting joint limits 13
2.5.2 Select Configuration: Moving the robot to a saved posture 14
2.5.3 Forward Kinematics . 15
2.5.4 Inverse Kinematics . 16

2.6 The Trajectory Menu . 17
2.6.1 Joint Trajectory: Making the robot follow a joint trajectory 17
2.6.2 Cartesian Trajectory: Making the robot follow a Cartesian

trajectory . 19
2.6.3 Transform Trajectory: Transform a displayed trajectory . . 21
2.6.4 Converting joint trajectories to Cartesian trajectories 22

2.7 Conditioning . 22
2.8 The Environment Menu . 24

2.8.1 Set Work Environment: Creating and editing the work envi-
ronment . 24

2.8.2 Load Work Environment: Loading a work environment 26
2.8.3 Obstacle: Creating and editing obstacles 26
2.8.4 Payload: Creating and editing payloads 26

2.9 Setting . 27
2.10 Export: Exporting a scene . 29
2.11 About . 29

3 Joint Configuration 32

3

4 Trajectories 32
4.1 Cartesian Trajectories . 32
4.2 Joint Trajectory . 33

Bibliography 34

Appendices 34

4

1 Introduction

RVS4W is a 3D visualization tool to be used to determine the feasibility of a new
robot or of a new path plan. This tool is an updated version of its IRIX predecessor,
RVS (Darcovich, Angeles, Montagnier and Wu, 1999). In the skeleton mode, the
Denavit-Hartenberg (DH) parameters of the robot at hand are read from a data
file and rendered as a kinematic chain using a standard set of skeleton primitives.
This set includes an L-shaped link with dimensions in proportion dictated by the
corresponding DH parameters, a revolute joint, a prismatic joint and an end effector
(EE). No geometric details on the actual shape of the links is provided in the skeleton
mode.

Full rendering of the actual robot can also be made. Of course, this requires, that
a database with the details of the robot-link geometry be supplied by the user.

1.1 RVS4W Features

Currently, RVS4W supports the following main features:

• Forward kinematics

• Inverse kinematics

• Individual joint limits

• Posture pre-storing

• Trajectory-tracking in joint space

• Trajectory-tracking in Cartesian space

• Maximum-reach, characteristic length, optimum-posture evaluation for a given
robot

• Robot-Jacobian evaluation at a given posture

• Robot-conditioning evaluation at a given posture

• A snapshot of the scene to be saved in Encapsulated PostScript (EPS), Portable
Document Format (PDF) or Scalable Vector Graphics (SVG) formats

• Display of reference frame, the moving frames and the EE frame

• Creation and visualization of work environments

5

Figure 1: RVS4W Main Window

1.2 Document Conventions

Conventions used throughout the manual:

• Typewriter fonts are used to represent RVS4W commands, shell commands,
directory paths, and code (C++ scripts).

• Uppercase ITALICS fonts are used to represent file names.

2 RVS4W Basics

This section introduces the user into the basic features of RVS4W. After reading this
section, the user should be able to load RVS4W and use its main functions.

2.1 Starting RVS4W

To start RVS4W, go to 〈install directory〉\rs and double-click RVS4W.EXE.
The RVS4W main window will appear as shown in Fig. 1. RVS4W commands are
grouped in the main menu displayed at the top of the RVS4W window. To activate a
command, navigate through the menu system and select the required menu item. The
corresponding dialog is invoked and displayed on the screen. Notice that, to activate
some commands, the user must load a robot in RVS4W.

6

2.2 Mouse Controls

Once a robot is loaded, the user can rotate, zoom and translate the rendering.

• Press and hold the left-mouse-button and drag the mouse to rotate the workspace
with respect to the viewer.

• Press and hold the middle-mouse-button and drag the mouse upwards (down-
wards) to zoom-in (zoom-out).

• Press and hold the right-mouse-button and drag the mouse to translate the
workspace in the corresponding direction.

2.3 Units

With regards to the geometric dimensions of the robot and the work environment,
RVS4W does not incorporate a unit manager. The user is free to decide on the units
of length while interacting with RVS4W. Whenever units of length are needed in this
document, the legend usu, for user-specified-units, is included. The user is encouraged
to indicate the selected units in the corresponding Description text box (Sec. 4) as
an aide-mémoire. All angles must be specified in degrees.

2.4 The Robot Menu

2.4.1 New Robot: Creating a robot

Select Robot > New Robot (Fig. 2) to invoke the Create Robot dialog (Fig. 3). Next,
input the desired number of links for the new robot and press OK. The Create Robot

- Parameters dialog (Fig. 4) is displayed. This dialog has four main groups:

1. Filename: Input the name of the new robot.

2. DH Parameters: Input the corresponding robot dimentions using the DH con-
vention described in (Angeles, 2007), i.e., a, b, al (α) and th (θ). By default, a
joint is taken as revolute. To specify a prismatic joint check the corresponding
Prismatic check box. Notice that RVS4W does not support the conditioning
evaluation for robots with prismatic joints.

3. Joint limits: To specify the physical limits of a joint, check the corresponding
Limits check box and input the minimum and maximum values in the min and
max text boxes. The limits must be specified in degrees for the revolute joint,
in agreement with the DH convention adopted at the outset. For a prismatic
joint, the limit must be specified in usu.

4. Description: Input the description of the robot in this text box.

Click Save to save the robot and render its skeleton on the screen. Click close

to exit the dialog.

7

Figure 2: Menu: Robot

Figure 3: The Create Robot dialog

8

Figure 4: The Robot Parameter dialog

2.4.2 Load Robot: Loading an existing robot

Select Robot > Load Robot from the main menu (Fig. 2) to display the Load Robot

dialog (Fig. 5). In this dialog a list box displays the list of existing robots. The user
has several options:

• Select a robot to view its description

• To load a robot, choose the desired robot and click Load

• To delete a robot, select the robot to be deleted and click Delete. The con-
firmation dialog appears. Click OK to delete the robot or Cancel to keep it.
Notice that when a robot is deleted, all the relevant data are erased from the
system. This includes the architecture, configuration and trajectory files of the
selected robot. This means that, if the user is to try a given trajectory on var-
ious robots, then the user must save the trajectory in a separate data file, then
copy-and-paste it on the data file of every robot to be assigned this trajectory
for tracking.

9

Figure 5: The Load Robot dialog

2.4.3 Edit Robot: Editing the robot

Selecting Robot > Edit Robot (Fig. 2) brings up the Edit Robot dialog on the
screen (Fig. 6).

• To change the display geometry, click the appropriate radio button: Up, Down or
Full. The full-geometry option is available only for those robots whose detailed
link-geometry has been previously input.

• To modify the robot parameters, click the appropriate link button. This brings
up the corresponding Link Settings dialog. The reader is referred to Subsec-
tion 2.4.4 for details on the Link Settings dialog.

Click close to exit the Edit Robot dialog.

2.4.4 The Link Settings dialog

The Link Settings dialog (Fig. 7) can be accessed through the Edit Robot dialog.
There is a separate Link Settings dialog associated with each link of the robot. The
link number is displayed at the top of the dialog. The dialog displays a set of options
organized in three groups.

10

Figure 6: The Edit Robot dialog

• Joint: To select the required joint-type, revolute or prismatic, check the corre-
sponding check box.

• DH Parameters: The DH parameters of a link that can be edited depend on
the selected joint-type. To change the DH parameters of the link, input the
desired value or use the arrow buttons to increase or decrease the value of the
corresponding parameter. The robot is updated dynamically, i.e., as soon as
the new value is input in the spinner.

• Joint Limits: To specify joint limits, check the Limits check box and enter the
maximum and the minimum joint values.

Click close to exit the Link Settings dialog.

2.4.5 Displaying the DH parameters of the current robot

To display the DH parameters, select Robot > DH Parameter (Fig. 2). The DH

Parameters dialog will appear on the screen (Fig. 8) showing the relevant parameters
of the loaded robot. Click close to exit the dialog.

2.4.6 End-Effector: Selecting an end-effector

To select the required end-effector choose Robot > End-Effector (Fig. 2). This
activates the End Effector dialog (Fig. 9). The available end-effectors for the loaded
robot are displayed in a list box. Select the desired end-effector and click close to
hide the dialog.

2.4.7 Save: Saving a robot

Select Robot > Save to save the current robot. Notice that the current posture of
the robot is saved as the default posture. The default posture of a robot is one that
is used to render the robot when the robot is loaded.

11

Figure 7: The Link Settings dialog

Figure 8: The DH Parameters dialog

12

Figure 9: The End-Effector dialog

Figure 10: The Robot Save As dialog

2.4.8 Save As: Saving a robot with another name

To save the robot with a different name, select Robot > Save As (Fig. 2). The Robot
Save As dialog will appear on the screen (Fig. 10). Input the new filename and click
Save. The robot will be saved under the new filename.

2.4.9 Exit: Exiting RVS4W

To exit RVS4W, select Robot > Exit.

2.5 The Posture Menu

2.5.1 Joint Limits: Setting joint limits

RVS4W allows the user to set joint limits. When active, the joint limits are considered
in the forward and inverse kinematics of the robot. Select Posture > Joint Limits

(Fig. 11) to activate the Joint Limits dialog (Fig. 12).

• To activate joint limits, check the Joint Limits On check box.

13

Figure 11: Menu: Posture

• To deactivate joint limits, check the Joint Limits Off check box.

• To specify joint limits, input the maximum and minimum values in the corre-
sponding joint-limit spinner.

• To exit the dialog, click close.

2.5.2 Select Configuration: Moving the robot to a saved posture

The robot can be moved to previously saved postures. RVS4W provides two postures
automatically:

1. <robotname>.Characteristic: The characteristic posture is that with the
best conditioning. See Subsection 2.7 for further details.

2. <robotname>.Maxreach: A posture at the maximum reach of the robot.

It is also possible to save a robot posture. Please refer to Subsection 2.5.3 below
to find how this can be done.

To move to a previously saved posture, select Posture > Select Configuration

from the menu (Fig. 11). The Select Configuration dialog will popup on the screen

14

Figure 12: The Joint Limits dialog

(Fig. 13). All the saved postures of the loaded robot are displayed in a list box. The
Select Configuration dialog offers three functions:

• To move the robot to a saved configuration, select the desired configuration
from the list box.

• Spline: When this option is selected, the robot translates from the current
posture to the selected posture.

• Jump: Select this option if you want the robot to jump to the selected configu-
ration.

Click close to hide the Select Configuration window.

2.5.3 Forward Kinematics

To change the posture of the robot by changing the value of the joint coordinates (for-
ward kinematics) or to save the current joint configuration, click Posture > Forward

Kinematics (Fig. 11). This brings forth the Forward Kinematics dialog (Fig. 14).
The symbol thi represents the joint number. Next to the joint number is the respective
joint-coordinate value.

• To change the value of the joint coordinate, do one of three actions:

1. Input the new value of the joint coordinate in the appropriate text box.

2. Use the arrow buttons to increase or decrease the joint-coordinate value.

3. Drag the horizonal scroll bar of the corresponding joint.

• To save the joint-coordinate values of the current posture, input the desired
filename in the File text box and click Save.

15

Figure 13: The Select Configuration dialog

• To exit the dialog, click close.

2.5.4 Inverse Kinematics

To change the pose of the end effector and hence change the posture of the robot (in-
verse kinematics), select Posture > Inverse Kinematics from the menu (Fig. 11).
The Inverse Kinematics dialog will popup on the screen (Fig. 15).

• Position: To change the position of the end-effector, input the desired value
in the x, y, and z text boxes or use the arrow keys to increase or decrease the
value.

• Orientation: To change the orientation of the end-effector, input the desired
value in the Rx, Ry, and Rz text boxes or use the arrow keys to increase or
decrease the value.

• To view the orientation matrix, click on the Q button.

• To view the robot Jacobian, click on the J button.

• Click close to exit dialog.

An outline of the inverse kinematics algorithm is available in the Appendix.

16

Figure 14: Dialog: Forward Kinematic

2.6 The Trajectory Menu

2.6.1 Joint Trajectory: Making the robot follow a joint trajectory

The Joint Trajectory command allows the robot to follow a pre-stored joint trajec-
tory. To activate the Joint Trajectory command, select Joint Trajectory from
the Trajectory menu (Fig. 16). The Joint Trajectory dialog will popup on the
screen (Fig. 17). In this dialog a list box displays the stored joint trajectories for the
loaded robot.

• Click on the desired trajectory to load it. The corresponding Cartesian trajec-
tory is evaluated and displayed in the main RVS4W window in blue.

• Points: Click once to display the corresponding Cartesian-position points of
the trajectory. Click again to switch the option off.

• Frames: Click once to display the Cartesian frames of the trajectory. Click
again to switch the option off.

• Cont: To make the robot follow the trajectory continuously, check the Cont

text box.

• Step: To make the robot follow the trajectory step-by-step, check the Step text
box.

17

Figure 15: The Inverse Kinematics dialog

• Reset: Click to move the end-effector to the initial position.

• Clear: Click to unload the selected trajectory, clear the trajectory display from
the workspace and reset the dialog.

• Forward: Click the forward button I to start the animation in the forward
direction.

– If the Cont option is selected, the end-effector will move to the initial point
of the trajectory and follow the trajectory to the end. Click the forward
button I again to stop the animation in-between.

– If the Step option is selected, the end-effector will move to the next step
in the trajectory.

• Backward: Click the backward button J to start the animation in the backward
direction.

• Use the scroll bar to drag the robot along the trajectory manually.

• Click close to exit the dialog.

18

Figure 16: Menu: Trajectory

2.6.2 Cartesian Trajectory: Making the robot follow a Cartesian trajec-
tory

The Cartesian Trajectory command allows the robot to follow a pre-stored end-
effector trajectory that is described in the Cartesian coordinates. In order to activate
the Cartesian Trajectory command, select Trajectory > Joint Trajectory from
the menu (Fig. 16). This brings up the Cartesian Trajectory dialog (Fig. 18). The
list box in this dialog displays the Cartesian trajectories available for the loaded robot.

• Click on the desired trajectory to load it. The Cartesian trajectory is displayed
in the main RVS4W window in pink.

• Points: Click once to display the corresponding Cartesian position points of
the trajectory. Click again to switch the option off.

• Frames: Click once to display the Cartesian frames of the trajectory. Click
again to switch the option off.

• Cont: To make the robot follow the trajectory continuously, check the Cont

text box.

• Step: To make the robot follow the trajectory step-by-step, check the Step text
box.

19

Figure 17: The Joint Trajectory dialog

• Reset: Click to move the end-effector to the initial position.

• Clear: Click to unload the selected trajectory, clear the trajectory display from
the workspace and reset the dialog.

• Forward: Click the forward button I to start the animation in the forward
direction.

– If the Cont option is selected, the end-effector will move to the initial point
of the trajectory and follow the trajectory to the end. Click the forward
button I again to stop the animation in-between.

– If the Step option is selected, the end-effector will move to the next step
in the trajectory.

• Backward: Click the backward button J to start the animation in the backward
direction.

• Use the scroll bar to drag the robot along the trajectory manually.

• RVS4W can save the corresponding joint trajectory to a file. This is done by
following the steps below:

1. Load the desired Cartesian trajectory and check the Cont check box.

2. Make the robot follow the complete trajectory by clicking the forward but-
ton I and letting it run to the end. This step evaluates the corresponding
joint angle trajectory of the Cartesian trajectory at hand.

20

Figure 18: The Cartesian Trajectory dialog

3. Specify a filename for the corresponding joint trajectory in the Joint Traj

File text box and click Save.

• Click close to exit the dialog.

2.6.3 Transform Trajectory: Transform a displayed trajectory

The Transform Trajectory command allows the user to transform a pre-stored tra-
jectory in the workspace. Notice that the user must load a trajectory, joint or Carte-
sian, into the system before activating the Transform Trajectory command. To
activate the Transform Trajectory command, select Transform Trajectory from
the Trajectory menu (Fig. 16), the Transform Trajectory dialog then popping up
on the screen (Fig. 19).

• Position: To translate the trajectory, input the x, y and z translation compo-
nents in the corresponding text boxes.

• Orientation: To rotate the trajectory about the origin of the base frame, input
the relevant Rx, Ry and Rz components.

• Scale: To scale the trajectory with respect to the origin of the base frame,
input the required scaling in the Scale text box.

21

• Traj File: To save the trajectory, type-in the filename in the Traj File text
box press Save.

• Click close to hide the dialog window.

2.6.4 Converting joint trajectories to Cartesian trajectories

The Transform Trajectory command can also be used to convert a joint trajectory
to its corresponding end-effector Cartesian trajectory. This is done by following the
steps below:

1. Load the desired joint trajectory (Sec. 2.6.1).

2. Activate the Transform Trajectory dialog.

3. Input the filename for the corresponding Cartesian trajectory in Traj File and
click save.

2.7 Conditioning

For a detailed account of the theoretical issues pertaining to this subsection, the
reader is referred to (Khan and Angeles, 2006). The Conditioning dialog provides
useful information to the user, namely, the conditioning, the characteristic length and
the maximum reach of the robot at hand. Select Conditioning from the main menu
to activate the Conditioning command. The Conditioning dialog will popup on
the screen (Fig. 20).

In RVS4W the robot conditioning is computed as the reciprocal of the minimum
condition number κF of the dimensionless (also termed homogeneous) Jacobian H,
defined as

κF ≡ 1

m

√
||H||F ||H−1||F (1)

where || · ||F is the Frobenius norm of the matrix argument, m is 3 for planar and
spherical robots, 6 for spatial; moreover, we assume n joints, with n ≥ m. The factor
1/m in the right-hand side of eq.(1) stems from the use of the weighted Frobenius
norm of H, namely,

||H||F ≡
√

tr(HWHT), W =
1

m
1 (2)

Hence, the weighted Frobenius norm of a m× n matrix, with n ≥ m, yields the rms
value of the set of m singular values of H (Strang, 1986). The conditioning lies in the
interval [0, 1], with 1 being best and 0 worst.

22

Figure 19: The Transform Trajectory dialog

If the robot at hand is redundant, with n > m joints, then H is a m× n matrix,
formula (1) still applying, but with H−1 replaced by the right Moore-Penrose gener-
alized inverse of H, namely HT (HHT)−1 (Strang, 1986). It is not difficult to prove
that the Frobenius norm of the foregoing generalized inverse reduces to

||HT (HHT)−1||F =

√
1

m
tr[(HHT)−1] (3)

In order to avoid dimensional inhomogeneity1, RVS4W evaluates the characteristic
length of the robot. The numerical value of the characteristic length is shown in the
Characteristic length display box in the Conditioning window, in usu. Further
details on conditioning, characteristic length and the optimum posture can be found
in (Angeles, 2007; Khan and Angeles, 2006).

The evaluation of the characteristic length, given the DH parameters of a robot,

1That is, a Jacobian with entries bearing disparate physical units

23

Figure 20: The Conditioning dialog

is known as the forward problem (Khan and Angeles, 2006), the inverse problem con-
sisting in the computation of all DH parameters of an optimum robot with maximum
conditioning, under user-specified constraints. RVS4W attempts to solve the above-
mentioned problem using the Nelder-Mead simplex method. This is done when the
robot is loaded. RVS4W displays a ‘+’ besides the robot name upon convergence. The
characteristic length is displayed in the Characteristic length text box. Should
the Nelder-Mead method fail to converge, a ‘−’ sign is displayed besides the filename
and a value of −1 is put in the Characteristic length text box. For cases where
evaluation of the characteristic length is either irrelevant or undefined, e.g., in the
case of spherical robots, RVS4W displays 0 in the Characteristic length text box.

2.8 The Environment Menu

2.8.1 Set Work Environment: Creating and editing the work environment

The Set Work Environment command allows the user to set the work environment.
Click Environment > Set Work Environment from the menu (Fig. 21). This brings
up the Set Work Environment dialog (Fig. 22) to select and place objects in the
work environment, follow the steps below:

1. Input the required number of objects in the Total text box.

2. Select the first object by choosing ‘1’ from the ID list.

24

Figure 21: Menu: Environment

3. Turn on the Visible button.

4. Select the type of object from the Object drop-down list.

5. Enter the dimensions of the selected object in the Length, Height, and Width

text boxes.

6. Enter the position of the selected object in the Position x, Position y, and
Position z text boxes.

7. Orient the object by selecting an axis of rotation and inputting the desired angle
of rotation by using the Rotation text box.

8. From the Color list, select the color of the object.

9. Select the next ID from the ID list and repeat steps 3 to 8.

To save the environment, input the filename in the File text box and click Save.
Click close to exit the dialog.

25

Figure 22: The Set Work Environment dialog

2.8.2 Load Work Environment: Loading a work environment

To load the work environment of a robot, select Load Work Environment from the
Environment menu (Fig. 21). The Load Work Environment dialog will popup on the
screen (Fig. 23). The types of Work environment available are displayed in a list box.
Select the desired work environment to load and display it in the main window.

2.8.3 Obstacle: Creating and editing obstacles

RVS4W allows the user to place obstacles in the workspace to detect collisions visually.
Select Obstacle from the Environment menu (Fig. 21). The Obstacle dialog will
pop up on the screen (Fig. 24). The position and velocity of the obstacle can be
specified from the Obstacle Data group. The position of the obstacle is defined with
respect to the base frame. Currently the obstacle velocity option is not operational.
The shape of the obstacle is spherical. Its radius can be modified by dragging the
Radius scroll bar or by entering the new values, in usu, in the corresponding text
fields. To display the obstacle, click the Visible push button. When the obstacle is
visible, the user will see a grey sphere inside the workspace. Click close to exit the
dialog.

2.8.4 Payload: Creating and editing payloads

RVS4W allows the user to mount a payload at the tip of the end-effector. Select
Payload from from the Environment menu (Fig. 21). The Payload dialog will appear
on the screen (Fig. 25). The user can position the payload with respect to the end-
effector frame. The default position is the origin of the end-effector frame. To modify,
type-in the new value in the appropriate text box. The shape of the payload is

26

Figure 23: The Load Work Environment dialog

spherical by default2. Its radius is modified by using the scroll bar or typing in the
new value in the Radius text field. To visualize the payload, click on the Visible

button. When the payload is visible, the user will see a green sphere inside the
workspace. Click on the close button to exit the dialog.

2.9 Setting

Use the Set System dialog to change various global settings in RVS4W. These include
the background color, projection, axis-display and settings related to the inverse
kinematics engine. Select Setting > Set System from the menu (Fig. 26). The Set

System dialog will appear on the screen (Fig. 27). The dialog is divided into four
groups.

• Background Color: the R, G or B slider to change the color of the background.
A palette of three colors is also provided.

• View: Use the radio buttons to select the type of projection: perspective or
orthogonal.

• Axes: There three options in this group, i.e., Reference, Joint and End-Effector

which allow the user to display or hide the coordinate axes.

2The user who wants to develop a feature allowing for user-defined payload shapes is invited to
request the source code by writing to the address provided in the RVS4W Web site.

27

Figure 24: The Obstacle dialog

Figure 25: The Payload dialog

28

Figure 26: Menu: Setting

• Inverse Kinematics: This group allows the user to fine-tune the inverse kine-
matics engine. Please refer to the Appendix for further details.

To exit the dialog, click close.

2.10 Export: Exporting a scene

RVS4W can export the current scene to various file formats. To export a scene:

1. Select Export > Export (Fig. 28). The Export dialog will popup on the screen
(Fig. 29).

2. Input the filename in the Filename text box.

3. Select the desired file format from the drop-down list and click Save

2.11 About

The About command provides some information about RVS4W. Select About > About

(Fig. 30) to display the About dialog on the screen (Fig. 31).
Configurations

29

Figure 27: The Set System dialog

Figure 28: Menu: Export

30

Figure 29: The Export dialog

Figure 30: Menu: about

31

Figure 31: The About dialog

3 Joint Configuration

RVS allows the user to move the robot to pre-stored postures (configurations). The
pre-stored configurations must be described in terms of the joint coordinates. The
filename must be in the form:

<Robot name>.Configuration name

The joint configuration file must be provided in text format with the structure,

th = [θ1 , θ2 , θ3 , ...]

where θi is the variable of the ith joint, given in degree (or in usu for prismatic joints).
The file must be stored in the RVS/JConfig/ directory.

4 Trajectories

4.1 Cartesian Trajectories

RVS4W allows the end-effector to follow pre-stored Cartesian trajectories. In this
vein, the trajectory is discretized to the desired resolution, thereby obtaining a set of
frames F . Each frame F(i) then represents the desired end-effector pose with respect
to the base frame, at sample time i.

32

The Cartesian trajectory file must be provided in text format with the structure

x(1) y(1) z(1)
Q11(1) Q12(1) Q13(1)
Q21(1) Q22(1) Q23(1)
Q31(1) Q32(1) Q33(1)
x(2) y(2) z(2)

Q11(2) Q12(2) Q13(2)
Q21(2) Q22(2) Q23(2)
Q31(2) Q32(2) Q33(2)

...
...

...

where x(i), y(i) and z(i) are the position coordinates of the origin of the frame F(i),
and Qmn(i) are the nine entries of the 3 × 3 rotation matrix Q(i) expressed in the
base frame.

For positioning robots, the structure of the text file must be

x(1) y(1) z(1)
x(2) y(2) z(2)

...
...

...

For orienting robots, only nine entries of the orientation matrix Q are required,
i.e.,

Q11(1) Q12(1) Q13(1)
Q21(1) Q22(1) Q23(1)
Q31(1) Q32(1) Q33(1)
Q11(2) Q12(2) Q13(2)
Q21(2) Q22(2) Q23(2)
Q31(2) Q32(2) Q33(2)

...
...

...

The trajectory file must be stored in the /RVS/CTraj directory. The filename
must be in the form

<Robot name>.Cartesian trajectory name

4.2 Joint Trajectory

RVS4W allows the robot to follow a pre-stored joint trajectory. The trajectory file
must be stored in the /RVS/JTraj directory. The filename must be in the form

<Robot name>.Joint trajectory name

33

The joint trajectory file must be provided in text format with the structure

θ1(1) θ2(1) θ3(1) . . .
θ1(2) θ2(2) θ3(2) . . .
θ1(3) θ2(3) θ3(3) . . .

...
...

...
. . .

where θi(j) is the variable of the ith joint, given in degree (or usu) at sample time j.
An example of the joint trajectory file is shown below, as applicable to a redundant,
seven-revolute robot. Note that the text file contains correspondingly seven columns.

−101.7014 −17.6766 98.9590 88.8606 −25.0257 119.4901 −113.3444
−101.6753 −17.6985 98.8462 88.9656 −25.2299 119.6729 −113.5423
−101.6438 −17.7185 98.7321 89.0719 −25.4328 119.8611 −113.7414
−101.6070 −17.7365 98.6165 89.1794 −25.6346 120.0545 −113.9415

...
...

...
...

...
...

...

References

Angeles, J., 1985, “On the numerical solution of the inverse kinematic problem,” The
International Journal of Robotics Research, Vol. 4, No. 2, pp. 21–37.

Angeles, J., 2007, Fundamentals of Robotic Mechancal Systems: Theory, Methods,
and Algorithms, Third edition, Springer, New York.

Darcovich, J., Angeles, J., Montagnier, P. and Wu, C.-J., 1999, “RVS: A robot visual-
isation software package,” in Batoz, J.-L., Chedmail, P., Cognet, G. and Fortin, C.
(editors), Integrated Design and Manufacturing in Mechanical Engineering, Kluwer
Academic Publisher, Dordrecht, pp. 265–272.

Strang, G., 1986, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley.

Khan, W. A. and Angeles, J., 2006, “The kinetostatic optimization of robotic ma-
nipulators: the inverse and the direct problems,” ASME Journal of Mechanical
Design, No. 128, pp. 168–178.

Appendix

Here, we provide a brief account of the numerical procedure that RVS4W uses to solve
the inverse kinematics (displacement) problem. For details, the reader is referred to

34

Angeles (1985), as a basic reference. We have fine-tuned the numerics behind the
algorithm therein.

We set the task as a nonlinear least-square problem in the six joint variables θ as

min
θ

1

2
φT φ (4)

where

φ =




vect(∆Q)
tr(∆Q)

∆r


 ; ∆Q = QQT

C − 1; ∆r = r− rc (5)

Furthermore, 1 is the 3× 3 identity matrix, Q is the rotation matrix that represents
the current orientation of the end-effector with respect to that of the base-frame,
QC being the target counterpart of Q—i.e., the representation of the desired EE
orientation—while r is the homogenized position vector of the end-effector. That is, r
is a dimensionless position vector, obtained upon dividing the current position vector,
in usu, by the robot characteristic length, in usu as well. Notice that the characteristic
length is calculated by RVS4W upon loading a given robot. The iterative procedure
involved can be either successful or unsuccessful in reaching convergence. If successful,
the computed value is transferred to the inverse-kinematics routine; otherwise, this
routine uses the mean value of the link lengths in lieu of the characteristic length.
As well,, rC is the target position vector of the operation point. Both Q and r are
defined in the base frame. Finally, vect(·) and tr(·) are, correspondingly, the vector
and the trace (Angeles, 2007) of the argument matrix—a 3× 3 rotation matrix.

RVS4W uses the Newton-Gauss method to solve problem (4) iteratively: Given
an initial guess θ0, a sequence θ1, θ2, . . . , θk, θk+1, . . . is generated, which produces a
monotonically decreasing sequence of values z1, z2, . . . , zk, zk+1, . . . , with zk defined
as

zk =
1

2
[φ(θk)T φ(θk)] (6)

The sequence is generated in the form:

θk+1 = θk + ∆θk (7)

with the correction ∆θk computed as the least-square approximation of an over-
determined linear system of seven equations in six unknowns, namely,

Φ∆θk = −φ(θk) (8)

where

Φ(θk) =
∂φ(θ)

∂θ
|θ=θk

(9)

is the 7× 6 Jacobian matrix of the nonlinear system (5). Notice that problem (8) is
a linear system of seven equations in six unknowns. At each iteration, the correction
∆θk is computed using Householder reflections.

35

The process terminates when the termination criterion ||φ(θk)|| ≤ ε is met, for a
given tolerance ε. Notice that ε is dimensionless.

Actually, the convergence criterion for a nonlinear least-square problem is ||∆θk|| ≤
εθ, for a prescribed tolerance εθ. The criterion adopted in RVS4W is stricter, in that
it imposes the vanishing of φ(θk), which is possible in our case because the four scalar
orientation equations are not independent; they obey a quadratic constraint (Angeles,
2007).

The Set System (Subsection 2.9) dialog provides access to the above-mentioned
tolerance via the Error Tolerance text box. In this dialog the maximum number of
iterations can also be set .

36

Index

Cartesian trajectory
convert to joint trajectory, 20
follow, 19

characteristic length, 5, 22, 23
condition number, 23
conditioning, 5, 22

DH parameters
display, 11
edit, 11
input, 7

dialog
About, 29
Cartesian Trajectory, 19
Conditioning, 22
Create Robot - Parameters, 7
Create Robot, 7
DH Parameters, 11
Edit Robot, 10
End Effector, 11
Export, 29
Forward Kinematics, 15
Inverse Kinematics, 16
Joint Limits, 13
Joint Trajectory, 17
Link Settings, 10
Load Robot, 9
Load Work Environment, 26
Obstacle, 26
Payload, 26
Robot Save As, 13
Select Configuration, 15
Set System, 27
Set Work Environment, 24
Transform Trajectory, 21

display geometry
down, 10
full, 5, 10
skeleton, 5
up, 10

end-effector, 11
exiting RVS4W, 13

files
Cartesian trajectory, 32
joint configuration, 32
joint trajectory, 33

forward kinematics, 15

inverse kinematics, 16
iterations, 36
settings, 29
tolerance, 36

Jacobian, 5
joint limits, 7

deactivate, 14
activate, 13
input, 13
maximum, 7
minimum, 7

joint trajectory
convert to Cartesian trajectory, 22
follow, 17

joint-type
prismatic, 7
revolute, 7

mouse controls, 7

Nelder-Mead method, 24

obstable
create, 26
edit, 26

payload
create, 26
edit, 26

posture
characteristic, 14
maximum reach, 5, 14, 22

37

optimum, 5, 23
pre-stored, 14

robot
conditioning, 22
create, 7
delete, 9
description, 7
edit, 10

DH parameters, 11
joint limits, 11
joint-type, 11

load, 9
save, 11
save as, 13

save
joint configurations, 15

scene
export, 29
rotate, 7
snapshot, 5
translate, 7
zoom in/out, 7

spline, 15
starting RVS4W, 6
system settings, 27

background color, 27
projection, 27

trajectory
rotate, 21
scale, 21
transform, 21
translate, 21

units, 7
angular, 7
user-specified-units, 7

work environment
create, 24
edit, 24
load, 26

38

