Introduction to Control Theory

COMP417

Actuators + Sensors

• How to get the best precision/performance?

Goal: move a robot at fixed speed

Open-loop

- Changing load on the motor?
 - Output velocity will change!

Closing the loop

• Compensate for changes in load by *feeding back* some information.

Control Theory

• Roots in Cybernetics

Cybernetics is the study of feedback and derived concepts such as communication and control in <u>living organisms</u>, <u>machines</u> and <u>organizations</u>.

• Expression was coined by Norbert Wiener in 1948.

Early Example of Feedback System

- James Watt's "Centrifugal Governor" in 1788.
- Regulates the steam engine speed.

Other Examples

- Body temperature regulation
 - If cold, shiver (muscles produce heat)
 - If hot, sweat (evaporation takes away heat)
- Maintaining social peace
 - If a crime is found (sensor), the guilty party is punished (actuator).
- Cruise control in cars
- Banking industry regulation

Why Study Control Theory

- Used everywhere in robotics/mechatronics
- Systematic approach to analysis and design
- Taxonomy of controller concepts

Typical Problems

Regulation

– Temperature (thermostat + heating)

- Tracking
 - robot joint rotation
- Process Optimization
 - maintaining best mix of chemicals

Components of Feedback Systems

- Power amplification
 - Neural signal power (μ W) vs. muscle power output (tens of W)
 - Means it is an <u>active</u> system, as opposed to passive.
- Actuator
- Feedback
 - measurement (sensor)
- Error signal
- Controller

Classic Feedback Control Diagram

Effect of Controller Functions

- Proportional Action
 - Simplest Controller Function
- Derivative Action ("rate control")
 - Effective in transient periods
 - Provides faster response (higher sensitivity)
 - Never used alone
- Integral Action
 - Eliminates steady-state error
 - Can cause oscillations

PID Tuning

How to get the PID parameter values ?

(1) If we know the transfer function, analytical methods can be used (e.g., root-locus method) to meet the transient and steady-state specs.

(2) When the system dynamics are not precisely known, we must resort to experimental approaches.

Ziegler-Nichols Rules for Tuning PID Controller:

Using only Proportional control, turn up the gain until the system oscillates w/o dying down, i.e., is marginally stable. Assume that K and P are the resulting gain and oscillation period, respectively.

Then, use	for P control	for PI control	for PID control	
	$K_p = 0.5 K$	$K_{p} = 0.45 \text{ K}$	$K_p = 0.6 \text{ K}$	Ziegler-Nichols Tuning
		$K_i = 1.2 / P$	$K_i = 2.0 / P$	order systems
			$K_{d} = P / 8.0$	