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where \; = cosa; and p; = sin oy, while
r=ry8iné; —rycosb; (7.23b)

Likewise, if we have [v]i1 = [v1, v2, v3]7 and we need [v];, we use the
component transformation given below:

cos#; —N;sinf;  p;siné; U1 v1 cosf; — vsinb;
[v]i=|sin€; Ajcosf; —p;cosb; vy | = | vy 8in6; + v cosb;
0 i i U3 vaft; + U3
(7.24a)
where
V= Ug\; — Usfh (7.24Db)

It is now apparent that every coordinate transformation between successive
frames, whether forward or backward, requires eight multiplications and four
additions. Here, as in Chapter 4, we indicate the units of multiplications and
additions with M and A, respectively.

The angular velocity and acceleration of the ith link are computed recursively
as follows:

wi_1+ 9iei, if the ¢th joint is R
w; = { ! ) (7.25a)

Wi 1, if the ith joint is P

Wit 4+ wi_1 X 0;e; + é,-e-, if the ith joint is R
O;Jz' _ { i—1 1 €4 1 J (725b)

Wi_1, if the ith joint is P

for i = 1,2,...,n, where wg and wg are the angular velocity and angular
acceleration of the base link. Note that eqgs.(7.25a & b) are frame-invariant;
i.e., they are valid in any coordinate frame, as long as the same frame is used
to represent all quantities involved. Below we derive the equivalent relations
applicable when taking into account that quantities with a subscript ¢ are avail-
able in F;,1-coordinates. Hence, operations involving quantities with different
subscripts require a change of coordinates, which is taken care of by the corre-
sponding rotation matrices.

In order to reduce the numerical complexity of the algorithm developed here,
all vector and matrix quantities of the 4th link will be expressed in F;1+1. Note,
however, that the two vectors e; and e;;1 are fixed to the ith link, which is
a potential source of confusion. Now, since e; has very simple components in
F;, namely, [0, 0, 1]7, this will be regarded as a vector of the (i — 1)st link.
Therefore, this vector, or multiples of it, will be added to vectors bearing the
(i—1)st subscript without any coordinate transformation. Moreover, subscripted
brackets, as introduced in Section 2.2, can be avoided if all vector and matrix
quantities subscripted with i, except for vector e;, are assumed to be expressed
in Fij41. Furthermore, in view of the serial type of the underlying kinematic
chain, only additions of quantities with two successive subscripts will appear in
the relations below.
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Quantities given in two successive frames can be added if both are expressed
in the same frame, the obvious frame of choice being the frame of one of the two
quantities. Hence, all we need to add two quantities with successive subscripts
is to multiply one of these by a suitable orthogonal matrix. Additionally, in
view of the outwards recursive nature of the kinematic relations above, it is
apparent that a transfer from F;- to F;j1-coordinates is needed, which can
be accomplished by multiplying either e; or any other vector with the (i — 1)
subscript by matrix Q. Hence, the angular velocities and accelerations are
computed recursively, as indicated below:

Qf (w;1 + éiei), if the ith joint is R
w; = . (7.26a)
Qfw;_1, if the ith joint is P
T(@i_1 +wi_1 x ;e; + 6;e;), if the ith joint is R
o = Q; (.wz 1 Fwi—1 x bie; + b)) 1 ez. %o%n Ts (7.26b)
Qfwi_1, if the ith joint is P
If the base link is an inertial frame, then
wo = 0, L;J() =0 (727)
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Figure 7.2: A revolute joint

Thus, calculating each w; vector in F;;; when w;_; is given in F; requires
8M and 5A if the ith joint is R; if it is P, the said calculation reduces to
8M and 4A. Here, note that 6;e; = [0, 0, §;]7 in F;-coordinates, and hence,
the vector addition of the upper right-hand side of eq.(7.26a) requires only
1A. Furthermore, in order to determine the number of operations required to
calculate w; in F;41 when w;_1 is available in F;, we note that

[eili = [g] (7.28)

1]
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Moreover, we let

Wy
[wi,l ], = | Wy (7.29)
Wy
Hence, )
. 01 Wy
[wii1 X bie;]i = | —0; w, (7.30)
0
Furthermore, we note that
0
[fie;]li= | O (7.31)
0

and hence, the calculation of w; in F; 41 when w;_; is given in F; requires 10M
and 7A if the ith joint is R; if it is P, the same calculation requires 8 M and 4 A.

Furthermore, let ¢; be the position vector of C;, the mass center of the
ith link, p; being the vector directed from O; to C;, as shown in Figs. 7.2
and 7.3. The position vectors of two successive mass centers thus observe the
relationships

(¢) if the ith joint is R,

6,',1 =a;—1— Pi—1 (7.32&)
c,=¢Ci_1+0;_1+ P; (732]1))

(4¢) if the ith joint is P,
61',1 = di,1 —Pi 1 (732C)
ci=c¢j_1+0;1+bie;+p; (7.32d)

where point O;, in this case, is a point of the (i —1)st link conveniently defined, as
dictated by the particular geometry of the manipulator at hand. The foregoing
freedom in the choice of O; is a consequence of prismatic pairs having only a
defined direction but no axis, properly speaking.

Notice that in the presence of a revolute pair at the ith joint, the difference
a;_1 — p;_; is constant in F;. Likewise, in the presence of a prismatic pair
at the same joint, the difference d;—; — p;_; is constant in F;. Therefore,
these differences are computed off-line, their evaluation not counting toward
the computational complexity of the algorithm.

Upon differentiation of both sides of eqs.(7.32b & d) with respect to time,
we derive the corresponding relations between the velocities and accelerations
of the mass centers of links ¢ — 1 and i, namely,

(7) if the ith joint is R,
¢ =¢i1+twi_1 X0i_1+w; xXp; (7.33a)

¢ =¢C1 +wi1 X 01 +wig X (Wi—1 X §i—1) +w; X p; +
w; X (w; X p;) (7.33Db)
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Figure 7.3: A prismatic joint

(i) if the ith joint is P,

¢ =¢Ci—1 +v; + bie;

Wi = wi 1 (7.34a)
Wi = @i (7.34b)
u; = 6;_1 + p; + bie; (7.34c)
Vi = w; X Uy (7.34d)
)
)

(

& = &1 +W; X u; +w; x (vi + 2bie;) + bie; (
fori =1,2,..., n, where ¢y and &y are the velocity and acceleration of the
mass center of the base link. If the latter is an inertial frame, then

wo = 0, dJo = 0, éo = 0, EO =0 (735)

Expressions (7.32b) to (7.34f) are invariant, i.e., they hold in any coordinate
frame, as long as all vectors involved are expressed in that frame. However,
we have vectors that are naturally expressed in the F; frame added to vec-
tors expressed in the F;y; frame, and hence, a coordinate transformation is
needed. This coordinate transformation is taken into account in Algorithm 7.4.1,
whereby the logical variable R is true if the ith joint is R; otherwise it is false.

In performing the foregoing calculations, we need the cross product of a
vector w times e; in J; coordinates, the latter being simply [e;]; = [0, 0, 117,
and hence, this cross product reduces to [wa, —wy, 0]7, whereby wy, for k =
1,2, 3, are the z, y, and z F;-components of w. This cross product, then, requires
no multiplications and no additions. Likewise, vectors b;e;, biei, and b;e; take
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on the simple forms [0, 0, b;]7, [0, 0, b;]7, and [0, 0, ;]7 in F;. Adding any
of these vectors to any other vector in JF; then requires one single addition.

Algorithm 7.4.1 (Outward Recursions):
read {Q; };7", co, wo, €0, wo, o, {p;}7, {8357
For i=1 to n step 1 do
update Q;
if R then
¢+ Qf(ci-i+0im1)+p;
wi « Qf(wi1+bie)
W 14 w1 X061
Vi & Wi X p;
¢+ Q@i +uwa)+vi
wi + Q(wi—1 +wi—1 x bie; + bie;)
& « Q@i 1+wiixdi1+wigxuq)
+w; X p; + w; X v;
else
u; Q,.T&-,l + p; + bie;
C; QiTCZ'71 + u;
wi + Qfw;y
Vi — w; Xu
W; < blel
¢ QiTéi_1 +v; +w;
wi + Qfw;_y )
¢; — QlTCz,1 4+ w; X w; + w; X (V,‘ +w; + W,) + bie;
endif
enddo

If, moreover, we take into account that the cross product of two arbitrary vectors
requires 6 and 3 A4, we then have the operation counts given below:

(7) If the ith joint is R,
Q; requires 4M and 04
c; requires 8M and 10A
w; requires 8M and 5A
¢; requires 20M and 164
w; requires 10M and 7TA
¢; requires 32M and 28A

(7¢) If the ith joint is P,
Q; requires 4M and 0A
¢; requires 16 M and 154
w; requires 8M and 44
¢; requires 14M and 114
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Table 7.1: Complexity of the Kinematics Computations

Item M A
{Qi}T 4n 0
{w;}7 8n 5n
{¢;}7 20n 16n
{w; }7 10n ™m
{¢;}7 32n 28n
Total 82n 66n

w; requires 8M and 44
¢; requires 20M and 194

The computational complexity for the forward recursions of the kinematics cal-
culations for an n-revolute manipulator, as pertaining to various algorithms,
are summarized in Table 7.1. Note that if some joints are P, then these figures
become lower.

7.4.2 Dynamics Computations: Inward Recursions

Moreover, a free-body diagram of the end-effector, or nth link, appears in
Fig. 7.5. Note that this link is acted upon by a nonworking constraint wrench,
exerted through the nth pair, and a working wrench; the latter involves both
active and dissipative forces and moments. Although dissipative forces and
moments are difficult to model because of dry friction and striction, they can
be readily incorporated into the dynamics model, once a suitable constitutive
model for these items is available. Since these forces and moments depend only
on joint variables and joint rates, they can be calculated once the kinematic
variables are known. For the sake of simplicity, dissipative wrenches are not in-
cluded here, their discussion being the subject of Section 7.8. Hence, the force
and the moment that the (i — 1)st link exerts on the ith link through the ith
joint only produce nonworking constraint and active wrenches. That is, for a
revolute pair, one has

ni I
n? = |nl|, £ =] (7.36)

i Ii

in which n? and n? are the nonzero F;-components of the nonworking constraint
moment exerted by the (i —1)st link on the ith link; obviously, this moment lies
in a plane perpendicular to Z;, whereas 7; is the active torque applied by the
motor at the said joint. Vector fF contains only nonworking constraint forces.
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Figure 7.4: Free-body diagram of the ith link

For a prismatic pair, one has

af = {2%} . P = {ﬁz} (7.37)
P

where vector n; contains only nonworking constraint torques, while 7; is now
the active force exerted by the ith motor in the Z; direction, ff and f} being
the nonzero F;-components of the nonworking constraint force exerted by the
ith joint on the ith link, which is perpendicular to the Z; axis.

In the algorithm below, the driving torques or forces { 7; }}, are computed
via vectors nf’ and ff’. In fact, in the case of a revolute pair, 7; is simply
the third component of nf’; in the case of a prismatic pair, 7; is, accordingly,
the third component of f/’. From Fig. 7.5, the Newton-Euler equations of the

end-effector are

2 =mpé, - f (7.38a)

n’ =10, +w, xT,w, —n+p, x £’ (7.38b)

where f and n are the external force and moment, the former being applied
at the mass center of the end-effector. The Newton-Euler equations for the
remaining links are derived based on the free-body diagram of Fig. 7.4, namely,

£ =m&; + 1, (7.38c¢)

(]

with §; defined as the difference a; — p; in eqs.(7.32a & c).
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nthlink

Figure 7.5: Free-body diagram of the end-effector

Once the nf and f}" vectors are available, the actuator torques and forces,
denoted by 7;, are readily computed. In fact, if the ith joint is a revolute, then

o

n/ (7.39)

T; = €

which does not require any further operations, for 7; reduces, in this case, to
the Z; component of vector n!’. Similarly, if the ith joint is prismatic, then the
corresponding actuator force reduces to

7 =el ff (7.40)

Again, the foregoing relations are written in invariant form. In order to
perform the computations involved, transformations that transfer coordinates
between two successive frames are required. Here, we have to keep in mind that
the components of a vector expressed in the (7 + 1)st frame can be transferred
to the ith frame by multiplying the vector array in (i + 1)st coordinates by
matrix Q;. In taking these coordinate transformations into account, we derive
the Newton-Euler algorithm from the above equations, namely,
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Row # M A
1 3 3
2 30 27
5 8(n—1) A(n —1)
6 3(n—-1) 3(n—-1)
7 44(n — 1) 37(n—1)
Total 55m — 22 44n — 14
Algorithm 7.4.2 (Inward Recursions):
£F « mpé, —f
nf + Lw,+w,xLw,—n+p, xf’
If R then
w4 (ng).
else
o (E)):
For i=n—-1to 1 step —1 do
Qi1 Qz’fﬁ1
fZP — m;¢; + ¢1‘+1
nl  « Lwi+w; xLw;+p; xfF+Qink | +6; x ¢4
If R then
Ti «— (IIZP)Z
else
T (£F). enddo

Note that, within the do-loop of the foregoing algorithm, the vectors to the
left of the arrow are expressed in the ith frame, while £}, and nf, |, to the right
of the arrow, are expressed in the (i + 1)st frame.

In calculating the computational complexity of this algorithm, note that the
a; — p,; term is constant in the (i + 1)st frame, and hence, it is computed off-line.
Thus, its computation need not be accounted for. A summary of computational
costs is given in Table 7.2 for an n-revolute manipulator, with the row number
indicating the step in Algorithm 7.4.2.

The total numbers of multiplications My and additions A4 required by the
foregoing algorithm are readily obtained, with the result shown below:

Md = 5dn — 22,

Ag=44n — 14 (7.41)

In particular, for a six-revolute manipulator, one has

n=6, My;=2308 Agz=250 (7.42)
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Table 7.3: Complexity of Different Algorithms for Inverse Dynamics

Author(s) Methods Multiplications  Additions
Hollerbach (1980) E-L 412n — 277 320n — 201
Luh et al. (1980) N-E 150n — 48 131n — 48
Walker & Orin (1982) N-E 137n — 22 101n — 11
Khalil et al. (1986) N-E 105n — 92 94n — 86
Angeles et al. (1989) Kane 105n — 109 90n — 105
Balafoutis & Patel (1991)  tensor 93n — 69 81n — 65
Li & Sankar (1992) E-L 88n — 69 76n — 66

If the kinematics computations are accounted for, then the Newton-Euler
algorithm given above for the inverse dynamics of n-revolute manipulators re-
quires M multiplications and A additions, as given below:

M=13Tn—22, A=110n-14 (7.43)

The foregoing number of multiplications is identical to that reported by Walker
and Orin (1982); however, the number of additions is slightly higher than Walker
and Orin’s figure, namely, 101n — 11.

Thus, the inverse dynamics of a six-revolute manipulator requires 800 multi-
plications and 646 additions. These computations can be performed in a few
microseconds using a modern processor. Clearly, if the aforementioned algo-
rithms are tailored to suit particular architectures, then they can be further
simplified. Note that, in the presence of a prismatic pair in the jth joint, the
foregoing complexity is reduced. In fact, if this is the case, the Newton-Euler
equations for the jth link remain as in eqs.(7.38c & d) for the ith link, the only
difference appearing in the implementing algorithm, which is simplified, in light
of the results derived in discussing the kinematics calculations.

The incorporation of gravity in the Newton-Euler algorithm is done most
economically by following the idea proposed by Luh et al. (1980), namely, by
declaring that the inertial base undergoes an acceleration —g, where g denotes
the acceleration of gravity. That is

&= —g (7.44)

the gravitational accelerations thus propagating forward to the EE. A compari-
son of various algorithms with regard to their computational complexity is dis-
played in Table 7.3 for an n-revolute manipulator. For n = 6, the corresponding
figures appear in Table 7.4.
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Table 7.4: Complexity of Different Algorithms for Inverse Dynamics, for n = 6

Multiplications  Additions
Author(s) Methods (n =6) (n =6)
Hollerbach (1980) EL 2195 1719
Luh et al. (1980) N-E 852 738
Walker & Orin (1982) N-E 800 595
Hollerbach and Sahar (1983) N-E 688 558
Kane & Levinson (1983) Kane 646 394
Khalil et al. (1986) N-E 538 478
Angeles et al. (1989) Kane 521 435
Balafoutis & Patel (1991) tensor 489 420
Li & Sankar (1992) EL 459 390

7.5 The Natural Orthogonal Complement in Robot
Dynamics

In simulation studies, we need to integrate the system of ordinary differential
equations (ODE) describing the dynamics of a robotic mechanical system. This
system is known as the mathematical model of the system at hand. Note that the
Newton-Euler equations derived above for a serial manipulator do not constitute
the mathematical model because we cannot use the recursive relations derived
therein to set up the underlying ODE directly. What we need is a model relating
the state of the system with its external generalized forces of the form

x =f(x,u), x(tg) =xg (7.45)

where x is the state vector, u is the input or control vector, Xq is the state vector
at a certain time tg, and f(x, u) is a nonlinear function of x and u, derived from
the dynamics of the system. The state of a dynamical system is defined, in
turn, as the set of variables that separate the past from the future of the system
(Bryson and Ho, 1975). Thus, if we take to as the present time, we can predict
from eqs.(7.45) the future states of the system upon integration of the initial-
value problem at hand, even if we do not know the complete past history of
the system in full detail. Now, if we regard the vector @ of independent joint
variables and its time-rate of change, 0, as the vectors of generalized coordinates
and generalized speeds, then an obvious definition of x is

x=[o7 "] (7.46)

The n generalized coordinates, then, define the configuration of the system,
while their time-derivatives determine its generalized momentum, an item de-
fined in eq.(7.19d). Hence, knowing 6 and 0, we can predict the future values
of these variables with the aid of eqs.(7.45).
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Below we will derive the mathematical model, eq.(7.45), explicitly, as per-
taining to serial manipulators, in terms of the kinematic structure of the system
and its inertial properties, i.e., the mass, mass-center coordinates, and inertia
matrix of each of its bodies. To this end, we first write the underlying system of
uncoupled Newton-Euler equations for each link. We have n + 1 links numbered
from 0 to n, which are coupled by n kinematic pairs. Moreover, the base link
0 need not be an inertial frame; if it is noninertial, then the force and moment
exerted by the environment upon it must be known. For ease of presentation,
we will assume in this section that the base frame is inertial, the modifications
needed to handle a noninertial base frame to be introduced in Subsection 7.5.2.

We now recall the Newton-Euler equations of the ith body in 6-dimensional
form, eqs.(7.5¢c), which we reproduce below for quick reference:

M;t; = —-W;M;t; +w) +w&, i=1,...,n (7.47)

Furthermore, the definitions of eqs.(7.13b & c) are recalled. Apparently, M and
W are now 6n x 6n matrices, while t, w¢, w4, and w” are all 6n-dimensional
vectors. Then the foregoing 6n scalar equations for the n moving links take on
the simple form

Mt = —~-WMt + w* + wé + w? + w® (7.48)

in which w" has been decomposed into its active, gravitational, and dissipative
parts w”, w&, and w” | respectively. Now, since gravity acts at the mass center

of a body, the gravity wrench wz-G acting on the ith link takes the form

WS — [ 0 ] (7.49)

m;g

The mathematical model displayed in eq.(7.48) represents the uncoupled Newton-
Euler equations of the overall manipulator. The following step of this derivation
consists in representing the coupling between every two consecutive links as a
linear homogeneous system of algebraic equations on the link twists. Moreover,
we note that all kinematic pairs allow a relative one-degree-of-freedom motion
between the coupled bodies. We can then express the kinematic constraints of
the system in linear homogeneous form in the 6n-dimensional vector of manip-
ulator twist, namely,

Kt=0 (7.50)

with K being a 6n X 6n matrix, to be derived in Subsection 7.5.1. What is
important to note at the moment is that the kinematic constraint equations,
or constraint equations, for brevity, eqs.(7.50), consist of a system of 6n scalar
equations, i.e., six scalar equations for each joint, for the manipulator at hand
has n joints. Moreover, when the system is in motion, t is different from zero,
and hence, matrix K is singular. In fact, the dimension of the nullspace of K,
termed its nullity, is exactly equal to n, the degree of freedom of the manipulator.
Furthermore, since the nonworking constraint wrench w® produces no work on
the manipulator, its sole function being to keep the links together, the power
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developed by this wrench on t, for any possible motion of the manipulator, is
Zero, i.e.,
tTwC =0 (7.51)

On the other hand, if the two sides of eq.(7.50) are transposed and then multi-
plied by a 6n-dimensional vector A, one has

t"K"'A =0 (7.52)
Upon comparing eqgs.(7.51) and (7.52), it is apparent that w® is of the form
wC =KTX (7.53)

More formally, the inner product of w® and t, as stated by eq.(7.51), vanishes,
and hence, t lies in the nullspace of K, as stated by eq.(7.50). This means that
w lies in the range of K7, as stated in eq.(7.53). The following step will be
to represent t as a linear transformation of the independent generalized speeds,
i.e., as

t=T0 (7.54)

with T defined as a 6n x n matrix that can be fairly termed the twist-shaping
matriz. Moreover, the above mapping will be referred to as the twist-shape
relations. The derivation of expressions for matrices K and T will be described
in detail in Subsection 7.5.1 below. Now, upon substitution of eq.(7.54) into
eq.(7.50), we obtain

KTO =0 (7.55a)

Furthermore, since the degree of freedom of the manipulator is n, the n
generalized speeds {0z }7 can be assigned arbitrarily. However, while doing
this, eq.(7.55a) has to hold. Thus, the only possibility for this to happen is that
the product KT vanish, i.e.,

KT=0 (7.55D)

where O denotes the 6n x n zero matrix. The above equation states that T is
an orthogonal complement of K. Because of the particular form of choosing this
complement—see eq.(7.54)—we refer to T as the natural orthogonal complement
of K (Angeles and Lee, 1988).

In the final step of this method, t of eq.(7.48) is obtained from eq.(7.54),
namely,

t =T +TO (7.56)

Furthermore, the uncoupled equations, eqs.(7.48), are multiplied from the left
by T7, thereby eliminating w® from those equations and reducing these to a
system of only n independent equations, free of nonworking constraint wrenches.
These are nothing but the Euler-Lagrange equations of the manipulator, namely,

10 = —-T"(MT + WMT)0 + T (w* + wP + w®) (7.57)

where I is the positive definite n X n generalized inertia matriz of the manipu-
lator and is defined as
I1=TTMT (7.58)



